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ABSTRACT

Motivation: Predicting RNA–RNA interactions is essential for
determining the function of putative non-coding RNAs. Existing
methods for the prediction of interactions are all based on
single sequences. Since comparative methods have already been
useful in RNA structure determination, we assume that conserved
RNA–RNA interactions also imply conserved function. Of these,
we further assume that a non-negligible amount of the existing
RNA–RNA interactions have also acquired compensating base
changes throughout evolution. We implement a method, PETcofold,
that can take covariance information in intra-molecular and inter-
molecular base pairs into account to predict interactions and
secondary structures of two multiple alignments of RNA sequences.
Results: PETcofold’s ability to predict RNA–RNA interactions was
evaluated on a carefully curated dataset of 32 bacterial small RNAs
and their targets, which was manually extracted from the literature.
For evaluation of both RNA–RNA interaction and structure prediction,
we were able to extract only a few high-quality examples: one
vertebrate small nucleolar RNA and four bacterial small RNAs.
For these we show that the prediction can be improved by our
comparative approach. Furthermore, PETcofold was evaluated on
controlled data with phylogenetically simulated sequences enriched
for covariance patterns at the interaction sites. We observed
increased performance with increased amounts of covariance.
Availability: The program PETcofold is available as source code and
can be downloaded from http://rth.dk/resources/petcofold.
Contact: gorodkin@rth.dk; backofen@informatik.uni-freiburg.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Non-coding RNAs (ncRNAs) are receiving rapidly growing
attention; they are present in large numbers as observed
by The ENCODE Project Consortium (2007) and the FANTOM2
project (Ravasi et al., 2006), and they appear in many unexpected
cases (e.g. Mercer et al., 2008). The potential of functional ncRNAs
is further supported by the observation that the amount of non-
protein-coding DNA increases with organismal complexity, whereas
the amount of protein-coding DNA is relatively constant (Taft et al.,
2007). A substantial number of putative ncRNAs has emerged
from several genomic in silico screens for RNA structure taking
compensatory base pair changes into account (Torarinsson et al.,
2006, 2008; Washietl et al., 2005; Weinberg et al., 2007; Will et al.,
2007). Deep sequencing approaches are another growing source of
ncRNAs (e.g. Sharma et al., 2010).

One step towards assigning functions to these putative ncRNAs
is to consider RNA interactions. An important class of these are
RNA–RNA interactions; many ncRNAs base pair with other RNAs,
such as the majority of characterized bacterial small regulatory
RNAs (sRNAs) (Waters and Storz, 2009). Besides the well-known
examples of microRNAs (miRNAs) and small interfering RNAs
(siRNAs), there are also many longer eukaryotic ncRNAs that act
via RNA–RNA interaction. Examples are small nucleolar RNAs
(snoRNAs), of which the main function is to guide the editing
of ribosomal RNA (Bachellerie et al., 2002). However, there is
growing evidence that other long ncRNAs might act via base pair
interactions as well. For example, it is likely that certain long
ncRNAs modulate the activity of miRNAs by forming RNA–RNA
interactions (Wilusz et al., 2009).

Even though most screens for ncRNA candidates involve
mammalian genomes (Gorodkin et al., 2010) we predominantly
found with the exception of a few snoRNA examples, bacterial
examples of verified RNA–RNA interactions involving the structure
of both RNAs. This pattern might be the reason that many of
the existing methods for the prediction of RNA–RNA interactions
have been designed to work on bacterial sRNAs [see Backofen and
Hess (2010) for a review]. Furthermore, extensive curated data for
RNA–RNA interactions are limited because this effort is, just as
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for RNA structural alignments, rarely acknowledged (Menzel et al.,
2009).

Recent interest in prediction of RNA–RNA interactions has led
to four main classes of computational methods to solve this task.
Initial approaches evaluated only base pairs involved in duplex
formation (e.g. Rehmsmeier et al., 2004; Tafer and Hofacker, 2008).
The second class consists of methods that predict a joint secondary
structure of two interacting RNAs by folding their concatenated
RNA sequences (e.g. Andronescu et al., 2005; Bernhart et al.,
2006; Dirks et al., 2007). This concatenation approach considers
only a restricted set of interaction types, and therefore, the third
class evolved. Here, all interactions with one site are allowed and
interaction site accessibility is calculated by the partition function of
the structure ensemble (Bompfünewerer et al., 2008; Busch et al.,
2008; Mückstein et al., 2006, 2008; Richter et al., 2010). The
final class of methods handles more complex joint structures with
multiple interaction sites (Alkan et al., 2006; Chitsaz et al., 2009a, b;
Huang et al., 2009, 2010; Pervouchine, 2004; Salari et al., 2010a, b).
However, these methods are very resource-demanding, which makes
them not applicable for genome-wide scans. Furthermore, all
aforementioned methods evaluate only interactions between a pair
of single sequences.

For an approach that makes use of multiple alignments, our
assumption is that a non-negligible amount of the existing
RNA–RNA interaction contains compensatory changes across the
binding sites. Whereas this is a motivating aspect, the general
variation in the sequences with even a completely conserved
interaction site might also yield prediction improvements. Such an
improvement over single sequence-based methods can be obtained
by taking the overall sequence variation into account for the joint
framework of energy folding and covariation.

The literature contains only limited examples of conserved
RNA–RNAinteractions with likely compensating base pair changes,
such as the MicA–ompA interaction, where base pairing is
preserved by compensatory changes in several enterobacterial
species (Udekwu et al., 2005). These authors also developed
a method for predicting interactions that takes phylogenetic
conservation into account, but to our knowledge, they have not
yet published it. One explanation for the limited amount of data
containing covariance information might well be that most existing
data have been found using sequence similarity-based methods
such as BLAST (Altschul et al., 1997) to find homologs of the
interacting RNAs. Such an approach is expected to lead to a
collection of RNAs that are highly conserved in the primary
sequence rather than structure. Although in these cases it is likely
that the interaction pattern is conserved as well, only a small number
of compensatory base pair changes is expected. Therefore, we also
include simulated data based on substitution statistics of interacting
base pairs. Applying simulated data to make controlled tests or
to supplement existing data has been done several times before
(e.g. Kolbe and Eddy, 2009).

To summarize, there are three main problems for the prediction
of RNA–RNA interactions: (i) the small number of examples with
mapped interactions, (ii) most existing computational methods work
on single sequences and therefore suffer from a low specificity and
(iii) the search for complex types of interactions is expensive if a
guaranteed maximum score is to be obtained. The last is discussed
in more details in Seemann et al. (2010), where we propose an
algorithm for searching for RNA–RNA interactions between two

multiple RNA sequence (or sequence-structure) alignments. Our
algorithm can compute a semi-optimal combination of intra- and
inter-molecular base pairs to predict a joint secondary structure
of two multiple alignments of RNA sequences, each representing
its own evolutionary and structurally conserved RNA. The method
makes use of the idea of a linker from RNAcofold (Bernhart
et al., 2006) by concatenating both RNA sequences, but employs
this idea in the context of PETfold (Seemann et al., 2008) along
with a strategy for hierarchical folding (e.g. Gaspin and Westhof,
1995). PETfold is based on Pfold (Knudsen and Hein, 2003),
which provides reliabilities for evolutionarily conserved base pairs,
and unifies them with folding energies in one model. Hierarchical
folding allows for the prediction of pseudoknots between intra-
and inter-molecular base pairs but is still fast enough for genome-
scale applications. Here we present its implementation, PETcofold,
and an in-depth performance evaluation. A key motivation for
implementing a method that can predict RNA–RNA interactions
between two multiple alignments of RNA sequences is the existence
of many ncRNA candidates identified by genome-wide in silico
screens as mentioned before. These de novo predicted RNA
structures exist already as multiple alignments and the PETcofold
implementation presented here can readily be employed to further
analyse these candidates for potential interaction partners.

2 METHODS

2.1 Algorithm and implementation
The algorithm presented in Seemann et al. (2010) is implemented here in the
PETcofold program. The input consists of two RNA alignments A1 and A2,
and the program performs hierarchical folding in two steps. This multi-step
approach is motivated by the observation that interaction formation is often
initiated at well-accessible intra-molecular structures such as hairpin loops
(Brunel et al., 2002). Furthermore, several existing methods are based on
this observation and assume that the interaction sites are made accessible to
allow for hybridization of the two RNAs (e.g. Busch et al., 2008; Mückstein
et al., 2006). The workflow of the PETcofold pipeline is shown in Figure 1.
Supplementary Figure S1 shows a flow chart of the different programs
integrated in PETcofold.

In step 1, we search for highly reliable base pairs in both RNA
alignments, these are interpreted as being not accessible for the RNA–RNA
interaction. We apply the maximum expected accuracy approach of PETfold
separately on the alignments A1 and A2 to calculate reliabilities unifying
the thermodynamic probabilities from RNAfold (Hofacker et al., 1994) and
the evolutionary reliabilities from Pfold. The set of all base pairs with
high base pair reliability Rbp in the folding of the individual alignments,
i.e. Rbp is greater than a threshold δ, forms a partial structure σp and will
be denoted as σ

p
1 and σ

p
2 for A1 and A2, respectively. To ensure that the

highly reliable base pairs of the partial structure σp are also part of the
final (consensus) structure, they should make up a significant portion of
the probability Pr[E(σp)] in either the thermodynamic or the evolutionary
model, where E(σp) is the ensemble of structures that are compatible with
the partial structure σp. A high value of Pr[E(σp)] is guaranteed by the
introduction of a second threshold γ . The threshold δ for highly reliable base
pairs is now increased until the probability of E(σp) exceeds γ either in the
evolutionary or the thermodynamic model or both. In addition, constrained
stems in the partial structure σp are extended by inner and outer base pairs
if the average reliability of the extended stem is larger than δ and if the
partial structure probability Pr[E(σp)] exceeds γ . This feature is enabled by
the option -extstem.

In step 2, we concatenate the input alignments A1 and A2 with a
linker symbol ‘&’ to search for conserved interactions and structures of
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Fig. 1. The PETcofold pipeline consists of two steps: (1) intra-molecular
folding by PETfold and selection of a set of highly reliable base pairs
that only decreases the probability of the ensemble in some pre-defined
range; (2) inter-molecular folding by adapted PETfold using constraints
from step 1. In the end, partial structures and constrained inter-molecular
structures are combined to form the joint RNA secondary structure including
pseudoknots.

the sequences of the two alignments. On the concatenated alignment, we
apply an adapted PETfold model that can handle fixed partial structures
σ

p
1 and σ

p
2 from the first step by constrained expected accuracy scoring,

which is an extension of PETfold’s maximum expected accuracy scoring
for constrained folding. We search for a joint structure σ of the combined
alignment that extends both σ

p
1 and σ

p
2 , i.e. σ ⊇σ

p
1 ∪σ

p
2 . Although PETfold

cannot handle pseudoknots and the linker in step 2 forbids pseudoknots
in the concatenated sequences, i.e. the resulting structure has to be nested,
the hierarchical folding strategy of PETcofold allows pseudoknots between
intra-molecular base pairs from step 1 and inter-molecular (as well as
intra-molecular) base pairs from step 2 by restricting the positions of the
concatenated alignments that are covered by base pairs from σ

p
1 and σ

p
2 to be

single stranded. Under these constraints, the thermodynamic probabilities are
calculated with RNAcofold, and the evolutionary reliabilities are calculated
with an adapted Pfold using constrained folding, which yields the structure
σint. This constrained folding results in raw probabilities, which are then
weighted by the product of partial structure probabilities Pr[E(σp)] from
step 1. However, to avoid underestimating the probabilities of step 2,
we here replace the product with the geometric mean of partial structure
probabilities. The constrained expected accuracy structure σint is calculated
by a Nussinov-style algorithm and might contain both intra-molecular as
well as inter-molecular base pairs. The final consensus structure including
the interaction is then

σ =σ
p
1 ∪σ

p
2 ∪σint.

In the final scoring, the reliabilities of all base pairs from σ
p
1 and σ

p
2 are equal

to the partial structure probabilities Pr[E(σp
1 )] and Pr[E(σp

2 )], respectively.
The algorithm, which is described in more detail in Seemann et al. (2010),

has a time complexity of O(N ×I ×L3), where N is the number of sequences,
I is the number of iterations in the adaptation of δ to find probable partial
structures and L is the sum of the sequence lengths of both alignments.

2.2 Datasets and processing
The evaluation of PETcofold was performed using datasets extracted
from the literature combined with simulated data, in which the degree of
compensating base changes is controlled.

First, a dataset of interactions between bacterial sRNAs and their target
mRNAs was extracted. Starting from a set of experimentally verified

interactions used by Busch et al. (2008), we included further sRNA–mRNA
interactions with experimental support from the literature. The final dataset
contained 13 different sRNAs and 32 interactions from Escherichia coli K12
(E.coli), Salmonella typhimurium LT2 and Staphylococcus aureus N315 (see
Supplementary Table S1).

For each sRNA, the RNA family sequence alignment was downloaded
from the Rfam database 9.1 (Gardner et al., 2009). Orthologs of target genes
were predicted in species with available complete genomes according to
the Rfam annotation. The prediction of orthologous genes was carried out
with OrthoMCL (Li et al., 2003) using the default parameters. For each
target gene, a 250 nt subsequence was extracted (150 nt upstream and 100 nt
downstream of the annotated translational start sites) because all interactions
occurred from −132 nt to +56 nt relative to the start codon. The sets of
putative orthologous target sequences were locally aligned with MAFFT
(using option E-INS-i for generalized affine gap costs) (Katoh and Toh,
2008).

The resulting dataset was processed by homology reduction and removal
of sequences that were very distant to the reference, i.e. the organism in which
the interaction was detected. This step aims to remove false positive predicted
orthologs and was achieved by excluding all mRNA sequences with a low
pairwise sequence identity (PIint

ref) at the interaction site and within 10 nt of the
flanking sequences compared with the reference sequence. PIint

ref thresholds
of 40, 50 and 60% were applied. To avoid a bias caused by overweighting
redundant sequence information, mRNA sequences were clustered with the
BLASTClust tool (Altschul et al., 1997) using a word size of 8 and a percent
identity threshold of 100% over an area covering 90% of each sequence. The
sequence with the lowest PIint

ref was taken from each cluster. Further details
on the preparation of the dataset are given in the Supplementary Material.

To evaluate the covariance of a dataset, the arithmetic mean of
compensatory base pair (CBP) exchanges of all interactions was computed.
For a specific interaction, the CBP is computed as the average number
of compensatory base pairs in all interacting alignment columns, where a
compensating base pair is distinct from the bases involved in the pairing of
the reference sequence. Thus, the maximal value of the CBP is 5. Another
covariance measure is the probability Pr[σi,j|A,T ,M] of a base pair (i,j)
calculated by Pfold. It is more accurate because it takes into account, by the
tree T , the evolutionary distance of the sequences in the alignment A. The
model M describes the substitution rates of base pairs and unpaired bases
and the probabilities of secondary structure production rules (Knudsen and
Hein, 1999); however, the bias introduced by M can be ignored. To measure
the covariance of a full interaction, we use the normalized Pfold reliability
R(int), which is the mean of all base pair probabilities in the interaction.

2.3 Simulated data
The dataset described above is based on sRNA–mRNA interactions that
were experimentally validated in one reference organism. The incorporation
of homologous sequences from Rfam families and computational prediction
of orthologous genes is often used. However, this approach could be limited
in two respects. From a biological point of view, our method assumes that
the homologous sRNAs regulate the same targets by the same mechanism
in all organisms that are contained in the sequence sets. Although this
assumption probably holds true for many interactions, it does not have to
apply to all of them. Furthermore, the target orthologs might contain false
positive predictions with different physiological functions and regulatory
mechanisms. From a technical point of view, weak covariance at the
interaction sites limits the full potential of PETcofold. For example, the
most conserved region of the sRNA SgrS is involved in base pairing its
target (Horler and Vanderpool, 2009).

Thus, we created a simulated dataset with increased covariance. We
used SISSI (Gesell and von Haeseler, 2006) to simulate sequence data
with site-specific interactions annotated by the sRNA–mRNA interactions
of our dataset along phylogenetic trees. To be biologically relevant, we
estimated each phylogenetic tree from the corresponding alignment using
a maximum likelihood method with an independent model. For tree
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reconstructions, IQPNNI 3.3.1 (Vinh and von Haeseler, 2004) was used
with a F81 model (Felsenstein, 1981); otherwise, the default settings were
used. To specify the rate matrices, we simply counted the frequencies of
the nucleotides {A, C, G, U} for sites evolving independently and doublet
frequencies for the distant RNA interaction pairs. For each of the 32
alignments, we performed 20 simulations with the same length and in the
context of the annotations of the sRNA–mRNA interactions using a Markov
model of nucleotide sequence evolution (Gesell and von Haeseler, 2006)
with rate matrix types of the F81 model. We initially started simulations
along the estimated phylogenetic trees. Then, to increase the covariance, we
multiplied each branch length by a scaling factor. The simulation runs were
repeated under the same parameters with eight different scaling values as
shown in Table 1.

2.4 Performance evaluation
All predictions were evaluated by calculating their correlations to the
structures from literature ignoring non-canonical base pairs. We used the
Matthews correlation coefficient (Matthews, 1975) defined as

MCC= TP×TN−FP×FN
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
,

where TP is the number of mutual base pairs in the two assignments (true
positives), TN are the true negatives, FP is the number of predicted base
pairs not in the annotated assignment (false positives) and FN are the false
negatives. For RNA secondary structures, the geometric mean of sensitivity
(SEN=TP/(TP+FN)) and positive predictive value (PPV=TP/(TP+FP)),√

SEN∗PPV, is a good approximation of the MCC (Gorodkin et al., 2001)
and, here, is used to compare predicted joint secondary structures with the
annotations. The MCC should be maximized to achieve the best possible
trade-off between sensitivity and PPV.

The MCC of the prediction to the annotation is computed for each
sequence in the alignment. The arithmetic mean of these single MCCs gives
the mean MCC of a prediction. Arithmetic mean and median MCC of a whole
dataset are calculated from the mean MCCs of all interactions contained in
the dataset.

PETcofold is a comparative approach that detects conserved joint
secondary structures. Hence, to compare with single sequence-based
approaches, we also determined conserved consensus structures from the
results of inteRNA, Pairfold, RactIP and RNAcofold. The consensus
structure is defined by all base pairs that are conserved in a given percentage
of single structures (here: 80 and 100%) of each of the sequences in the
multiple alignment.

3 RESULTS

3.1 Parameter estimation on bacterial sRNA–mRNA
interactions

The performance of PETcofold under various parameter settings
was evaluated on a dataset of 32 bacterial sRNA–mRNA
interactions. The PETcofold parameter δ sets the maximal intra-
molecular base pair reliability of bases to be free for inter-molecular
folding, and the parameter γ sets the minimal partial structure
probability. For each of the two parameters, 11 values ranging
from 0.0 to 1.0 in steps of 0.1 were tested yielding 121 parameter
combinations. Furthermore, we tested the influence of the option
-noLP, which disallows pairs that can only occur isolated in the
thermodynamic part, i.e. it is used as an option for RNA(co)fold.
Columns with more than 50% gaps were removed.

The influence of the data composition on PETcofold’s prediction
quality was analysed by varying the minimal pairwise interaction
site sequence identity (PIint

ref).

PETcofold was applied to three datasets containing all 32
interactions, which were created by using PIint

ref of 40, 50 or 60%.
Figure 2 shows the 3D plot of the mean interaction MCCs for all
parameter combinations tested for 60% PIint

ref (without -noLP). Here,
PETcofold yielded the best performance for δ=0.9 and γ ranging
from 0.0 to 0.5. The 3D plots for PIint

ref of 40 and 50% are given
in Supplementary Figure S2. Of all three datasets, the best mean
MCC was 0.511 (median MCC: 0.583) for 50% PIint

ref, δ=γ =0.9 and
option -noLP. When taking all runs into account, the option -noLP
had only marginal influence on the mean MCCs (see Supplementary
Table S2).

The average number of compensatory interaction base pair
exchanges (CBP) in the three datasets ranged from 0.1 to 0.2 (see
Supplementary Table S2c). Since the best mean MCCs were very
similar and differed by 0.02 at most, the variation in covariance
observed here seemed to have no strong influence on the MCC.

The numerical experiments indicate that the use of intra-
molecular constraints improves the prediction of interaction sites.
Nevertheless, the probability threshold δ for base pairs in the partial
structure σp has to be fairly high to achieve the best MCCs.
This is in agreement with Seemann et al. (2010), in which we showed
that the structural mass of intra-molecular partial structures has to
be high to support the constrained expected accuracy scoring. When
setting δ to 1, then no base will be constrained by base pairing
for the inter-molecular folding step. Consequently, no loop–loop
interactions between the two single structures are allowed. We found
that a δ of 0.9 yields the best MCC. This setting forbids interactions
in highly structured regions and, thus, accounts for the importance
of interaction site accessibility.

The parameter γ adapts the probability of partial structures
to cover a high mass of the entire ensemble of structures. This
strategy avoids constraints that are not compatible with reliable
alternative structures supporting the interaction site. In five out of
six sets of input alignments, we observed the best performance
for γ =0.9 (see Supplementary Table S2). For multiple alignments
with PIint

ref of 60%, we achieve the best performance for 0≤γ ≤0.5.
In real applications, sequence-based alignments are often used
as input, which perform satisfactorily for pairwise sequence

Fig. 2. The performance of PETcofold while varying the parameters δ

(maximal intra-molecular base pair reliability) and γ (minimal partial
structure probability). The 3D plot shows the mean MCC of 32 interactions
using input sequences with a minimal pairwise mRNA interaction site
sequence identity to the reference of 60%. Predictions were carried out
without the option -noLP. The maximal MCC is marked with ‘+’.
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identities above 60%. For the prediction of joint secondary
structures, we use a rather restrictive γ of 0.1 to allow many
constraints for intra-molecular base pairs. Furthermore, on the
limited set of joint structures presented in Section 3.3, we achieved
no performance increase by a higher value for γ (see Supplementary
Table S3).

3.2 Simulated interactions with increased covariance
The average number of compensatory interaction base pair
exchanges (CBP) in the 32 interactions from Section 3.1 was rather
low with values of 0.1–0.2. Therefore, we created a simulated
sequence dataset based on these interactions as described in
Section 2.3. Here, covariance at the interaction sites was increased
by scaling the branch lengths of the phylogenetic trees that guided
the simulation. As shown in Table 1, the minimal CBP computed
from the simulated data was 0.8, which was higher than the CBP
of the real data. This was due to the fact that the simulations only
covered a subset of the evolutionary constraints on the sequences.
For example, only the interactions without thermodynamics were
used as structural constraints. Other evolutionary pressures on
the sequences were neglected. However, taking into account all
aspects in the simulations with a corresponding maximum likelihood
framework is beyond the scope of this article. At this point, we
focused on evaluating PETcofold’s performance on datasets with
increased covariance.

We applied PETcofold to these datasets and computed the
mean interaction MCC of all 20 simulation runs for 9 different
phylogenetic scaling factors. Figure 3 shows the mean interaction
MCC plotted over the phylogenetic scaling factor for PETcofold
predictions with δ=0.9, γ =0.1 and the option -noLP. The mean
MCC of the predicted interactions was 0.505 for scaling factor 1.
The prediction accuracy of PETcofold in terms of MCC increased
with increasing scaling factors. A mean MCC of 0.821 was achieved
for scaling factor 200. Table 1 shows for all scaling factors the
mean interaction MCC and the covariance in the data as evaluated
by R(int) and CBP. It can be clearly seen that the performance of
PETcofold correlated with the covariance at the interaction sites.

3.3 RNA joint secondary structures
In Seemann et al. (2010), we gave the theoretical background
of PETcofold and presented the joint structure prediction of
a prototype implementation on the well-known example OxyS-
fhlA (Argaman and Altuvia, 2000). Additional examples are
presented in the following and PETcofold’s performance is explored
more quantitatively using the MCC measure and a comparison to
other joint structure prediction methods. The predictions for the
examples MicA-ompA, OxyS-fhlA, RyhB-sodB and RyhB-uof-fur
were compared with the interaction models based on structural
mapping as described by Argaman and Altuvia (2000); Geissmann
and Touati (2004); Udekwu et al. (2005) and Večerek et al. (2007).
The interactions of RyhB-sodB and OxyS-fhlA involve one and
two loop–loop interactions, respectively. Consequently, their joint
structures contain pseudoknots between the single structure and the
interaction.

For the structure prediction, the dataset with a minimal mRNA
interaction site identity (PIint

ref) of 60% was used. To make the
predictions comparable with the annotated structures, an mRNA
subsequence as given in the proposed interaction complex model
was used instead of the 250 nt subsequence as described in

Table 1. Prediction performance of PETcofold on simulated sequence
data

Scaling factor Mean branch length R(int) CBP Mean MCC

1 0.03 0.486 0.832 0.505
5 0.15 0.665 1.818 0.677

10 0.3 0.699 2.182 0.717
25 0.75 0.732 2.550 0.743
50 1.5 0.775 2.755 0.773
75 0.75 0.791 2.858 0.783

100 3.0 0.801 2.908 0.790
150 4.5 0.822 2.988 0.802
200 6.0 0.839 3.040 0.821

Scaling factor multiplies each branch length of the phylogenetic tree. Mean branch
length denotes the mean of the mean branch lengths for all 32 phylogenetic trees. R(int)
denotes the mean base pair probability at the interaction sites (calculated by Pfold).
CBP denotes the average number of compensatory interaction base pair exchanges in
the simulated sequence data. MCC evaluates only the interaction. PETcofold was called
with parameters δ=0.9, γ =0.1 and option -noLP to forbid lonely base pairs.
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Fig. 3. Prediction performance of PETcofold on phylogenetically simulated
sequence data for 32 interactions. Covariance of the data were increased
by multiplying each branch length with a phylogenetic scaling factor.
PETcofold was called with parameters δ=0.9, γ =0.1 and option -noLP.

Section 2.2. Regarding the sRNAs, the Rfam entry of RyhB
(RF00057) missed the first 29 nt of the E.coli RyhB sequence.
However, this subsequence is involved in forming the secondary
structure. Thus, homologs of the RyhB sRNA were searched with
the semi-global alignment tool GotohScan 1.3 (Hertel et al., 2009)
using defaults parameters. The genome-wide search was conducted
with an E-value threshold of 1e-3 in all organisms contained in
the RyhB alignment of the aforementioned dataset. Homologs were
found in all of these organisms except Vibrio cholerae O395. A
multiple sequence-structure alignment of the identified homologous
RyhB sequences was computed with LocARNA 1.5a (Will et al.,
2007). The mRNA and sRNA alignments of the four examples were
hand curated by removal of redundant sequences and of sequences
that were very distinct from the reference organism E.coli, in which
the interaction models were experimentally determined.

To predict the joint structures, PETcofold was called with
parameters δ=0.9, γ =0.1, option -noLP and optionally with
option -extstem. Our evaluation included the following single
sequence-based methods: the sparsified version of inteRNA
(Salari et al., 2010b), Pairfold (Andronescu et al., 2005),
RactIP (Kato et al., 2010), all with default parameters, and
RNAcofold (Bernhart et al., 2006) using parameters -d2 -noLP.
All methods apart from RactIP predict minimum free energy
joint secondary structures. inteRNA is based on the model
by Chitsaz et al. (2009b), whereas Pairfold and RNAcofold are
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Table 2. Performance of PETcofold and other joint structure prediction methods on four sRNA–mRNA examples

sRNA-target pair MCC Run time (s)

PETcofold inteRNA Pairfold RactIP RNAcofold PETcofold inteRNA Pairfold RactIP RNAcofold

-extstem 80% 100% 80% 100% 80% 100% 80% 100% -extstem

MicA-ompA 0.87 0.83 0.49 0.51 0.86 0.74 0.57 0.57 0.80 0.67 28.7 28.4 69493.1 3.2 3.0 0.2
OxyS-fhlA 0.80 0.82 0.64 0.64 0.61 0.61 0.48 0.48 0.61 0.61 20.6 19.3 129636.7 1.9 2.0 0.2
RyhB-uof-fur 0.13 0.13 0.12 0.00 0.21 0.21 0.19 0.00 0.21 0.21 26.4 25.3 65599.2 2.6 2.7 0.2
RyhB-sodB 0.67 0.71 0.70 0.68 0.65 0.51 0.65 0.59 0.65 0.63 15.4 15.2 23579.3 1.7 2.0 0.1

Average 0.62 0.62 0.49 0.46 0.58 0.52 0.47 0.41 0.57 0.53 22.8 22.1 72077.1 2.4 2.5 0.2

The MCC evaluates the joint structure, i.e. both the interaction between the two RNAs and the secondary structure of each single RNA. PETcofold was called with parameters
δ=0.9, γ =0.1, option -noLP and optionally with option -extstem. inteRNA, Pairfold and RactIP were called with default parameters. RNAcofold was called with options -d2
-noLP. The columns 80% and 100% give the result for the consensus structure with base pairs that occur in 80 and 100%, respectively, of the single structures. The run time of all
single sequence-based approaches is the sum for all input sequences.

Fig. 4. Joint secondary structure of the sRNA MicA and the mRNA ompA. The alignment shows the two input alignments concatenated by the linker symbol
‘&’, the joint structure predicted by PETcofold (with parameters δ = 0.9, γ = 0.1 and option -noLP) and the model of the MicA–ompA complex proposed by
Udekwu et al. (2005). Sequences are labelled with the genome accession numbers of the corresponding organisms. Angle brackets indicate inter-molecular
base pairs. Round and square brackets indicate intra-molecular base pairs. Square brackets indicate positions that are constrained in step 1 of the PETcofold
pipeline. For ompA, only 40 nt upstream of the interaction site are shown. The alignment was visualized with Jalview (Waterhouse et al., 2009).

based on folding of the concatenated input sequences using the
model of Zuker and Stiegler (1981). RactIP uses integer linear
programming to maximize an objective function that is based
on internal and external base pair probabilities. All computations
were performed on a machine with AMD Opteron 2356 processor
(2.3 GHz) and 16 GB RAM.

All resulting consensus structures were compared with the joint
structure from the literature using the approximated MCC. Table 2
lists the MCCs of all four examples for PETcofold and the compared
methods.

For the interactions of OxyS-fhlA and RyhB-sodB, the MCC of the
PETcofold predictions was slightly higher when using the option
-extstem. The opposite applies to MicA-ompA. On the non-curated
alignments, the MCC was up to 0.2 lower (data not shown), which
emphasized the importance of high-quality input alignments for
our method. However, the option -extstem seemed to improve the
prediction when using low-quality input alignments by extension of
imperfectly (structurally) conserved stems.

When comparing PETcofold with the other methods, our
method overall showed a better performance in predicting the joint
structures. The prediction quality of the RyhB-uof-fur joint structure
is very low for all compared approaches (maximal MCC of 0.21),
which implies that the published interaction model is not predictable
with the evaluated computational approaches. Thus, the prediction
for this example is not reliable. When excluding RyhB-uof-fur, our

approach gives consistently more reliable predictions than the single
sequence-based methods (see Table 2.)

For comparison to the complex joint secondary structure
prediction methods with high resource consumption (both high
time and memory complexity), we were only able to compare to
inteRNA, as this is currently the only method with a sufficiently
low resource consumption. However, the evaluation shows that this
(minimum free energy structure) prediction approach is not very
reliable without homology information. Thus, one has to resort to
the more complex partition function approaches, which, however,
have drastically larger time and memory requirements. For example,
it was not possible to obtain predictions from RNArip (Huang et al.,
2010) with reasonable resources. In comparison, PETcofold gave
reliable predictions within seconds, which makes it also fast enough
for genome-scale applications.

Figure 4 shows the annotation and PETcofold prediction for
MicA-ompA together with the sequence alignments used as input.
PETcofold correctly predicted all interaction base pairs from the
annotation. The interaction site is highly conserved in both RNAs
and contains only one compensatory mutation for the pairing
between alignment positions 16 and 126. The intra-molecular
structures contain compensatory mutations, for instance, between
alignment positions 60 and 65.

Alignments and joint structures of OxyS-fhlA, RyhB-sodB
and RyhB-uof-fur are given in Supplementary Figure S3. Two

216

 at Inst F
 A

ngew
andte M

athem
atik on January 12, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[16:02 27/12/2010 Bioinformatics-btq634.tex] Page: 217 211–219

PETcofold

Fig. 5. Joint secondary structure of mgU6-77 snoRNA and U6 snRNA as
predicted by PETcofold using parameters δ=0.9, γ =0.1 and options -noLP
and -extstem. Mouse sequences are shown, but the numbering refers to the
input alignment of human, chimp, mouse, cow, tenrec, dog and opossum.
Intra-molecular base pairs are coloured in blue and inter-molecular base pairs
in green. The cytosine at alignment position 78 (pos. 77 in mouse) is 2´-O-
methylated and marked by ‘m’. We used PseudoViewer3 for drawing (Byun
and Han, 2009).

observations might explain the low prediction quality for RyhB-uof-
fur. First, the interaction site given in the literature overlapped with
the highly probable terminator stem of RyhB, which was constrained
for inter-molecular folding. Second, a region of the interaction site
that was subject to experimental validation (alignment positions 144
to 149) contained base pairs that were not supported by up to 3 out
of 9 sequences of the alignment.

3.4 SnoRNA interactions in vertebrates
SnoRNAs have been experimentally detected in various vertebrates
(e.g. Hüttenhofer et al., 2001; Vitali et al., 2003), but interactions
between snoRNA and their target RNAs have only been predicted.
The interactions are located in highly conserved regions for
all examples of which we are aware. Despite of the lack of
experimentally verified structures, we give one example showing
that PETcofold is able to predict the joint structure of the known
secondary structures and the predicted interaction.

Vertebrate spliceosomal snRNAs are highly modified by
pseudouridylation and 2´-O-methylation. Tycowski et al. (1998)
showed that depletion of the C/D box snoRNA mgU6-77 from
Xenopus oocytes inhibits 2´-O-methylation of C77 in U6 snRNA.
Figure 5 shows the joint structure including a pseudoknot as
predicted by PETcofold. The input consisted of the mgU6-77
alignment from snoRNABase (Lestrade and Weber, 2006) and the
U6 seed alignment from Rfam. The joint structure consisting of the
snoRNA structure, the interaction in mouse (Tycowski et al., 1998)
and the U6 Rfam structure was predicted by PETcofold with an
approximated MCC of 0.74. RNAcofold (parameters -d2 -noLP)
performed with an approximated MCC of 0.51 for the consensus
structure conserved in 80% as well as 100% of sequences. Both
methods predicted further binding sites in addition to the reported

highly conserved interaction, whereas PETcofold performed much
better in predicting the long hairpin of the snoRNA (PETcofold
MCC: 0.85, RNAcofold MCC: 0.0).

4 DISCUSSION
Here, we presented PETcofold, the first comparative method for the
prediction of a joint secondary structure of two interacting RNAs.
The method identifies evolutionary conserved structures and can
exploit the information from compensating base changes in the
intra-molecular structures of the two RNAs and the interactions
between them. Furthermore, PETcofold allows for the prediction of
pseudoknots between intra- and inter-molecular base pairs.

We have shown in controlled runs on simulated data that
the covariance information improves the prediction ability for
RNA–RNA interactions. We have also shown both for a vertebrate
snoRNA and for four bacterial sRNAs that the addition of
evolutionary information from multiple sequence alignments
improves the performance in comparison to methods based on single
sequences. This implies that single sequence-based methods could
perform better if the comparative information is also taken into
account. As for other RNA structure prediction methods making
use of sequence-based alignments, it is well-documented that these
work best with an average pairwise sequence identity above 60%
(Gardner et al., 2005; Washietl and Hofacker, 2004). In the process
of cleaning up the (already sparse) bacterial data, we took this into
account by removing more distant sequences to keep the balance of
accurate assignment and covariance patterns of base pairs.

Many genomic screens for ncRNAs predict secondary structures
with compensatory base pair changes on RNA alignments. These
intra-molecular structures can be used as input of step 1 of the
PETcofold pipeline to identify highly reliable substructures, which
are then constrained for step 2. For example, PETcofold could
be applied to predict RNA–RNA interactions on the CMfinder-
generated structure-based alignments of de novo predicted RNA
motifs in the ENCODE regions (Torarinsson et al., 2008).

The sparse amount of known examples of sequences with
RNA–RNA interactions and the paucity of covariations were the
reasons why we introduced simulated data. Some of the known
examples of RNA–RNA interactions, e.g. from bacterial sRNA–
mRNA and eukaryotic miRNA–mRNA interactions, tend to be
rather conserved. Even in cases with little or no compensating base
pairs (in interaction sites or in the intra-molecular structure), any
given variation will collectively contribute to the calculation of the
reliabilities and thereby to the overall structure of the interaction
complex. Hence, in the complete lack of covariation, PETcofold
reduces to an improved energy folding approach, which also has
impact on matching up the interacting base pairs. The sRNA–
mRNA interactions studied here exhibit only a small number of
compensatory base pair changes, which might be because sRNA
sequences often show poor conservation across distant bacterial
species. Thus, the regulators might be recently acquired and rapidly
evolving (Waters and Storz, 2009). Nevertheless, many of the
homologous ncRNAs and mRNAs have been found based on
sequence similarity, which leads to highly identical sequences and
thereby also to highly conserved interactions. PETcofold considers
sequence conservation, but its full power is only revealed when
the input data contains structural covariance. In the future, we
expect that deep sequencing approaches will give rise to many more
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characterized transcriptomes, which will increase the amount of data
available for analysis including RNAs containing compensating base
pair changes.

Certain RNA–RNA interactions, e.g. the functionally important
interactions between the 16S and 23S rRNAs in the ribosome,
involve non-canonical base pairs. Our method looks primarily for
canonical, e.g. Watson–Crick, base pairs and G-U wobble base pairs.
However, the Pfold model includes equilibrium distributions for the
frequencies of all possible 16 bp and substitution rates for all possible
base pair substitutions (16×16 matrix), which have been estimated
from given trusted alignments of tRNA and rRNAs including non-
canonical base pairs (Knudsen and Hein, 1999). The probabilities of
non-canonical base pairs are low compared with Watson–Crick and
Wobble base pairs and, thus, in practice, non-canonical base pairs
are only found together with canonical base pairs. Nevertheless, the
equilibrium distributions in the evolutionary model of PETcofold
could be adapted to increase the impact of non-canonical base pairs
by using a different training set.

Future improvements can include explicit handling of redundant
sequence information. Currently, redundant sequences contribute
equally to the scoring to directly reflect the input data instead of
overweighting outliers in a dense evolutionary tree. Thus, datasets
with highly redundant sequences should be cleaned prior to usage
of the program.

Long RNA–RNA interactions form helices similar to the DNA
double strand (Watson and Crick, 1953). These helices pose inter-
and intra-molecular topological challenges. Due to the turn of the
helix (i) the length of the interaction between the two RNAs is
constrained and (ii) a certain number of unpaired bases on either side
of the interaction are necessary to enable the first enclosing intra-
molecular base pair (Pervouchine, 2004). In practice, this means
that the computational methods can predict longer helices, because
the outer bases are complementary, but in the three-dimensional
topology these base pairings would be spatially unfeasible. However,
taking topological constraints into account would be excessively
time costly. Our method, and all other methods capable of genome-
scale analysis, work only at the level of secondary structures.
However, in the future it would be useful to accommodate this.

In some cases, the hierarchical folding approach predicts
RNA–RNA interactions with reduced accuracy because the intra-
molecular constraints overlap with the interaction sites. In these
cases, the interaction site accessibility model of PETcofold is too
strict and overestimates the stability of intra-molecular structures.
As an example, one of the two OxyS–fhlA interaction sites is not
predicted because the stem enclosing the second interaction site has a
high reliability and, thus, gets constrained. In Seemann et al. (2010),
the input alignment consisted of more distant sequences, which
reduced the reliability of this stem and made the interaction site
accessible. For avoiding too restrictive constraints, we introduced a
parameter γ when reliable alternative structures exist. It is planned
that a future version of PETcofold will take the cost of opening
stems into account as, e.g. in RNAup and IntaRNA.
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