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Abstract

Global and co-translational protein folding may both occur in vivo, and

understanding the relationship between these folding mechanisms is pivotal to

our understanding of protein structure formation.

Within this study, over 1.5 million Hydrophobic-Polar sequences were clas-

sified as either global or co-translational folders based on their ability to attain

a unique minimum energy conformation via co-translational folding. The se-

quence and structure properties of the sets were then compared to elucidate

signatures of co-translational folding.

The strongest signature of co-translational folding is a reduced number of

possible favourable contacts in the amino-terminus. There is no evidence of

fewer contacts, more local contacts, nor less compact structures. Co-translational

folding does produce a more compact amino- than carboxy-terminal region and

an amino-terminal biased set of core residues. In real proteins these signatures

are also observed and found most strongly in proteins of the SCOP alpha/beta

class where 71% have an amino-terminal set of core residues.

The prominence of co-translational features in experimentally determined

protein structures suggests that the importance of co-translational folding is

currently underestimated.

Supplementary information available at

http://www.stats.ox.ac.uk/proteins/resources.
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1 Introduction

Whether protein structure formation occurs concurrently with translation or after

release from the ribosome is currently widely debated, see reviews [1, 2]. There is

experimental evidence for both folding mechanisms [3–7]. If both occur in vivo then

understanding the features, interplay and relative abundance of these two folding

mechanisms may play a key role in furthering our knowledge of protein structure.

Here, we elucidate sequence and structure signatures that are related to the folding

mechanism.

A protein has a huge number of possible structures but, in accordance with

the Levinthal paradox, it cannot explore every possible conformation in finding its

biological structure [8]. It has been suggested that a directed pathway through

structure space is used to attain the biological structure [9]. Under co-translational

(CT) folding, the vectorial emergence of proteins from the ribosome could form the

basis for such directed folding pathways.

Experiments have demonstrated that ribosomes can catalyse the folding pro-

cess [1, 10, 11] and simulations have suggested possible mechanisms for this effect.

A simulation on the diamond lattice by Sikorski and Skolnick [12] found that the

ribosome accelerated the folding process by preventing formation of off-pathway in-

termediates. A model by Contreras Martinez et al. [13] found that the ribosome’s

exit tunnel can facilitate folding of well-designed proteins. Chikenji et al. [14] trans-

formed the normally rugged energy landscape of simplified models into a smooth

funnel by preventing certain sub-structures in analogy to the exit tunnel. Recently

Jefferys et al. [15] used a CT protein folding algorithm to study the importance of

macromolecular crowding on protein folding while Ellis et al. [16] proved that the

translation direction has a strong impact on protein folding.

CT folding occurs in vivo, however the sequence signatures that drive it and
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the resultant structure signatures that define it are both unknown. To identify the

signatures of CT folding and to estimate its abundance requires a set of sequences

known to fold co-translationally. Unfortunately this set is not available for solved

protein structures and so we use the Hydrophobic-Polar (HP) model [17]. Within

the HP model we can create a sequence set that folds co-translationally and, for

comparison, a sequence set that does not.

Generally, only HP sequences with a unique global energy minimum (UGEM)

conformation are considered protein-like. Previously, UGEM sequences/conformations

have been shown to exhibit protein-like: hydrophobicity [18, 19]; surface to core ra-

tios [20, 21]; repeating motifs [22–24]; volume exclusion among residues [25]; and

hydrophobic cores and polar exteriors [19]. The HP model is particularly useful

in studies that require extended coverage of both sequence and conformation space

[24]. However, it is essential to partition valid conclusions from system artifacts.

Crucially, the focus here is not on the mechanics and energetics of protein folding,

but rather on the sequence signatures that direct a protein towards CT folding and

the structural signatures that subsequently result.

In the HP model both sequence and conformation space can be fully enumerated

[25]. Taking all sequences with a UGEM conformation we produce three sequence

sets:

1. Global-CT - a sequence reaches its UGEM conformation co-translationally.

2. Kinetic-CT - a final unique conformation is formed co-translationally but it is

not the UGEM conformation.

3. Non-CT - no unique final CT conformation is attained.

The Kinetic-CT set is included because previous research has shown that the

UGEM conformation may not always be the most highly populated state under
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CT folding [26] whereby CT folding can produce stable but thermodynamically

non-optimal structures [27].

Previous studies that explored CT folding were based on hypothetical expecta-

tion and/or small data sets. We undertake the first exhaustive sequence classification

based on folding ability. Our classification should enable any sequence and struc-

ture signatures of CT folding to be identified. Over 1.5 million UGEM sequences are

classified; with 17, 085 sequences of length 25 classified as Global-CT. A Markov-

chain simulation demonstrates that the three sequence sets differ in their folding

behaviour. CT folding increases the likelihood of finding the UGEM conformation

by over 20%.

Comparison of our sequence sets demonstrates that many presumed signatures

of CT folding are too simplistic. For example, Global-CT conformations are not

enriched in local nor previous contacts as postulated by Alexandrov [28] & Deane

et al. [29]. They have a more: compact hydrophobic core, amino-terminal core, and

centrally orientated amino-terminus. The strongest signature of Global-CT folding

is a restriction of the conformational space available to the amino-terminal region:

a restriction that has been demonstrated in real protein structures [30].

Analysing the SCOP database a general trend towards CT folding is observed.

This is seen most strongly in the α/β class with 66% having a more centrally orien-

tated amino- than carboxy-terminus and 71% having a more amino-terminal set of

core residues.

2 Material and Methods

Initially we introduce our sequence classification algorithm (M1), a deterministic

method for high-throughput studies. The Markov-chain simulation schemes for

global folding (M2) and CT folding (M3) follow. Finally, the data sets and mea-
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sures are described. Our algorithms are model independent and here applied to

the Hydrophobic-Polar model [17], where each amino acid is represented by a single

monomer classed as either Hydrophobic or Polar. A conformation is any self-avoiding

walk within the chosen lattice. Throughout this study protein sequence P has con-

formation space S, i.e. the set of all possible conformations. Under global folding all

of S is available, whereas CT folding explores only a subset of S. The function E(s)

evaluates the energy involved in P forming s ∈ S. The protein length is assigned n.

All our algorithms are freely available in LatPack [31] implementewd here as

v1.8.1. Programs as follows, M1:latVec, M2:latFold, M3:latFoldVec.

M1 - Sequence Classification based on CT folding

Our three sequence sets are created using the following classification scheme that

evaluates folding via low-energy pathways available within the complete energy land-

scape. CT folding is modeled by a chain-growth procedure [32], which we apply in

accordance with Huard et al. [26]. For each elongation event l ∈ [1, n], all prior

conformations are extended to generate Sl, a set of conformations of length l. Only

conformations within ∆E of the current minimum energy are accepted; thus ∆E is

the energy in the system available for refolding [26]. At full elongation length n, all

conformations reached via CT folding Sn are evaluated to classify the sequence as

either Global-CT, Kinetic-CT, or Non-CT.

More precisely, we start with one monomer, i.e. conformation set S1. For each

elongation event l (2 ≤ l ≤ n), all conformations from the last elongation s ∈ Sl−1

are extended to produce all possible elongated conformations S′l of length l. The

minimal energy Em of all s ∈ S′l is calculated by Em(S′l) = min(E(s) | s ∈ S′l).

Only conformations Sl ⊆ S′l within ∆E of Em are retained for extension at the next

elongation event, such that Sl = {s | s ∈ S′l ∧ E(s) ≤ (Em(S′l) + ∆E))}.
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The final set Sn is restricted to the minimal energy conformations reachable, i.e.

Sn = {s | s ∈ S′n ∧ E(s) = Em(S′n)}. Given that P has a UGEM conformation of

energy E(UGEM) we can classify P according to Sn:

• Global-CT if (E(UGEM) = E(s ∈ Sn)); i.e. |Sn| = 1,

• Kinetic-CT if (E(UGEM) 6= E(s ∈ Sn) ∧ |Sn| = 1),

• else Non-CT.

Further details are provided in supplementary information. Our classification scheme

does not examine folding kinetics or thermodynamics; for this we use Markov-chain

simulation protocols.

M2 - Global Folding Simulations

Global folding (M2) from a full-length conformation s0 ∈ S is simulated using a

standard Metropolis 1st-order Markov-chain approach [33]. This produces a time

series of conformations (s0 → s1 → . . .→ stmax) after tmax simulation steps. Possible

transitions sfrom → sto are defined by the structural neighbourhood M(si) ⊆ S

such that sto ∈ M(sfrom), where M has to be symmetric and ergodic. Here, the

semi-local pull-moves introduced by Lesh et al. [34] are used to define M because

they have been demonstrated to simulate folding on a relevant timescale [35]. The

probability of accepting a transition sfrom → sto is given by the Metropolis criterion

min(1, exp(−[E(sto) − E(sfrom)]/kT )). Symmetric conformations due to rotation

or reflection are analysed only once.

M3 - Markov-chain CT Folding Simulations

Translation speed affects protein folding [36] and we hypothesise that folding during

elongation can restrict the final conformation set produced. A CT folding simu-
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lation should incorporate such interimfolding during chain elongation. M3 is used

to investigate this principle and we term the resulting conformation a CT-fold. To

model interim folding, a Markov-chain simulation is used after each elongation event.

This provides an energy-biased search of local conformation space during elongation.

This type of simulation has been informative [37–39] but, unlike our classification

method M1, cannot easily be applied to high-throughput screens.

To simulate the proposed CT folding process (M3) an iterative scheme of l ∈ [1, n]

elongation events (M3.1) is applied, each followed by interim folding (M3.2). The

phases in detail are:

M3.1: Given the final conformation of the last iteration sl−1 of length (l − 1), we

produce all its possible elongations Sl of length l. From this conformation ensemble

we pick a random elongation s ∈ Sl according to its Boltzmann probability within

the ensemble given by

Pr(s ∈ Sl) =
exp(−E(s)/kT )∑

s′∈Sl
exp(−E(s′)/kT )

. (1)

M3.2: The chosen elongation s (from M3.1) defines the starting conformation for

interim folding. Interim folding is simulated via a Markov-chain protocol similar

to M2; with the local conformation space M defined by pull-moves whereby each

residue can explore M through a length dependent number of folding events (c · l).

The conformation resulting from interim folding sl either starts another iteration

M3.1 (l < n) or is a CT-fold of the sequence.

The length-dependent folding time (c · l) incorporates the locality of single pull-

moves. Thus, c is the average number of folding events per residue. It is utilised

because the simulation applies a series of local structural changes that, in biology,

could occur simultaneously.
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HP-Model and Folding Simulation Parameters

The HP model represents each amino acid as a single monomer classified as ei-

ther Hydrophobic (H) or Polar (P). In the energy function each non-consecutive

HH-contact contributes -1, all other interactions 0. Viable conformations are self-

avoiding walks within a given lattice. Many previous protein studies have utilised

this model and identified biologically relevant characteristics [18, 21, 40, 41].

Based on previous work [31, 42] we use kT = 0.3 as the relative folding temper-

ature within the Metropolis criterion and in Eq. 1. Other values of kT (0.1 to 0.5)

produced similar results.

Sequence and Structure Sets

The “designing sequences” of Irback and Sandelin [18] are used in the 2D-square lat-

tice. “Designing sequences” are every HP sequence, l ≤ 25, with a UGEM conforma-

tion. Our classification scheme M1 grouped them into three folding sets: Global-CT,

Kinetic-CT, and Non-CT. Additionally, all remaining HP sequences (10 ≤ n ≤ 16)

were tested to see if they are Kinetic-CT sequences; that is whether they have a

single conformation after CT folding (M1). All our 2D studies used a surmountable

energy barrier of zero (∆E = 0) that prevented any chance of global folding.

In the 3D-cubic lattice, two non-exhaustive sets of ∼ 10, 000/17, 000 random se-

quences of length 27/36 with a unique global fold were derived using the CPSP ap-

proach of Backofen and Will [43] as implemented in HPoptdeg from the CPSP-tools

package v2.4.2 [44]. In this case, a surmountable energy barrier of 1 (∆E = 1) was

used.

Care must be taken when transfering measures designed on the HP model con-

formations to real protein structures. Proteins often have flexible, essentially un-

structured, termini - the requirement for a single conformation in the HP model
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occludes these regions from our analysis. Hence, we analyse protein structures from

the start of the most N-terminal secondary structure element (SSE) to the end of

the most C-terminal SSE. JOY [45] is used to assign secondary structure, only helix

and strand (when in a run of three or more) are considered to be SSEs.

A set of 10, 311 domains from SCOP [46] (release 1.75) with a sequence identity

cut-off of 40% was analysed. When comparing between SCOP classes only the 1969

α, 2174 β, 2652 α/β, and 2640 α+β domains were considered; other classes had less

than 1000 occurences.

Sequence and structure measures

Measures of sequence and structure properties are designed or adapted from the

literature [26, 29]. The most informative are detailed here, a full set of tests under-

taken can be found in the supplementary material. Throughout, Ri denotes the i-th

residue of a sequence of length n. δ(Ri, Rj) denotes the structural distance between

Ri and Rj and h(Ri) = 1 if Ri is hydrophobic and = 0 otherwise. In solved protein

structures, R1 is the most N-terminal and Rn the most C-terminal residue assigned

to a run of at least three helix residues or three strand residues. The sequence record

of PDB files is sometimes incomplete if not all residues are resolved in the X-ray

structure - in these cases n is based on the actual residue number to incorporate

chain breaks.

Sequence measures

• Hydrophobicity measures the percentage of residues in the sequence classified

as hydrophobic (= 1
n

∑
i h(Ri)). Hydrophobic residues are Ala, Cys, Ile, Leu, Met,

Phe, Pro, Trp and Val [19]. Hydrophobicity by quartiles (HBQ), examines the Hy-
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drophobicity of the intervals [1, n4 ], [n4 ,
n
2 ], [n2 ,

3n
4 ], and [3n4 , n].

• Possible Hydrophobic Interactions (PHI, Eq. 2) describes the relative possibility

of each hydrophobic residue to make favourable (hydrophobic) interactions.

PHI(i) =

∑|i−j|>d
1≤j≤n I(Ri, Rj)

n− 2d− 1
(2)

where d defines the minimal distance in sequence considered for contacts and is

set to 3 throughout. To evaluate interactions we use I(Ri, Rj) = −1 if both residues

are hydrophobic (h(Ri) = h(Rj) = 1); otherwise I(Ri, Rj) = +1. Since rectangular

lattices suffer the parity problem1 [44], we halve the normalisation of the PHI score

in lattice models using (n− 2d− 1)/2. For analysis, the PHI score is averaged for

each position over all sequences per sequence set (Non-CT, Global-CT, Kinetic-CT).

• Neutral nets are a network where nodes represent sequences that share a com-

mon UGEM conformation and edges connect sequences that differ by a single point

mutation. The most connected node, the hub-node, has been described as the most

protein-like sequence because it is more robust to mutation [24]. Neutral nets were

built for the 2D HP sequences of n = 25. Only networks for structures that are the

UGEM conformation for ≥ 50 sequences (including at least one Global-CT sequence)

were considered. It is possible that the sequence space of a UGEM conformation

contains more than one distinct neutral net [24]; in which case each net is analysed

separately.

1Neighbored nodes in rectangular lattices show different parity in coordinate sum resulting in
two classes of nodes, i.e. with even or odd coordinate sum. Due to the connectivity along the
structure, only monomers with different sequence index parity can form contacts, i.e. even to odd
and vice versa.
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Structure measures

• The Mean Central Residue (MCR, Eq. 3) calculates the sequence position

closest to the protein’s centre of mass (M) (similar to pMIN from [29]). Equation 3

utilises core(k) to access the index of the k-th closest residue R according to δ(R,M)

(i.e. δ(Rcore(k),M) ≤ δ(Rcore(k+1),M)). Through normalisation MCR maps to the

interval [0, 1]; thus a more N-terminal set of η core residues has a score less than 0.5.

We used η = 4 and = 8 in 2D and 3D respectively.

MCR =

∑η
i=1 core(i) ·W (i)

n ·
∑η

i=1W (i)
with W (i) =

1

δ(Rcore(i),M)
(3)

• NCcen (Eq. 4), the relative distance of the N and C termini to the protein’s center

M , assesses terminal bias of M from a structural rather than sequence perspective.

A negative NCcen reveals that the N-terminus R1 is more centrally orientated then

the C-terminus Rn.

NCcen = log
δ(R1,M)

δ(Rn,M)
(4)

• The moment of inertia (MoI, Eq. 5) measures structural compactness as the

average distance of any residue to M [26]. The hydrophobic MoI can be calculated by

only considering hydrophobic residues; in this case n is the number of hydrophobic

residues and M is their average position.

MoI =
1

n

∑
i

[δ(Ri,M)]2 (5)
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3 Results and discussion

Our methods and the resulting sequence sets are first validated with comparison

to the literature. Subsequently, the sequence and structure properties of our three

sequence sets are investigated to identify signatures of CT folding. Finally, we move

away from simplified models and identify a subset of these CT folding signatures

within a large, non-redundant set of real protein domains.

Co-translational folding via Markov-chain

In general, we envision that CT folding produces a limited set of structures (CT folds)

that provide a beneficial start point for reaching the biological conformation. One

CT fold may, of course, be the biological conformation. In this study CT folds are

produced using the Markov-chain method M3.

To validate our method of producing CT folds (M3) we investigate the 10-mer

sequence HPHPPHPPHH that has a UGEM conformation and was shown by Huard

et al. [26] to benefit from CT folding. A full enumeration of all possible CT folding

paths demonstrated that this sequence folded more efficiently co-translationally than

globally. The sequence also benefits from CT folding under our folding procedure

M3.

Different intermediate folding times (c constant) between elongation events are

tested; with four test sets of CT-folds produced (c = 0, 1, 2, 3). The success rate of

attaining the UGEM conformation from CT-folds is compared to that of attaining

the UGEM conformation from a set of random start conformations. In each case,

k = 105 global folding simulations (M2) of 100, 200 and 500 simulation steps are un-

dertaken. The protein’s folding rate (rf ) is calculated from the number of successful

(reaching the UGEM conformation) folding simulations hsucc in the k simulations:

rf = (hsucc/k).
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Figure 1 summarises the results. Our model produces the folding behaviour for

HPHPPHPPHH as predicted by full-enumeration [26]. Starting from CT-folds is always

superior to random start conformations for this sequence. As the number of folding

events per elongation is increased between 0 and 2, the folding rate also increases.

Above two intermediate folding events no improvement in the folding rate is observed

for this sequence. This may result from the 1st-order Markov-chain implemented

because as time increases the protein chain becomes increasingly independent of the

starting conformation. These results demonstrate that the model can reproduce full

enumeration results and that model proteins can benefit from CT folding.

Furthermore, using M3 we can test whether our folding sets, generated in the

following by M1, have different folding properties.

Identification of Co-translational Folding

Using our classification method M1, we have classified over 1.5 million HP sequences

into three sets: Global-CT, Kinetic-CT, and Non-CT folders (see Methods). The

765, 147 sequences of length 25 with a UGEM conformation in the 2D-square lattice

are separated into 17, 085 Global-CT, 74, 502 Kinetic-CT, and 673, 560 Non-CT

sequences. In general, between 10 % and 20 % of our longer sequence sets seem

to fold co-translationally. The percentage is higher for shorter sequences (43% at

length 13). It suggests that a significant number of proteins may use co-translation

to attain their biological conformation. M1 is a very restrictive implementation of

CT folding and many more sequences may use CT-folds as a springboard for finding

their native conformation.

Our classification procedure (M1) has no kinetic component. It is a purely de-

terministic measure of whether a sequence can benefit from CT folding under the

most restrictive definition of CT folding. To evaluate our classification procedure
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M1 we investigate the folding rates of a random subset of each group (Global-CT,

Kinetic-CT, Non-CT) using the Markov-chain CT folding simulation (M3) followed

by global folding (M2). It is expected that Global-CT sequences will exhibit the

highest success rate when global folding is initiated from CT folds. Furthermore,

Kinetic-CT sequences should have a preference for reaching their kinetic fold over

their UGEM conformation. Figure 2 shows the ratio of the folding rates when start-

ing from CT-folds compared to starting from random conformations. Folding rates

are averaged over 50 randomly selected sequences per group and 104 folding simu-

lations of 200 global folding steps per sequence. As expected, Global-CT sequences

benefit the most from CT folding and show a higher folding rate increase than Non-

CT sequences. In reaching their UGEM conformation, Kinetic-CT sequences show

a similar folding rate increase to Non-CT sequences but show a significantly higher

rate to adopt their proposed kinetic fold. For all classifications, starting from the

CT-folds increases the folding rate and we suggest that CT folding is an efficient

way to explore fold space. Increasing the number of intermediate folding events per

elongation is beneficial up to a particular point. The optimal number of intermedi-

ate folding events increases with sequence length (see supplementary material) but

we elucidate no general rule underlying it. The effect probably results from a longer

energy driven exploration of CT structure space.

Overall, our extensive sequence classification is supported by the differing folding

properties of our three sets under a Markov-chain simulation.

Model Features of Co-translational Folding

A large number of sequences fold co-translationally to a unique final conformation.

As described in the HP-model, the percentage of sequences over length 20 that are

Global-CT folders is low - their actual number, however, is large. The low percentage
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but large number of CT-folders is not counter to biology: protein sequence space is

vast, yet only a very small percentage of sequences are observed in nature [47–49].

Global-CT sequences behave differently to the other sets when our measures

of sequence space are considered. In our examination of neutral nets we find that

Global-CT sequences are often the most robust to mutation. Hub nodes are enriched

in Global-CT sequences; at length 25, Global-CT sequences make up just 12.8% of

neutral net sequence space and account for 41.9% of hub sequences.

Structural compactness (MoI) did not segregate our sequence sets. However,

examining the hydrophobic MoI did. In contrast to the theorised properties, Global-

CT sequences had, on average, the most compact hydrophobic cores. Kinetic-CT

sequences, in accordance with the theory, had the least compact cores; but the

distributions do overlap. It would appear that by selecting UGEM conformations

that can be found co-translationally we have also selected those conformations with

the most compact hydrophobic cores. It may be that a compact core is related to

the robustness to mutation exhibited by Global-CT sequences.

Undertaking a closer examination of core properties through the mean central

residue (MCR) and the relative centrality of the N- and C-termini (NCcen) we found,

as expected, that Non-CT sequences show no overall bias. Our other sets do: 73% of

Kinetic-CT and 75% of Global-CT conformations have a more centrally orientated

N- than C-terminus at length 25. When considering the MCR, we found that 97% of

Kinetic-CT and 93% of Global-CT sequences have an N-terminal core (length 25).

It was theorised that CT folding would produce a more compact N- than C-

terminal region. We calculate the MoI of the extreme eight terminal residues and

then compute log MoI(N)
MoI(C) where a negative result indicates a more compact N- than

C-terminal region. Overall a negative score is observed for both Kinetic-CT and

Global-CT sets. Non-CT folders have, on average, equally compact N- and C-
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termini.

Global-CT sequences also have a significantly lower percentage hydrophobicity

(χ2 test) and exhibit a general decrease in hydrophobicity moving from the N- to

C-terminus (see supplementary material).

Of all our tested measures, the possible hydrophobic interactions (PHI) score

most clearly segregates Global-CT sequences from our other sequence sets. A posi-

tive PHI score for a position means that there are more unfavourable than favourable

interactions possible at that position. Through our PHI score we demonstrate that

Global-CT sequences are characterised by a low number of possible favourable (hy-

drophobic) interactions in N-terminal regions (positive PHI, see Figure 3). We

suggest that specific contacts form in the N-terminal region that restrict and guide

the subsequent folding process. The restriction on conformation space is unique to

Global-CT sequences. PHI is an absolute measure of CT folding potential, and in

principle Global-CT sequences could be isolated from the whole of sequence space.

To test this we used the PHI score and relative terminal hydrophobicity to select

possible Global-CT sequences of length 30 and found an 8.5 fold enrichment in

expected UGEM sequence identification (see supplementary material).

Co-Translational Folding Features in Real Proteins

Protein structures have a modular design composed of domains, where each domain

is assumed to be able to fold independently. Therefore, in order to study the possible

signatures of CT folding within real protein structures the SCOP domain database

is used.

As mentioned, care must be taken when expanding measures from the HP model

to real protein domains and, as such, unstructured termini are occluded from our

analysis. Additionally, it is unknown to which of our folding sets (Global-CT,
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Kinetic-CT, or Non-CT) each domain would belong. Hence, it is only possible

to see if the data set as a whole is biased toward signatures of CT folding. We

compare our measures between different SCOP classes as they have been suggested

to vary in their propensity for CT folding [29, 50]. We have previously shown that,

in contrast to Laio and Micheletti [51], the N-terminal region of a SCOP domain is,

on average, more compact than the C-terminal region [30]. In this manuscript we

link this observation to CT folding.

SCOP domains in general exhibit a bias towards the signatures we ascribe to

CT folding: 56% having an MCR < 0.5 and 58% having an NCcen < 0. As expected,

the bias varies between SCOP domain classes: α ([MCR < 0.5] = 51%, [NCcen < 0]

= 50%), β (47%, 60%), α/β (71%, 66%), and α+β (54%, 57%) (Fig. 4). The α class

alone shows no bias in these tests. All other sets have a significant bias towards

CT folding under our NCcen measure.

4 Concluding remarks

Undertaking an exhaustive model study of co-translational (CT) folding, we have

classified over 1.5 million HP sequences in to three sequence sets (Global-CT, Kinetic-

CT, and Non-CT) based on their CT folding properties. Global-CT sequences are

optimised to find their unique global energy minimum (UGEM) conformation via a

path of directed growth starting from their N-terminus (CT folding). Kinetic-CT se-

quences fold co-translationally to a unique final conformation but this conformation

is not the unique global energy minimum. Non-CT sequences have a UGEM confor-

mation but cannot attain this nor a unique final conformation co-translationally. A

1st-order Markov-chain simulation demonstrated the different folding behaviour of

our sets and suggested that CT folding benefited all sequence sets in attaining their

UGEM conformation.
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Our three sequence sets allow the first test of the CT properties theorised in

the literature [28, 29, 51]. In general, signatures of CT folding are more subtle

than theorised. CT conformations are not generally enriched in local nor previous

contacts, nor are they less compact. We do find that CT conformations have a

more N-terminal core; a more centrally orientated N- than C-terminus; and a more

compact N- than C-terminal region. The real protein structures tested are biased

towards these signatures of CT folding. As Deane et al. [29], we find that SCOP

classes differ in their propensity for CT folding properties and we highlight the α/β

class as a strong candidate for CT folding.

Global-CT sequences dominate the hubs of large neutral nets and are thus, on

average, more robust to mutation; a result consistent with that of Wang and Klimov

[39]. Xia and Levitt [25] demonstrate that, through the evolution of folding rates

and protein stability, there is a funnel-like organisation of sequence-space towards

these hubs. Govindarajan and Goldstein [52] suggest that CT folding may be the

standard and that sequences evolve such that the structure found co-translationally

becomes the UGEM conformation. In reference to this we find that some Kinetic-CT

conformations are UGEM conformations for other sequences.

The most significant signature of CT folding we identified is a sequence-mediated

restriction in N-terminal structure space. The N-terminus of Global-CT sequences

can make relatively few favourable contacts and we suggest that the formation of

these favourable bonds directs the rest of the folding pathway towards the UGEM

structure. In this way a directed folding path is created as suggested by Karplus [9].

There is experimental evidence that local sequence effects on structure are stronger

at the N- than C-terminus. Native N-terminal structures have recently been observed

in otherwise denatured protein [53]. The restriction in structure space and stronger

local sequence signals at the N-terminus should make prediction of structure in
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this region more accurate. Indeed increased prediction accuracy at the N-terminus

was identified in secondary structure prediction by Holley and Karplus [54] and

has recently been revisited by Saunders and Deane [30]. Unfortunately our PHI

score is currently not directly applicable to real protein data. In a related test, the

Miyazawa-Jernigan matrix [55] is used to assess contacts in real protein structures

and indicates that there are generally fewer favourable contacts at the N-terminus

(see supplementary material).

Overall, our results suggest that the abundance and importance of co-translational

folding in vivo is currently underestimated.
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Figure legends

Figure 1: The effect of start conformation on attaining the UGEM conformation of
HPHPPHPPHH. The proportion of simulations resulting in the UGEM conformation (Y-
axis) is plotted against the number of folding steps (X-axis). Starting from randomly
compact structures (R, solid line) is never better than starting from a CT-fold. Data
is shown for CT-folds created using 0, 1, 2 and 3 (dashed lines) intermediate folding
events per elongation. The inset chart shows the relative success rate (Y-axis)
of using CT-folds over randomly compact structures as a start point for CT-folds
created using a varying number of intermediate folding events (X-axis).

Figure 2: The propensity of our different sets to fold successfully. The ratio of
the average folding rates (Y-axis) is the success rate when starting from CT-folds
compared to the success rate starting from random structures. Data is shown for
different numbers of intermediate folding events (X-axis) using length 25 sequences in
the 2D-square lattice. Data for our Kinetic-CT set is split into folding to the UGEM
conformation and to the unique final conformation found via pure CT folding under
our classification system. NCT = Non-CT folders, GCT = Global-CT and KCT =
Kinetic-CT.

Figure 3: Possible Hydrophobic Interaction (PHI) score data for length 25 sequences.
Global-CT sequences (G) have positive scores in the N-terminal region indicating
that only a few hydrophobic interactions are possible, i.e. the majority of an H
residue’s potential contacts are with P residues and thus not favoured. For Kinetic-
CT (K) and Non-CT (N) sequences scores are always negative. Lines are a guide to
the eye.

Figure 4: Distribution of the Mean Central Residue (MCR) and the relative distance
of the N- and C-termini to the centre of mass (NCcen) for each SCOP class. Only
the α class shows no bias according to the measures. All other classes, and at most
the α/β class, show a trend towards CT folding behavior, i.e. MCR < 0.5 and
NCcen < 0.
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Figure 1
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Figure 4
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