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ABSTRACT

Computational methods for determining the second-
ary structure of RNA sequences from given align-
ments are currently either based on thermodynamic
folding, compensatory base pair substitutions or
both. However, there is currently no approach that
combines both sources of information in a single
optimization problem. Here, we present a model
that formally integrates both the energy-based and
evolution-based approaches to predict the folding of
multiple aligned RNA sequences. We have imple-
mented an extended version of Pfold that identifies
base pairs that have high probabilities of being con-
served and of being energetically favorable. The con-
sensus structure is predicted using a maximum
expected accuracy scoring scheme to smoothen
the effect of incorrectly predicted base pairs. Param-
eter tuning revealed that the probability of base pair-
ing has a higher impact on the RNA structure
prediction than the corresponding probability of
being single stranded. Furthermore, we found that
structurally conserved RNA motifs are mostly sup-
ported by folding energies. Other problems (e.g.
RNA-folding kinetics) may also benefit from employ-
ing the principles of the model we introduce. Our
implementation, PETfold, was tested on a set of 46
well-curated Rfam families and its performance
compared favorably to that of Pfold and RNAalifold.

INTRODUCTION

With the recent focus on nonprotein coding RNA
(ncRNA) genes, interest in detecting novel ncRNAs has
rapidly emerged. Since the structure of RNA is evolutio-
narily more conserved than its sequence, predicting the
RNA’s secondary structure is one of the most important
steps towards its functional analysis. There are two
fundamentally different approaches to predicting RNA

secondary structures, namely free-energy minimization
and probabilistic approaches, which often use phyloge-
netic information given by a multiple sequence alignment.
This duality of approaches represents two different types
of RNA structure information, the former relies on the
physical properties of single sequences, while the latter
uses evolutionary information in the form of compensa-
tory base pair substitutions.
The advantage of energy minimization is that it relies on

experimentally determined parameters. On the other hand,
it is known that methods such as RNAfold (1) and
Mfold (2) achieve an overall sensitivity of about 70% (3).
For example, H/ACA snoRNAs usually do not produce
the characteristic two-stem when the energy minimization
alone is used to determine the structure. Instead, informa-
tion on the functional sites have to be used as additional
constraints to the thermodynamic folding (4–6). In gen-
eral, there are several reasons for the inaccuracy of energy
minimization. First, the energy model is incomplete, espe-
cially for multi-loop structures. Second, there can be alter-
native structures with similar free energies. And third, true
structures are often stabilized by bound molecules. The
only feasible way to determine the effects of these inac-
curacies is to include phylogenetic information by looking
for conserved substructures that cannot be accounted for
by thermodynamic folding alone.
Hence, it is desirable to combine this duality of RNA

structure information into a single optimization problem.
This was probably addressed for the first time in 1985 by
David Sankoff (7), who introduced an algorithm that
solved the problem of simultaneously aligning and folding
a set of unaligned RNA sequences. While, this is a kind of
gold standard for comparative RNA secondary structure
prediction, the ‘algorithm requires extreme amounts of
memory and time’ (8). Thus, practical implementations
of the Sankoff algorithm like FOLDALIGN (9–12),
Dynalign (13,14), PMcomp (15), LocARNA (16,17) and
PARTS (18), published more than 20 years later,
introduce different constraints and somewhat arbitrary
choices in their scoring schemes to make the approach
tractable for realistic input sizes.

*To whom correspondence should be addressed. Tel: +49 761 203 7461; Fax: +49 761 203 7462; Email: backofen@informatik.uni-freiburg.de

� 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

 Nucleic Acids Research Advance Access published October 4, 2008



Probabilistic approaches to the problem of simulta-
neously aligning and folding a set of RNA sequences, e.g.
Stemloc (19) and Consan (20), are usually based on sto-
chastic context-free grammars (SCFG). Unlike the afore-
mentioned Sankoff-like methods where the energy is
explicitly reflected in the scoring scheme, these approaches
rely purely on statistical learning methods to determine
their parameters. A mixed approach is employed by
CMfinder (21) that implicitly combines energy contribu-
tions with an SCFG. As a seed CMfinder uses energetically
folded structures fromwhich a covariancemodel (SCFG) is
constructed in successive rounds of optimization. Another
approach is SimulFold (22), which simultaneously infers
structures (including pseudoknots), alignments and trees.
There are no sequence-dependent energy contributions,
but an energy term that depends on the topology of the
consensus structure.
The main disadvantage of the Sankoff-like approaches

is their high-computational cost. For this reason, a class
of methods was developed that saves computational
resources by predicting the optimal structure from given
RNA alignments, which are usually produced by multiple
sequence alignment methods. This approach has proven
useful in genomic screens for ncRNAs (23,24), despite
their limitations in finding RNA structures in more diver-
gent sequences (25). It has been shown that the quality of
the predictions breaks down in cases where sequence iden-
tity is <60% (26). On the other hand, these methods can
also be applied to improve the consensus structure predic-
tion in Sankoff-like approaches. The reason is simply that
the Sankoff-like approaches usually apply a progressive
strategy by combining pairwise alignments to build the
final multiple alignment. Thus, consensus structure predic-
tion can be improved when considering the complete phy-
logenetic information.
In this article, we extend Pfold (27) to simultaneously use

evolutionary and energetic information while searching for
the common structure in a set of prealigned sequences. The
probabilistic approach underlying Pfold combines an expli-
cit evolutionary model of the RNA sequences with a prob-
abilistic model of the secondary structures. When trying to
extend this approach to incorporate thermodynamic fold-
ing, the first idea was to develop a combined probabilistic
model for evolution and folding, using the partition func-
tion approach of McCaskill (28) as a probabilistic model
for thermodynamic folding.
There are two main problems for a combined probabil-

istic model. First, there is no simple way to weight the
different information sources in such a combined model.
And second, the structure prediction would be based on
a maximum likelihood or maximum a posteriori (MAP)
approach. Recent work by Carvalho and Lawrence (29)
has shown that this approach often does not yield to the
desired result. Basically, the implicit assumption of a max-
imum likelihood or MAP approach is that the structure
with the highest probability is also the structure where
the ensemble of close neighbors has the highest probability
mass, which is often not the case. Hence, Carvalho and
Lawrence proposed different new classes of estimators,
which included estimators already used in sequence
alignment and RNA secondary structure prediction.

One example is the maximum expected accuracy (MEA)
method originally introduced by ref. (30) and successfully
applied to sequence alignment in ProbCons (31) and to
RNA structure prediction in CONTRAfold (3). A partition
function version of the Sankoff algorithm (which is related
to MEA scoring) was introduced in ref. (32). Another
example is Pfold itself, since the current implementation
does not use the maximum likelihood approach originally
introduced in ref. (33), but is based on reliability scores
(27), which can be interpreted as a variant ofMEA scoring.

Hence, our approach is based on a combined MEA
score. The combined score is based on both base pair and
single-strand probabilities as calculated by RNAfold and
the reliabilities of base pairs and single-stranded positions
as extracted from Pfold. The combined MEA scoring has
the advantage that it allows for an explicit weighting of the
contribution of phylogenetic and thermodynamic informa-
tion and smoothens the effects of incorrectly predicted base
pair probabilities. The latter is due to the fact that the
algorithm searches for a structure that shares as many
base pairs as possible with all alternative structures. We
implemented this Probabilistic Evolutionary and Thermo-
dynamic folding algorithm (PETfold) for multiple RNA
sequence alignments.

Recently, several methods for finding the common struc-
ture in a set of sequences that are either unaligned or
aligned have been published (34–37). Essentially, they all
carry out a global alignment or predict a common structure
on a set of globally aligned sequences. RNAalifold (38) basi-
cally applies energy minimization to a complete alignment.
In addition, it introduces an evolutionarily motivated score
to measure sequence covariation for base pairs. Since it is
widely used and applies a thermodynamic-based scoring
scheme, it was chosen as a benchmark method in addi-
tion to Pfold.

MATERIALS AND METHODS

The Pfold model

We now recall the Pfold (33) model. In the following,
a secondary structure � is a set of base pairs that do not
cross. Let A be a multiple alignment of the sequences
s1 . . . sn. Furthermore, let T be a given evolutionary tree
andM be a prior model for the secondary structures. Thus
the model provides a probability distribution on the struc-
tures, given the data (i.e. the alignment A) and the back-
ground information (i.e. the secondary structure
background model M and the tree T):

Pr½�jA;T;M� ¼
Pr½A; �jT;M�

Pr½AjT;M�

¼
Pr½AjT; �;M�P½�jT;M�

Pr½AjT;M�

1

Since Pr½AjT;M� is independent from the structure �, we
need to optimize only Pr½AjT; �;M�P½�jT;M�:

Here, P½�jT;M� is the prior distribution over all second-
ary structures. M is given by the following simple SCFG,
which is taken from Pfold:

S! LSjL F! dFdjLS L! sjdFd: 2
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It has been shown by Dowell and Eddy (39) that this
grammar performs best on a given benchmark data set.
Furthermore, this grammar is unambiguous, i.e. every
structure is generated in a unique way. For each structure
�, let �M(�) be the associated parse tree that produces the
structure � using the grammar M. With r(�) we denote the
root node of �Mð�Þ.

The term Pr½AjT; �;M� provides a distribution over
alignments. Here, only the sequences evolve and the
common structure � (adopted by all sequences) determines
the mode of evolution. The alignment probability is calcu-
lated as the product of alignment column probabilities,
which are calculated using Felsenstein’s dynamic pro-
gramming for phylogenetic trees (see Supplementary
Material for details).

The full term Pr½AjT; �;M�P½�jT;M� now can be calcu-
lated with a combined SCFG by multiplying the probabil-
ities for the secondary structure rules in Equation (2) with
the probabilities for generating the associated alignment
columns (see Supplementary Material again). In the fol-
lowing, we will denote it with Pr(r(�), A).

Originally, Pfold (33) used a MAP approach for calcu-
lating the consensus structure �. Thus, � was defined to be
the structure that maximizes Pr(r(�), A). This maximiza-
tion problem can be solved using the CYK algorithm.
Later, this was replaced in Pfold by a more successful
MEA approach discussed in the next section.

Maximum expected accuracy

The basic idea of MEA scoring is to consider Pr(r(�), A)
as a probability distribution over consensus structures,
where higher probabilities denote a better fit to the
alignment and its associated evolutionary history. We
write position i 62 � as short for ‘position i is not involved
in a base pair in �’ [i.e. 8j : ði; jÞ 62 � ^ ðj; iÞ 62 �ð Þ].
Given the structure � and an alignment A with m columns,
the set of all unpaired positions in the consensus structure
is denoted as � ¼ fi 62 � j 1 � i � mg. Then, we can com-
pute the expected overlap ex-overevo(�) of a specific con-
sensus structure � with all possible consensus structures,
weighted according to their probabilities. This can be done
as follows:

ex-overevoð�Þ

¼
X
� 0
½j� \ � 0j þ �jsgð�Þ \ sgð� 0Þj� �Prðrð� 0Þ;AÞ

¼
X
ði;jÞ 2 �

X
� 0

dðði; jÞ 2 � 0Þ � Prðrð� 0Þ;AÞ

þ �
X

i2 sgð�Þ

X
�0

dði 2 sgð� 0ÞÞ � Prðrð� 0Þ;AÞ;

where the term �ð Þ for a proposition  � ðði; jÞ 2 �0Þ or
 � ði 2 sgð� 0ÞÞ is 1 if the  is true and 0 otherwise. � is a
free parameter that weights single stranded against base
pair positions. Since a base pair occupies two positions, �
should be smaller than 1\2 (where �=1\2 means that pre-
diction errors on base pairs and single stranded positions
are weighted equally).

We now define the reliability scores for a base pair (i, j)
and for a single-stranded base i as in Pfold by

RA;T;Mði; jÞ ¼
X
�

�ðði; jÞ 2 �Þ � Prðrð�Þ;AÞ;

Rsg
A;T;MðiÞ ¼

X
�

�ði 2 sgð�ÞÞ � Prðrð�Þ;AÞ:
3

Both can be calculated by an inside/outside algorithm.
Using the terms in Equation (3), we can redefine the
expected overlap of a consensus structure as

ex-overevoð�Þ ¼
X
ði;jÞ2�

RA;T;Mði; jÞ þ �
X

i2sgð�Þ

Rsg
A;T;MðiÞ;

which allows us to calculate the consensus structure with
the maximal expected overlap using a Nussinov style
algorithm.

Extension by folding energies

Before we can extend the model, we have to more precisely
define what it means that two sequences can adopt the
same consensus structure under a given alignment
matrix A ¼ ðau;lÞ, where u denotes the number of
sequences and l the number of alignment columns. This
is necessary because a consensus structure is defined as a
set of paired alignment columns. Hence, let n be the
number of sequences and let f uAðiÞ ¼ l be the alignment
column corresponding to position i in sequence su. The
mapping f uA can be extended to structures:

f uAð�Þ ¼ fðf
u
AðiÞ; f

u
AðjÞÞ j ði; jÞ 2 �g:

In the previous section, we searched for a consensus
structure that had the maximal expected overlap with
other possible consensus structures defined by the probabil-
istic evolutionary model, thus minimizing the expected
number of evolutionary prediction errors. Now, we also
want to evaluate the expected overlap for each sequence s
with its ensemble of structures as given by the energy
model. This implies that for each sequence s, we consider
the distribution of structures as introduced by
McCaskill (28). For this purpose, let psk;l ¼

P
ðk;lÞ2� Pr½�js�

be the base pair probabilities for a sequence s as calculated
by, e.g. RNAfold�p (1) and qsk ¼ 1�

P
l6¼k p

s
k;l the prob-

ability for position k being single stranded in sequence s.
The combined expected overlap now consists of two parts,
generally weighted with 1 for the conservation part and �
for the thermodynamic overlap:

ex-overð�Þ ¼ ex-overevoð�Þ þ
�

n
� ex-overstrð�Þ 4

where ex-overstr(�) is the expected overlap of � with all
structures from all sequences. Formally, this is defined by

ex-overstrð�Þ

¼
X
u;�0
½j� \ f uAð�

0Þj þ �jsgð�Þ \ sgðf uAð�
0ÞÞj� � Pr½�0jsu�

¼
X
ði;jÞ2�

X
u

X
�0

dðði; jÞ 2 f uAð�
0ÞÞ � Pr½�0jsu�

þ �
X

i2sgð�Þ

X
u

X
�0

dði 2 sgðf uAð�
0ÞÞÞ � Pr½�0jsu�
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¼
X
ði;jÞ2�

X
u

puf�1
A
ði;jÞ þ �

X
i2sgð�Þ

X
u

quf�1
A
ðiÞ;

Here, pu
f�1
A
ði;jÞ

denotes the base pair probability for
sequence su, written by alignment columns:

pu
f�1A ði;jÞ

¼

psuk; l if columns i; j are gap-free in su

and ðk; lÞ ¼ ðfuAðiÞ; f
u
Að jÞÞ

0 else

8<
:

and analogously for qu
f�1
A
ðiÞ
.

Overall, we obtain

ex-overð�Þ ¼
X
ði;jÞ2�

RA;T ;M ði; jÞ þ
�

n

X
u

pu
f�1
A
ði;jÞ

 !

þ
X

i2sgð�Þ

� Rsg
A;T ;M ðiÞ þ

�

n

X
u

pf�1
A
ðiÞ

 !

The consensus structure maximizing this expectation can
again be calculated by a Nussinov-style algorithm.

Reliably conserved substructure

Highly conserved substructures are under strong evolu-
tionary pressure, possibly caused by interactions with
bound molecules or other functional constraints. As men-
tioned in the Introduction section, these substructures
cannot be accounted for in thermodynamic folding algo-
rithms. We refer to them as a reliably conserved substruc-
ture �rel, which is defined as follows. A substructure is
a structure that fixes only some of the positions in a
sequence, hence being a partial structure. A partial struc-
ture �p is a tuple ðB;SÞ consisting of a set of base pairs B
and a set of single-stranded positions S such that no
single-stranded position in S is part of a base pair in B.
Then, a partial structure �p is a substructure of a structure
� if B � � and S � sgð�Þ.
The reliably conserved substructure �rel is a substruc-

ture of � that is determined by the evolutionarily highly
reliable positions. They are selected by using thresholds
on the reliability scores of single-stranded (pthresholdss )
and base-paired positions (pthresholdbp ). We get �rel by
using a Nussinov-style approach with the additional
condition that

8ði; jÞ 2 �rel : RA;T;Mði; jÞ > pthresholdbp

8i 2 �rel : RA;T;MðiÞ > pthresholdss

There are two possible approaches to determine these
thresholds. First, they can be estimated through parameter
tuning using a data set of known RNA families to predict
RNA structures most similar to their structure annota-
tions (see Result section). Second, a statistical approach
can be applied by determining positions whose reliability
is significantly better than the average (see Supplementary
Material). Our observation was that in practice the first
approach worked better than the second.
For specific cases where there are many additional con-

straints imposed on the structure, it is a good strategy
to identify the reliably conserved substructure �rel first,

and then search for the consensus structure � that max-
imizes ex-overð�Þ and contains �rel as a substructure. Reli-
ably conserved substructures are easily integrated into the
earlier described Nussinov-style algorithm by setting the
weighting factor of thermodynamic overlap � to zero in
Equation (2) (see Supplementary Material for details).

Gaps

Gaps are treated in a two-step procedure. First, all col-
umns are removed from the alignment where �75% of the
sequences have nucleotides. These columns are integrated
as gaps in the consensus secondary structure at the end, a
strategy that is adapted from Pfold. Second, sequence-
dependent probabilities psuk;l and qsuk are calculated without
gaps and probabilities of gaps are estimated as the average
in the appropriate column of the alignment.

Data

Rfam (40) is the most up-to-date comprehensive and
freely accessible RNA structure database, so we used 46
Rfam (version 8.0) seed alignments for parameter tuning
and for PETfold benchmarking. Our data set consists of
17 RNA families recommended by refs. (21) and (11) and
29 additional families possessing a high-quality alignment
documented by the SARSE project (41). The alignments
of the second set of data are characterized by a score for
inconsistent base pairs �4 and a score for novel base pairs
�4. These criteria are satisfied by 43 families, of which two
families overlap the first set and 12 were rejected because
of an annotated structure with <40% of bases being
involved in base pairs. Large alignments were reduced
by sequence similarity as in (41). An overview of all
RNA families in the data set is given in Supplementary
Table 1.

Performance evaluation

The RNA structure predictions of PETfold, Pfold and
RNAalifold are evaluated by looking for their correlation
to the related Rfam structure annotation, ignoring non-
canonical base pairs. Therefore, we used the Matthews
correlation coefficient (42) defined as

MCC ¼
PtNt � PfNfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPt þNfÞðPt þ PfÞðNt þ PfÞðNt þNfÞ
p ; 5

where Pt is the number of mutual base pairs in the two
assignments (true positives), Nt the number of mutual
pairs of bases not base pairing (true negatives), Pf the
number of predicted base pairs not in the Rfam assignment
(false positives) and Nf the number of base pairs in the
Rfam assignment not predicted to pair (false negatives).
We also calculated sensitivity, SEN ¼ Pt=ðPt þNfÞ and
positive predictive value, PPV ¼ Pt=ðPt þ PfÞ. Their geo-
metric mean is a good approximation to the MCC for
base pair prediction (43). The parameter tuning was done
by optimizing the MCC to get a best possible tradeoff
between sensitivity and PPV. In addition, we used the
more stringent structure evaluation scheme R5 introduced
by Gorodkin et al. (44) (see Supplementary Material
for full details). This was necessary because MCC does
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not evaluate whether or not two positions coincide in their
base pair partners when the two positions do base pair.

RESULTS

Pfold similarity

PETfold without thermodynamic probabilities (set param-
eter �=0) calculates exactly the same most reliable struc-
ture as Pfold. We interpret highly conserved parts of this
RNA structure as evolutionary substructure �rel.

Parameter tuning

The default parameters of PETfold are set by optimizing
the MCC of predicted RNA secondary structure to the
related Rfam structure annotation over all RNA families
in our data set. Hence, we ran PETfold with different
values for the single-stranded probability weighting
factor (� � 0:5) and different reliability thresholds for evo-
lutionary highly conserved single-stranded (pthresholdss ) and
base-paired positions (pthresholdbp ). The latter two values
determine the reliably conserved substructure �rel. The
conservation part and thermodynamic overlap are equally
weighted (�=1) as PETfold should not be overfitted to
RNA families with strong conservation and lower thermo-
dynamic stability or vice versa.

As shown in Figure 1, PETfold with �=0.2 and
pthresholdss ¼ 1 predicts the best RNA structure as
compared to the Rfam annotated structure. These settings
optimize the structure of 30 RNA families. The total
rejection of the reliably conserved substructure �rel

(pthresholdss ¼ pthresholdbp ¼ 1) or pthresholdbp < 0:9 slightly
decreases the performance of PETfold. Therefore, we
are pragmatic and use pthresholdbp ¼ 0:9, which predicts the
best RNA structure for 38 families. In summary, we
choose �=0.2, �=1, pthresholdss ¼ 1 and pthresholdbp ¼ 0:9
as default parameters for PETfold having optimized the

structures of 25 RNA families that comprise 54% of the
data set.
The parameter tuning of PETfold showed that in many

cases the quality improves by adding thermodynamic
probabilities even when there are highly conserved sub-
structures. PETfold produces the highest MCCs when
single-stranded positions are not considered as part of the
reliably conserved substructure �rel. Furthermore, defining
�rel which consists of evolutionarily conserved base pairs
with high reliability resulted only in a minor improvement.
This emphasizes that phylogenetic structure information is
mostly supported by folding energy. Another unexpected
result was the poor weighting of single stranded against
base pair positions (�=0.2), i.e. base pair probabilities
have a larger impact on RNA structure prediction.

Performance

Next, we compared the RNA structure predictions of
PETfold with Pfold and RNAalifold, using the default
parameters for each program. On average over the entire
data set, PETfold performed better than the other meth-
ods for a wide range of parameter settings. PETfold with
default parameters predicts base pairs with 0.85 PPV, 0.88
SEN and 0.86 accuracy. Its mean MCC to the Rfam anno-
tations of 0.85 is significantly higher than the 0.71 MCC
obtained for Pfold and the 0.79 obtained for RNAalifold
(Table 1).
The MCCs for PETfold, Pfold and RNAalifold are listed

for all families in the data set in Supplementary Table 1.
PETfold predicts a structure that is better than the ones
predicted by Pfold and RNAalifold for 18 RNA families.
In contrast, Pfold achieves this for only 7 families and
RNAalifold for 16 families. Considering a confidence
interval of 0.01, we observed 27 of the most accurate pre-
dictions by PETfold, 15 by Pfold and 18 by RNAalifold.
These include cases where two or three methods
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Figure 1. Parameter tuning to optimize mean MCC. The mean MCCs to Rfam structures of all RNA families in the data set are shown
for structure predictions by PETfold with numerous parameter settings, which include the weighting factor for single-stranded positions �,
reliability thresholds for evolutionary constrained single-stranded pthresholdss as well as paired bases pthresholdbp . (a) 0:1 � pthresholdss � 1 and
0:1 � pthresholdbp � 1, which are plotted on the x-axis as well as y-axis, and �=0.2; (b) 0:9 � pthresholdss � 1 and pthresholdbp ¼ 0:9 and several �. (b)
also shows the mean MCC of Pfold and RNAalifold.
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predicted the same structure.More specifically, seven struc-
tures were predicted by PETfold and Pfold, three by
PETfold and RNAalifold and two structures [Histone3
(45) and Rhino_CRE (46)] were predicted by all three
methods.
Concerning the structure predictions that completely

agreed with the Rfam annotations, the three methods cor-
rectly predict the Histone3 structure. In addition, Pfold
predicts the exact structure of mir-194 (47) microRNA
precursor and RNAalifold of the viral 30-UTR stem-loop
s2m (48). In contrast, PETfold provides accurate structure
predictions for four viral RNA families [HepC_CRE (49),
IBV_D-RNA (50), TCV_H5 (51) and TCV_Pr (51)]. Their
alignments contain between 3 and 64 sequences and have
mean pairwise identities (MPI) ranging from 77% to 95%,
showing that PETfold is not overfitted to certain align-
ment features. Furthermore, a scan of all 574 seed align-
ments in Rfam version 8.0 results in the best performance
by PETfold (MCC ¼ 0:63), followed by Pfold
(MCC ¼ 0:62) and RNAalifold (MCC ¼ 0:58). However,
it should be noted that a large number of annotated
RNA structures in Rfam are themselves predictions,
many by Pfold.
The performance of PETfold increases greatly in the case

of several H/ACA snoRNAs, the already mentioned exam-
ple of ncRNAs that often do not fold into the structure of
lowest free energy, e.g. HACA_sno_snake (52) (MCC with
PETfold: 0.79, Pfold: 0.25, RNAalifold: 0.41) as a member
of our data set and SNORA51 (53) (MCC with PETfold:
0.91, Pfold: 0.13, RNAalifold: 0.57). The functional
RNA element of HIV-1 mRNA, Rev response element
(RRE), has a verified RNA secondary structure of 337 nt
in length (54). The accuracy of the predicted structure for
this element increases by 30% when using PETfold
(MCC=0.90).

PETfold takes O(L2) space and OðL3Þ time when the
number of sequences N is much smaller than the sequence
length L. The most time-consuming parts of the algorithm
are the calculation of evolutionarily reliabilities using
Pfold (OðL3Þ þOðL2Þ), the calculation of energy-based
probabilities of N sequences using RNAfold (N�OðL3Þ)
and the Nussinov-style algorithm (OðL3Þ). In practice, the
running time of PETfold is approximately twice that of
Pfold and much longer than that of RNAalifold (see
Table 1 for details). Major reasons for the longer runtimes
are the implementation of PETfold in Perl and the external
calls to Pfold and RNAfold.

Family specific parameter settings

The suggested PETfold parameters are based on the aver-
age performance over all RNA families in the data set. We
observed a common distribution of PETfold performance
for different parameter settings in which low-reliability
thresholds for evolutionary substructures �rel decrease
the prediction accuracy (Figure 1). Thus, the general
application of evolutionary constraints has negative influ-
ences on the structure prediction.

Nevertheless, several RNA families show a different
performance distribution. For instance, PETfold with
default parameters performs worse than RNAalifold for
the Rotavirus cis-acting replication element (Rota_CRE)
(55). However, if we lower the threshold for conserved
base pairs, then PETfold predicts a structure with
MCC=0.84 compared to the MCC=0.76 achieved by
RNAalifold.

We could not find a general correlation of the best per-
forming reliability thresholds with previously used align-
ment features such as the structural conservation index
(SCI) (23) or mean pairwise sequence identity (MPI).
However, structurally diverse alignments tend to benefit
from lower reliability thresholds due to a higher evolution-
ary information content. The alignment diversity can be
measured by Pcluster (41), which divides the sequences of
an RNA alignment into subgroups with different consen-
sus structures. On average, PETfold performs best with
high-reliability thresholds for RNA families with low
number of structural clusters. This correlation is shown
in Figure 2. For instance, the best performing reliability
thresholds for Rota_CRE, whose alignment is divided in
three clusters by Pcluster, are well described by Figure 2.

In summary, PETfold’s default parameters should be
regarded as a reasonable approximation for the RNA
family alignments with different levels of diversity.
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Figure 2. Correlation between alignment diversity and evolutionary
constraint substructures. The correlation between the diversity
(number of structural clusters per family calculated by Pcluster) of
alignments and the reliability thresholds used by PETfold to predict
the best RNA structure, averaged over all families in the data set.
We can see that less diverse alignments perform best almost without
evolutionary constraints. Intron_gpII (57) is excluded because of its
exceedingly high number of 10 structural clusters.

Table 1. Performance on data set

PPVa SENb ACCc MCCd R5
e Time (s)

PETfold 0.852 0.876 0.864 0.850 0.722 153.0
Pfold 0.662 0.843 0.747 0.710 0.575 65.6
RNAalifold 0.758 0.842 0.799 0.789 0.652 2.3

aPositive predictive value.
bSensitivity.
cAccuracy.
dMatthews corelation coefficient.
eR5 correlation coefficient.
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DISCUSSION

We presented a new method, named PETfold,
which unifies probabilistic evolutionary and thermody-
namic models to predict global RNA structures from
multiple alignments. Highly conserved RNA structures
are probably naturally selected due to their functional
relevance, while less conserved sequences tend to fold
in a state of minimum free energy. Combining both
types of information increases the predictive power:
we rely on phylogenetic information if the structure ele-
ments are highly conserved and extend the model by
including folding energies to build the surrounding
structure.

The 46 Rfam seed alignments used for benchmarking
are selected for their consistency. They might include
manually optimized structure information, that are
not achieved by sequence alignment algorithms.
However, we are interested in the best possible structure
prediction, which is often only found using conserved
structure information in the alignment. The analyses of
PETfold revealed that the selection of a reliably conserved
substructure �rel is less important than expected. This has
been confirmed by estimating the statistical significance of
the reliability scores, which shows that only high-reliabil-
ity scores are significant. On the other hand, the combina-
tion of an evolutionary model with a thermodynamic
model outperforms the widely used RNA structure pre-
dictors Pfold and RNAalifold.

Nevertheless, there are cases where the evolutionary
conservation is more important. Especially for RNA
families with an active site like H/ACA snoRNAs, the
usage of reliably conserved substructures improves
the predictions. A first guess, namely that the impact of
the evolutionary substructure might be negatively corre-
lated with the SCI, could not be confirmed. However, we
observed a correlation to the number of structural clusters
in an alignment as measured by Pcluster. This should be
investigated in greater detail since it provides a new pos-
sibility to classify multiple RNA alignments. Currently,
the measurements as used, e.g. in BRAliBase (26) are
MPI and SCI.

There are two possible improvements. One could be the
application of stacking base pair probabilities (56). These
probabilities can be easily integrated in the MEA
approach if the rule F! dFd of the SCFG is applied.
Nevertheless, a first trial of this extension using the stack-
ing base pair probabilities calculated by RNAfold (1) did
not improve the performance of PETfold and may be due
to the fact that these are not independent of the simple
base pair probabilities.

A second possible improvement considers the fact
that structural stability is at least partially accounted
twice since Pfold already favors stable base pairs such as
G—C. This does not pose a major problem since the ther-
modynamic part adds a lot of new information like
sequence-dependent stacking or properties of the
complete structure ensemble (encoded in base pair prob-
abilities). Nevertheless, it would be nice to explicitly
separate these different information sources in a future
version.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR Online.
The source code of PETfold is available under the
GNU Public License at http://genome.ku.dk/resources/
petfold.
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