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Abstract. ExpaRNA’s core algorithm computes, for two fixed RNA struc-
tures, a maximal non-overlapping set of maximal exact matchings. We
introduce an algorithm ExpaRNA-P that solves the lifted problem of find-
ing such sets of exact matchings in entire Boltzmann-distributed struc-
ture ensembles of two RNAs. Due to a novel kind of structural sparsi-
fication, the new algorithm maintains the time and space complexity of
the algorithm for fixed input structures. Furthermore, we generalized the
chaining algorithm of ExpaRNA in order to compute a compatible subset
of ExpaRNA-P’s exact matchings. We show that ExpaRNA-P outperforms
ExpaRNA in BRAliBase 2.1 benchmarks, where we pass the chained exact
matchings as anchor constraints to the RNA alignment tool LocARNA.
Compared to LocARNA, this novel approach shows similar accuracy but
is six times faster.

1 Introduction

Genome-wide transcriptomics [1–3] provides evidence for massive transcription
in eukaryotic genomes, going as far as suggesting that most of both genomic
strands of human might be transcribed [4]. Most of these transcripts do not
code for proteins; furthermore, it has become clear that the majority of them
perform primarily regulatory functions [5]. Thus, these RNAs play a crucial role
in the living cell. However, their functional annotation is strongly lagging behind;
reliable automated annotation pipelines exist only for subclasses of ncRNAs such
as tRNAs, microRNAs or snoRNAs [6].

Regulatory RNAs are often structural, and their secondary structures are
then usually well-conserved due to their functional importance. This fact is
used by a priori RNA-gene finders like QRNA [7], RNAz [8], and Evofold [9],
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which detect conserved RNA-structures in whole genome alignments. More re-
cently, a strategy towards the automatic annotation of non-coding RNAs has
emerged, which identifies RNAs with similar sequence and common secondary
structure [10–12] on a genomic scale. This can be used to determine remote
members of RNA-families as defined in the Rfam-database, or to determine new
RNA-classes of structural, and hence likely functionally similar, ncRNAs by us-
ing clustering approaches. In Rfam, the term RNA-clan has been introduced
for a collection of RNA-families that share similar structure but little sequence
conservation. Prominent examples of RNA-classes are microRNAs or snoRNAs.

Albeit this approach is appealing, a wide-spread, or even automated, appli-
cation of these methods has been hindered by the huge complexity of the un-
derlying sequence/structure alignment approach for detecting similarity in both
sequence and structure. The first practical approaches for multiple structural
alignment, such as RNAforester [13] and MARNA [14], depend on predicted or
known secondary structures. In practice, however, these approaches are limited
by the low accuracy of non-comparative structure prediction. Sankoff’s algorithm
[15] provides a general solution to the problem of simultaneously computing an
alignment and the common secondary structure of two aligned sequences. In its
full form, the problem requires O(n6) CPU time and O(n4) memory (for RNA
sequences of length n). This complexity is already limiting for most practical
problems such as routinely scanning remote members of RNA-families. For de-
tecting novel RNA-classes in the plethora of newly discovered RNA-transcripts,
this complexity becomes plainly prohibitive, since this task requires clustering
based on quadratically many all-against-all pairwise RNA comparisons.

For that reason, many variants of the Sankoff algorithm with different opti-
mizations have been introduced. FoldAlign [16] and dynalign [17] implement a
full energy model for RNA that is evaluated during the alignment computation.
In contrast, PMcomp [18] and LocARNA [10] use a lightweight energy model, which
assignes energies to single base pairs. This simplification reduces the computa-
tional cost significantly. They achieve their accuracy by precomputing the en-
ergy contributions of base pairs from their probabilities in a full-featured energy
model [19]. Whereas the approaches [20, 16, 17, 21] have to compensate their com-
putational demands by strong, often sequence-based, heuristics, LocARNA [10]
takes advantage of structural sparsity in the RNA structure ensembles to re-
duce its complexity to O(n4) time and O(n2) space. This successful approach is
consequently found in other Sankoff-like methods [22–24].

We introduce a strategy that reduces the computational demands further,
but differs fundamentally from heuristic improvements, like [24], that restrict the
search space based on sequence alignments. It computes the sequence-structure-
conserved elements that form highly probable local substructures in the RNA
structure ensemble of both input RNAs; subsequently, these elements are used as
anchor constraints in a full sequence-structure alignment by LocARNA. In [25],
we have proposed a similar strategy, which computes conserved elements in pairs
of fixed RNA secondary structures, based on an algorithm with quadratic time
and space complexity [26]. Albeit this approach reduces the overall computa-



tion time significantly, it faces similar problems as the first generation of RNA
aligment methods [13, 14], due to the use of a single predicted input structure
for each sequence. Since predicting minimum free energy (MFE) structures from
single-sequences is unreliable, this strategy fails frequently and causes severe
misalignments.

Overcoming the problems of the previous approach, the novel algorithm for
determining exact sequence-structure patterns is based on probabilities in the
RNA structure ensembles. We point out that a straight-forward extension of the
fixed input structure algorithm to RNA structure ensembles, would result in a
complexity of O(n4) time and O(n2) space. This complexity is as high as the
one of LocARNA, which would nullify the benefits of exact matching.

Thus, our main technical contribution is to solve the ensemble based problem
in quadratic time and space; the advancement is comparable to the leap from
first generation RNA alignment to efficient Sankoff-style alignment. For this
achievement, we introduce a method of sparsification that uses the ensemble
properties of the input sequences. Previous sparsification approaches reduced
the number of computations required for each entry [27–31] or the number of
matrices to be considered [10, 22]. In addition, we identify sparse regions of each
matrix a priori such that, in total, only quadratically many entries remain; each
of these entries is calculated in constant time. The a priori identification of sparse
regions is based on the joint probability that a sequence position occurs as part
of a particular loop. Since the sum of these probabilities is bound by one, we can
control the complexity on a global scale by setting a probability threshold. As a
further benefit over sparsification methods that filter non-optimal solutions [27–
31], our sparsification allows us to enumerate suboptimal solutions.

To evaluate the practical benefits of these algorithmic innovations, we devise
a novel pipeline ExpLoc-P for sequence-structure alignment. In its first stage,
it enumerates suboptimal exact matchings of local sequence-structure patterns
due to the introduced algorithm ExpaRNA-P. In the second stage, the suboptimal
matchings are chained to select an optimal subset of compatible matchings that
can simultaneously occur in an alignment of RNAs. Finally, these matchings
are utilized as anchor constraints in a subsequent Sankoff-style alignment by
LocARNA. In benchmarks on BRAliBase 2.1, ExpLoc-P’s accuracy is comparable
to the unconstrained LocARNA, although it is six times faster.

2 Preliminaries

A RNA sequence A is a string over the alphabet {A,C,G,U}, the base at the
i-th position of A is denoted by Ai, the subsequence from position i to j by Ai..j
and the length of it by |A|. A structure of A is a set PA of base pairs p = (i, j)
such that 1 ≤ i < j ≤ |A|, where Ai and Aj form a complementary Watson-
Crick base pair (A-U or C-G) or a non-standard base pair G-U. We denote the
left end i of p by pL and the right end j by pR. For a single structure, we also
assume that each sequence position is involved in at most one base pair (for all



(i, j), (i′, j′) ∈ PA: (i = i′ ⇔ j = j′) and i 6= j′) and base pairs do not cross
(there are no (i, j), (i′, j′) ∈ PA with i < i′ < j < j′).

Since non-crossing RNA structures correspond to trees, we define, for any
position k of A, the parent of k as the (i, j) ∈ PA with i < k < j such that there
does not exist any (i′, j′) ∈ PA with i < i′ < k < j′ < j. Analogously, the parent
of a base pair (i, j) is the parent of i (which is also the parent of j). Intuitively,
if a base or base pair has a parent (i, j), it is located in the loop closed by (i, j).
For external positions k that are not included in any loop, we define the parent
to be an additional imaginary base pair (0, |A|+ 1) covering the entire sequence.

3 Exact Pattern Matchings in RNA Structure Ensembles

In this section, we formalize the problem that our algorithm ExpaRNA-P solves.
We fix sequences A and B.

Definition 1 (EPM). An Exact Pattern Matching (EPM) is a tuple (M,S)
with M⊆ {(i ∼ k)|i ∈ {1, . . . , |A|}, k ∈ {1, . . . , |B|}} and S ⊆ {(ij ∼ kl)|(i, j) ∈
{1, . . . , |A|}2, i < j, (k, l) ∈ {1, . . . , |B|}2, k < l} such that

– for all (i ∼ k) ∈M : Ai = Bk
– for all (i ∼ k), (j ∼ l) ∈M : (i < j ⇒ k < l ∧ i = j ⇔ k = l)
– (ij ∼ kl) ∈ S ⇒ {(i ∼ k), (j ∼ l)} ⊆ M
– the structure {(i, j)|(ij ∼ kl) ∈ S} is non-crossing (with the previous condi-

tion this implies {(k, l)|(ij ∼ kl) ∈ S} is non-crossing).
– the matching is connected on the sequence or structure level, i.e. the graph

(M, E) with E = {(i ∼ k, j ∼ l)|(i = j + 1 and k = l + 1) or (ij ∼ kl) ∈ S}
is (weakly) connected.

EPMs are exact matches that are not necessarily contiguous subsequences, but
structure-local in the sense of [32, 33]. We define the set of structure matches as
M|S := {(i ∼ k), (j ∼ l)|(ij ∼ kl) ∈ S}. Note that the correspondence between
nested RNA structures and trees naturally generalizes to EPMs. Therefore, we
define the parent of some element of M∪S as

parentS(i ∼ k) = argmin
(i′j′∼k′l′)∈S∪{(0|A|+1∼0|B|+1)},i′≤i≤j′

|j′ − i′| (1)

parentS(ij ∼ kl) = argmin
(i′j′∼k′l′)∈S∪{(0|A|+1∼0|B|+1)},i′<i<j<j′

|j′ − i′| (2)

Note that every matched element that is not enclosed by matched base pairs has
the pseudo-parent (0|A|+ 1 ∼ 0|B|+ 1) which is best understood as additional
match of pseudo-base pairs outside of the two sequences. Also note that for
parentS(ij ∼ kl) ∈ S parentS(ij ∼ kl) 6= parentS(i ∼ k) = parentS(j ∼ l) =
(ij ∼ kl).

Since we only want to match structures that are probable in the ensemble
of the given sequences, we define the notion of significant EPMs. Considering
only significant EPMs is crucial for both the quality of the results and the com-
plexity of the algorithm. To define significant EPMs we consider the following
probabilities over the Boltzmann ensemble of structures.



– Pr{(i, j)|X} denotes the probability, that a structure in the ensemble of
X ∈ {A,B} contains the base pair (i, j),

– Prloop(i,j)(k|X) denotes for i < k < j and X ∈ {A,B} the joint probability that

the structure of X contains the base pair (i, j) and the unpaired base k such
that (i, j) is the parent of k.

– Prloop(i,j)((i
′, j′)|X) denotes for i < i′ < j′ < j and X ∈ {A,B} the joint

probability that the structure of X contains the base pairs (i, j) and (i′, j′)
and that (i, j) is the parent of (i′, j′).

In the special case where (i, j) = (0, |A| + 1) we define Prloop(0,|A|+1)((i
′, j′)|X) :=

Pr{(i′, j′)|X} and Prloop(0,|A|+1)(k|X) as the probability that base k of X is un-

paired, i.e. 1 −
∑
j<i Pr{(j, i)|X} −

∑
i<j Pr{(i, j)|X}.6 In Sec. 4 we show how

to compute the probabilities efficiently.
For significant EPMs we introduce three different thresholds θ1, θ2 and θ3.

We require that all matched base pairs have a probability of at least θ1 and that
the probabilities of all matched unpaired bases and matched base pairs to occur
as part of the loop of their respective parent is at least θ2 and θ3, respectively.

Definition 2 (significant EPM). Given the thresholds θ1, θ2, θ3, an EPM is
significant iff

– for all (ij ∼ kl) ∈ S: Pr{(i, j)|A} ≥ θ1 and Pr{(k, l)|B} ≥ θ1
– for all (i ∼ k) ∈M \M|S with (i′j′ ∼ k′l′) = parentS(i ∼ k):

Prloop(i′,j′)(i|A) ≥ θ2 and Prloop(k′,l′)(k|B) ≥ θ2
– for all (ij ∼ kl) ∈ S with (i′j′ ∼ k′l′) = parentS(ij ∼ kl):

Prloop(i′,j′)((i, j)|A) ≥ θ3 and Prloop(k′,l′)((k, l)|B) ≥ θ3

The score of an EPM (M,S) consists of a score σ(i, k) for each pair of
matched unpaired bases and τ(i, j, k, l) for each pair of matched base pairs:

score(M,S) =
∑

(i∼k)∈M\M|S

σ(i, k) +
∑

(ij∼kl)∈S

τ(i, j, k, l) (3)

The algorithm described in this paper determines all significant maximally
extended EPMs up to a certain score threshold, where maximally extended is
defined as follows.

Definition 3 (maximally extended EPMs). An EPMs (M,S) is maximally
extended, if there does not exist any (M′,S ′) with M ⊂ M′, S ⊆ S ′ and such
that for all (i ∼ k) ∈M parentS(i ∼ k) = parentS′(i ∼ k).

As shown in Fig. 1, the last condition of this definition is required to ensure
that we consider EPMs with different structures as being different. Due to this

6 Note that these probabilities include the cases where (i, j) or k are covered by some
base pair. This is reasonable as the EPMs are structurally local; thus, they can be
enclosed by other structure or be external.
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Fig. 1. EPM A is not maximally extended if there exists a larger EPM like B or C.
EPMs B, C, and D can all be maximally extended simultaneously since in each case
some base matches have different parents.

definition, the set of maximally extended EPMs does not contain proper sub-
structures, such as Fig. 1A depicts a proper substructure of the EPM of Fig. 1B,
but contains structural variants of the same set of matched positions. We select
a relevant subset of the structural variants in the answer set of our algorithm by
considering only significant EPMs.

4 The Algorithm ExpaRNA-P

Precomputing Likely Loops In a preprocessing step, we compute, separately
for each sequence, the probabilities required to determine the significant EPMs.
Hence, in clustering scenarios, for example, where all pairs from a set of se-
quences need to be matched, this preprocessing needs to be done only once for
each sequence and not for all quadratically many pairs. To simplify notation, we
show how to compute the probabilities for A, the computation for B is identical.
While the base pair probabilities Pr{(i, j)|A} are computed by McCaskill’s al-

gorithm [19], we extend this algorithm to compute the probabilities Prloop(i,j)(k|A)

and Prloop(i,j)((i
′, j′)|A). For this purpose, we utilize the matrices Qij , Q

b
ij , Q

m
ij , and

Qm1
ij of McCaskill’s algorithm (details can be found in [19]). For 1 ≤ i ≤ j ≤ |S|,

the entries of these matrices represent the sum over the Boltzmann weights of
the following set of structures of Ai..j

– Qij : all structures of Ai..j
– Qbij : all structures P of Ai..j with (i, j) ∈ P
– Qmij : all non-empty structures of Ai..j scored as part of a multiloop
– Qm1

ij : all structures P of Ai..j , scored as part of a multiple loop, such that
for some k holds (i, k) ∈ P and for all (i′, j′) ∈ P holds i ≤ i′ < j′ ≤ k.

Intuitively Qm1
ij counts the Boltzmann weights of all structures that are part

of a multiloop and have exactly one outermost base pair, starting at posi-
tion i. In addition to the classical McCaskill matrices, we compute a matrix
Qm2
ij =

∑
i<k<j−1Q

m
ikQ

m1
k+1 j , representing parts of a multiloop with at least two

outermost base pairs.
Given those matrices, we compute Prloop(i,j)(k|A) as

Prloop(i,j)(k|A) = Pr{(i, j)|A}H + I +M

Qbij
, where (4)

H = exp(−βF1(i, j)) (5)
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Fig. 2. Recursions of the partition functions for computing the probability that a
position k occurs inside a hairpin loop (H), interior loop (I), or multiloop (M) closed
by a base pair (i,j).

I =
∑
i′,j′

i<k<i′<j′<j

exp(−βF2(i, j, i′, j′))Qbi′j′ +
∑
i′,j′

i<i′<j′<k<j

exp(−βF2(i, j, i′, j′))Qbi′j′ (6)

M = Qm2
k+1j−1 exp(−β(a+ (k − i)c)) +Qm2

i+1k−1 exp(−β(a+ (j − k)c)) (7)

+Qmi+1k−1Q
m
k+1j exp(−β(a+ c))

The formulas are visualized in Fig. 2. H, I, and M represent the cases where k
is contained in a hairpin, interior loop, and multiloop, respectively. The constants
a, c, k, and T and the energy functions F1 and F2 are defined as in McCaskill [19],
where β := (kT )−1. The three sums in the computation of M cover the cases
where k is in the leftmost, the rightmost, and any other unpaired region of
the loop, respectively. Note that Qm2 is required to ensure, without increasing
complexity, thatM considers only multiloops (with at least two inner base pairs).

In a similar way we compute Prloop(i,j)((i
′, j′)|A). All these joint probabilities are

computed within the same asymptotic complexity as the McCaskill algorithm.

Computing the Significant EPMs The algorithm computes table entries
D((ij), (kl)), which store the best EPM enclosed by each base pair match (ij ∼
kl). More precisely, D((ij), (kl)) has entries for each (i, j) ∈ PA and (k, l) ∈
PB with Pr{(i, j)|A} ≥ θ1 and Pr{(k, l)|B} ≥ θ1 and D((ij), (kl)) denotes the
maximum score of a significant EPM (M,S) of Ai..j and Bk..l with (ij ∼ kl) ∈ S.
The entries of D are computed in increasing order with respect to their size
such that during the computation of some D((ij), (kl)) any D((i′j′), (k′l′)) with
i < i′ < j′ < j and k < k′ < l′ < l is already computed. For the computation
of each D((ij), (kl)) we compute matrices Lijkl(j′, l′), GijklA (j′, l′), GijklAB (j′, l′),
and LRijkl(j′, l′). These matrices contain entries for (j′, l′) with i < j′ < j,
k < l′ < l. In Sec. 4, we argue that the matrices are sparse.

Intuitively, we use the matrices L, GA, GAB , and LR to compute a matching
of the loops below (i, j) and (k, l) by matching bases and closed substructures
from left to right. We start matching from the left using L which represents the
part of the matching that is connected to the left ends i, k of the base pairs.
Then at some point we are allowed to introduce a gap in both sequences using
matrices GA and GAB and then start matching the part that is connected to
the right ends j, l of the base pairs using matrix LR.



The matrices are computed according to the recursions visualized in Fig. 3.
The base cases are Lijkl(i, k) = 0, Lijkl(j′, k) = −∞ for all j′ > i, Lijkl(i, l′) =

−∞ for all l′ > k, LRijkl(i, l′) = GijklA (i, l′) = GijklAB (i, l′) = 0 for all l′ > k

and LRijkl(j′, k) = GijklA (j′, k) = GijklAB (j′, k) = 0 for all j′ > i. Intuitively, the
recursion for L always matches the last positions j′ and l′ or assigns −∞ if they
don’t match. Left of this match of the last positions can either be a matched
unpaired position of the loops (second case) or a match of two base pairs (third
case). The recursion for LR is analogous to L except that it considers the addi-
tional case that the gap has just been ended at positions j′ − 1 and l′ − 1. The
gap itself, computed in GA and GAB , simply allows to skip once an arbitrary
number of positions in both sequences when going from the left matched part to
the right matched part. To avoid ambiguity, the recursion enforces to first skip
the positions in A (using GA) and after that the positions of B (using GAB).
This is necessary for the suboptimal traceback which would otherwise enumer-
ate the same solutions more than once. Also note that in the computation of
D((ij), (kl)) not only LRijkl but also Lijkl is considered. Here, LRijkl represents
the situations where the best EPM contains a gap, and Lijkl the situation where
the best matching has no gap, i.e. the parts matched at the left and right ends
are connected.

After the matrix D has been computed, a final matrix F is computed where
for 0 ≤ j′ ≤ |A| and 0 ≤ l′ ≤ |B| each F (j′, l′) denotes the maximum score of a
significant EPM of A1..j′ and B1..l′ which ends at (j′, l′) (i.e. with (j ∼ l) ∈M).
The base cases are F (j′, 0) = F (0, l′) = 0 for all j′, l′. The recursion for F (Fig. 3)
is almost identical to the recursion for L, except for the first case, which is 0
instead of −∞, since the EPMs in F are (similar to local sequence alignments)
allowed to start at any point. Also, since the base pairs of F are external (i.e.
not enclosed by some other base pair of the EPM), the check for the second and
third condition of significant EPMs (Def. 2) are discarded.

The suboptimal maximally extended EPMs are obtained by doing standard
suboptimal tracebacks enumerating all EPMs up to a given score threshold.
Since the recursions are all unambiguous (i.e. the cases do not overlap) no EPM
is enumerated more than once. To enumerate only maximally extended EPMs,
we start tracebacks only from entries F (j′, l′) for which Aj′+1 6= Bl′+1.

Lemma 1. A maximally extended EPM (M,S) of A1..j′ and B1..l′ with (j′ ∼
l′) ∈M is also a maximally extended EPM of A and B, iff Aj′+1 6= Bl′+1.

Proof. Obviously, if Aj′+1 = Bl′+1 the larger EPM (M∪ {(j′ + 1 ∼ l′ + 1)},S)
satisfies the condition of (M′,S ′) in Def. 3 and hence (M,S) is not maximally
extended. On the other hand, if Aj′+1 6= Bl′+1 a larger EPM (M′,S ′) exists
only if there exist some (ij ∼ kl) ∈ S ′ with i ≤ j′ < j and k ≤ l′ < l. Then the
condition parentS(j′ ∼ l′) = parentS′(j

′ ∼ l′) of Def. 3 is not satisfied.

Similarly, we need to ensure that the suboptimal traceback only enumerates
EPMs which are maximally extended at the gaps created by the GA and GAB
matrices. For this purpose, whenever we trace through these matrices, we record
the length of the created gap in both sequences and only consider traces through
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gaps that either start and end at positions that do not match or have a length
of 0 in one of the two sequences.

Sparsification We need to compute matrices Lijkl, GijklA , GijklAB , and LRijkl

only for i, j, k, l with Pr{(i, j)|A} ≥ θ1 and Pr{(k, l)|B} ≥ θ1. For each of these
matrices, we further reduce the number of entries as follows. We call each j′ a
candidate of (i, j) if Prloop(i,j)(j

′|A) ≥ θ2 or if for some i′ Prloop(i,j)((i
′, j′)|A) ≥ θ3.

Analogously, l′ is a candidate of (k, l) if Prloop(k,l)(l
′|B) ≥ θ2 or if for some k′

Prloop(k,l)((k
′, l′)|B) ≥ θ3. Note that if j′ or l′ is no candidate, the recursion directly

implies that Lijkl(j′, l′) = LRijkl(j′, l′) = −∞ and hence we neither have to ex-
plicitly compute nor to store these entries. This allows to skip the corresponding
entries GijklA (j′, l′) and GijklAB (j′, l′), because for Lijkl(j′, l′) = −∞ their value is
identical to their respective neighboring entry. In total, this optimization allows
to skip in Lijkl, GijklA , GijklAB , and LRijkl each complete row or column whose in-
dex is no candidate. Since we can compute (in a preprocessing step and for each
sequence separately) a mapping from sequence positions to candidate positions,
the recursion can be implemented on matrices that only contain the candidate
rows and columns. In the following complexity analysis, we show that this opti-
mization reduces the, across all matrices, O(|A|3|B|3) entries to only O(|A||B|)
remaining entries.

Complexity Analysis

Lemma 2. For a fixed j′, there are only O(1) base pairs (i, j), such that j′ is a
candidate of (i, j) (and analogously for l′ and (k, l) in sequence B).

Proof. We fix some j′ and denote by pj′(i, j) the probability that a struc-
ture of A contains the base pair (i, j) and j′ occurs as an unpaired base or
right end of a base pair in the loop closed by the base pair (i, j): pj′(i, j) :=

Prloop(i,j)(j
′|A)+

∑
i<i′<j′ Prloop(i,j)((i

′, j′)|A). If j′ is a candidate, it follows pj′(i, j) ≥
θ∗ := min{θ2, θ3}, since then either Prloop(i,j)(j

′|A) ≥ θ2 or Prloop(i,j)((i
′, j′)|A) ≥ θ3

for some i′. Note that for different (i, j) the events of probabilities pj′(i, j)
are disjoint, since in any structure j′ can occur in just one loop. Therefore∑
i,j pj′(i, j) ≤ 1. Hence there are at most 1

θ∗ ∈ O(1) base pairs (i, j) for which
pj′(i, j) ≥ θ∗ and only for those j′ can be a candidate.

Note that for this lemma it is crucial to consider the probabilities within the sin-
gle loops and not only general base pair and unpaired probabilities. Considering
these probabilities is the key insight of this new way of sparsification.

Theorem 1. There are only O(n2) entries Lijkl(j′, l′), GijklA (j′, l′), GijklAB (j′, l′),
and LRijkl(j′, l′) such that j′ is a candidate of (i, j) and l′ is a candidate of (k, l).

Proof. Due to Lem. 2 there are O(n) many combinations i, j, j′. Analogously
there are O(n) combinations k, l, l′ and therefore O(n2) combinations i, j, k, l,
j′, l′ satisfying the conditions.



Corollary 1. The time and space complexity of computing all entries Lijkl(j′, l′),

GijklA (j′, l′), GijklAB (j′, l′), and LRijkl(j′, l′), D and F is O(n2).

Consequently, the preprocessing step, namely computing the base pair probabil-
ities using McCaskill’s algorithm is the dominating factor in the complexity.

Chaining Furthermore, we implemented a chaining algorithm that selects from
the computed suboptimal EPMs a non-crossing and non-overlapping subset that
can be extended to an alignment. It generalizes the chaining of ExpaRNA [25]
to cope with more than one EPM ending at the same position. The algorithm
recursively fills the gaps of all EPMs with other EPMs. For each of the gaps a
matrix of size O(|A||B|) is computed (for details see [25]). At each of its entries all
EPMs are considered that end at this position. Since each EPM ends at exactly
one position, the complexity is O(H · (|A||B| + E)), where E is the number of
input EPMs and H the total number of their gaps.

If we guarantee that E is O(|A||B|), i.e. there is only a constant number of
EPMs ending at each position, the complexity of the chaining is O(H|A||B|)
(as in ExpaRNA). Whereas the suboptimal traceback does not guarantee E ∈
O(|A||B|), we also evaluated a heuristic strategy that satisfies the assumption
by considering only the best EPM ending at each position.

5 Evaluation

We implemented ExpaRNA-P together with the chaining algorithm in C++. Fur-
thermore we implemented two versions of the traceback: the suboptimal trace-
back and a heuristic version that, for each match i ∼ j, considers only the
optimal EPM ending at that match. We instantiated the scoring of ExpaRNA-P
(see Eq. 3) by σ(i, k) = 1 and τ(i, j, k, l) = 5(Pr{(i, j)|A}+ Pr{(k, l)|B}) + 2. In
addition to the presented scoring, we add a reward of 5 Pr{(i, j)|(i+ 1, j−1)|X}
(X ∈ {A,B}) for each stacking in the EPM. In the suboptimal traceback, we
enumerate EPMs that have a score of at least 90 and a score difference of less
than 20 to the optimal EPM. Furthermore, we set θ1 = θ2 = 0.01 and θ3 = 0.

In order to assess the performance of ExpaRNA-P in comparison to other
alignment tools, we designed the following pipeline: In a first step we compute
the significant EPMs with ExpaRNA-P and use the chaining algorithm to ex-
tract from these EPMs an optimal non-overlapping and non-crossing subset.
Then we compute a sequence structure alignment that includes all matches of
the chained EPMs. For this purpose, we apply LocARNA using the EPMs as an-
chor constraints [25]. This is faster than computing an unconstrained alignment
since each anchor reduces the alignment space. We refer to this pipeline, i.e. the
combination of ExpaRNA-P and LocARNA, as ExpLoc-P.

We did a benchmark test on the k2 dataset of BRAliBase 2.1 which contains
only pairwise alignments [34, 35]. To measure the quality of the calculated align-
ment in comparison to the reference alignment, we utilized the compalign score
which refers to a sum-of-pairs score (SPS) introduced in this specific form with
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Fig. 4. Alignment quality vs. sequence identity on the k2 dataset of BRAliBase 2.1

BRAliBase 2.1 [34]. Besides the quality of the results, we also compared the run-
time of the different methods. We compared our new approach ExpLoc-P with
three other approaches: LocARNA without any anchor constraints, ExpLoc [25],
and RAF [24]. ExpLoc is similar to our new ExpLoc-P except that it identifies
EPMs in the MFE structure (using ExpaRNA). RAF is the currently fastest
Sankoff-style sequence structure alignment approach due to its heuristic filtering
based on sequence alignments. Fig. 4 shows the compalign score with respect
to the sequence identity on the k2 dataset of BRAliBase 2.1. LocARNA achieves
the best results at the expense of the highest computation time. Tab. 1 lists
the speedups of the other approaches compared to LocARNA. Our novel com-
bined approach ExpLoc-P achieves with both the heuristic and the subobtimal
traceback almost the same quality as LocARNA but is 6 and 4.9 times faster,
respectively. The best alignment quality that could be obtained with ExpLoc
in [25] was achieved with parameter minsize = 10. Even for this optimal set-
ting the quality of the result is significantly lower than the one for LocARNA
alone and ExpLoc-P. Additionally, the speedup for this setting is only 4.4 which
is also less than both speedups for ExpLoc-P. With minsize = 9, the speedup
of ExpLoc is comparable to ExpLoc-P but the quality declines much more. RAF
achieves the best speedup of 15.6 but the drawback of the sequence alignment
based heuristic filtering which causes this speedup is clearly visible: For sequence
similarities below 50% the quality drops tremendously. This indicates that RAF
is only successful on instances where sequence information alone is sufficient to
get already reasonable alignments. In summary this means that our novel tool
ExpLoc-P finds the best tradeoff between alignment quality and speedup and is
robust regarding the alignment quality for the whole range of sequence identities.

To analyze the quality of ExpLoc-P further, we investigated whether the
compalign scores of ExpLoc-P and unconstraint LocARNA do correlate well. We



Table 1. Runtime comparison of the different approaches. The speedup factor is mea-
sured relative to the speed of LocARNA. The runtime is the total runtime for comput-
ing the entire benchmark dataset on a single Opteron 2356 processor (2.3 GHz). For
ExpLoc-P the first value in brackets is the time for computing and chaining the EPMs
and the second one the runtime for the subsequent LocARNA alignments.

LocARNA ExpLoc-P ExpLoc-P ExpLoc ExpLoc RAF
(heuristic) (suboptimal) (minsize 10) (minsize 8)

speedup 1 6.0 4.9 4.4 5.4 15.6

total time 14.3h 2.4h 2.9h 3.2h 2.6h 0.9h
(0.4h+2h) (0.4h+2.5h)

found a high correlation of 0.85. This indicates that the six-times faster ExpLoc-P
pipeline can replace LocARNA in clustering approaches such as [10–12].

Notably, ExpLoc-P significantly outperforms LocARNA for a prominent clus-
ter of the RNA family IRES HCV. In contrast to most other RNA families, this
cluster shows only local conservation. This suggests that ExpLoc-P can improve
cluster-based approaches for genome-wide prediction of structural RNA-families,
where typically the boundaries of ncRNAs are loosely defined.

6 Conclusion

We introduced the algorithm (ExpaRNA-P) to identify exact pattern matches
(EPMs) in RNA structure ensembles. Using a novel sparsification technique, the
complexity of the algorithm can be reduced to quadratic complexity, which is
the same as the complexity of the algorithm for the corresponding, simpler case
of fixed RNA structures (ExpaRNA). Our evaluation demonstrates that EPMs
from structure ensembles outperform EPMs from fixed structures when utilized
as anchor constraints for structure alignments in our new pipeline ExpLoc-P.

As future work, we will investigate relaxations of the notion of exact patterns
to further improve the results. In particular, the same recursions can be used to
detect patterns that allow mismatches of base pairs or unpaired bases. Further-
more, EPM based anchor constraints could be used to improve other alignment
tools, like RAF. While for LocARNA the constraints yield a considerable speed-up,
in RAF they could improve the quality which is poor for low sequence similar-
ity. The score of the chained EPMs could also be used as a distance measure
for clustering approaches. This would speed up the clustering process since the
expensive computation of full structure alignments can be avoided.
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