
Time and space efficient RNA-RNA interaction
prediction via sparse folding

Raheleh Salari1?, Mathias Möhl2?, Sebastian Will2?,
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Abstract. In the past years, a large set of new regulatory ncRNAs
have been identified, but the number of experimentally verified targets
is considerably low. Thus, computational target prediction methods are
on high demand. Whereas all previous approaches for predicting a gen-
eral joint structure have a complexity of O(n6) running time and O(n4)
space, a more time and space efficient interaction prediction that is able
to handle complex joint structures is necessary for genome-wide target
prediction problems. In this paper we show how to reduce both the time
and space complexity of the RNA-RNA interaction prediction problem
as described by Alkan et al. [1] via dynamic programming sparsification
- which allows to discard large portions of DP tables without loosing
optimality. Applying sparsification techniques reduces the complexity of
the original algorithm from O(n6) time and O(n4) space to O(n4ψ(n))
time and O(n2ψ(n) +n3) space for some function ψ(n), which turns out
to have small values for the range of n that we encounter in practice.
Under the assumption that the polymer-zeta property holds for RNA-
structures, we demonstrate that ψ(n) = O(n) on average, resulting in
a linear time and space complexity improvement over the original algo-
rithm. We evaluate our sparsified algorithm for RNA-RNA interaction
prediction by total free energy minimization, based on the energy model
of Chitsaz et al. [2], on a set of known interactions. Our results confirm
the significant reduction of time and space requirements in practice.

1 Introduction

Starting with the discovery of microRNAs (miRNAs) and the advent of genome-
wide transcriptomics, it has become clear that RNA plays a large variety of
important roles in living organisms that extend far beyond being a mere inter-
mediate in protein biosynthesis [3]. Several of these non-coding RNAs (ncRNAs)
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regulate gene expression post-transcriptionally through base pairing (and estab-
lishing a joint structure) with a target mRNA, as per the eukaryotic miRNAs
and small interfering RNAs (siRNAs) [4–6], antisense RNAs [7, 8] or bacterial
small regulatory RNAs (sRNAs) [9]. In addition to such endogenous regulatory
ncRNAs, antisense oligonucleotides have been used as exogenous inhibitors of
gene expression; antisense technology is now commonly used as a research tool
as well as for therapeutic purposes. Furthermore, synthetic nucleic acids systems
have been engineered to self assemble into complex structures performing various
dynamic mechanical motions [10–14].

Despite all the above advances, the first set of computational methods for
predicting ncRNA-target mRNA interactions suffered from over-simplifying the
types of interactions allowed. As a result they could not accurately predict many
known interactions, especially those involving long ncRNAs. More precisely,
these methods either restricted the interactions to external positions, or they
allowed interactions with at most one interaction site. These restrictions were
lifted by two independently developed methods, which provided the first set of
algorithms for predicting a precise interaction structure of two RNA strands:
(i) the algorithm by Pervouchine [15], for example, maximizes the total number
of base pairs, and (ii) a more general method by Alkan et al. [1], minimizes
the total free energy of the interacting RNA strands using a nearest neighbor
energy model. Alkan et al. also provide a proof of the NP-completeness of the
general problem, together with a precise definition of interaction types that can
be handled, as well as the first experimental confirmation of the total free energy
minimization approach via correctly predicting the joint structure formed by a
number of interacting RNA pairs.

More recently, two approaches [2, 16] independently solved the problem of
calculating the partition function for the interaction model introduced by Alkan
et al., allowing to determine important thermodynamic quantities like melting
temperatures. As demonstrated in [2], the computed melting temperatures are
in a good agreement with experimentally measured ones.

One key problem with the above approaches for predicting a general joint
structure [15, 1, 2, 16] is that they all have a worst case running time of O(n6)
and a space complexity of O(n4). While this complexity might be acceptable
when analyzing only a few putative sRNA-target interaction pairs, we are now
faced with the situation that the amount of data to be analyzed is vastly increas-
ing. To give an example, a recent mapping of transcripts using tiling arrays in
the budding yeast S. cerevisiae [17] with 5,654 annotated open reading frames
(ORF) has found 1555 antisense RNAs that overlap at least partially with the
ORFs at the opposite strand. Currently, it is completely unclear what these an-
tisense RNAs are doing - whether they target only their associated sense mRNA
or have also other mRNA targets, and whether they always form a complete
duplex or more complex joint structures such as multiple kissing hairpins if they
overlap only partially is not known. The same situation appears in many other
species. Thus, there is urgent need for a more time and space efficient interaction
prediction method that is able to handle complex joint structures.



In this paper we present a new method for calculating the joint structure of
interacting RNAs by minimizing their total free energy, which improves time and
space efficiency over previous approaches. As first in its class, the method is suffi-
ciently fast to be applied in large scale screening approaches. We suggest to refine
putative interacting pairs with even more accurate RNA-RNA-interaction pre-
diction approaches [2, 16]. Because these approaches compute a partition func-
tion for RNA-RNA-interaction, they can determine important thermodynamic
parameters such as melting temperatures, however their efficiency cannot be
improved in the same way.

We show how to reduce both time and space complexity using an approach
called sparsification, which uses the observation that the resulting DP-matrices
are sparse. As previous applications of sparsification to problems related to RNA
folding, our approach exploits a triangle inequation on the dynamic programming
matrix. Assuming the polymer-zeta property for interacting RNAs, we show an
efficiency gain by a linear factor. This polymer-zeta property basically states
that the probability of a base pair decreases with its size, i.e. there are only few
long range base pairs.

In this paper we consider a version of the polymer-zeta property for inter-
acting RNAs and develop novel algorithmic approaches as (1) we cannot assume
the standard polymer-zeta property for all base pairs as for intermolecular base
pairs there is no clear notion of a distance between the bases; (2) the joint inter-
action prediction problem does not allow to split only at arcs in the recursion,
which was crucial in the demonstration of a linear (asymptotic) speed up for
problems involving the folding of a single RNA.

We sparsify the dynamic programming tables involved in total free energy
minimization first described in Alkan et al. [1] on the more general energy model
of Chitsaz et al. [2] resulting in a significant reduction in time and space com-
plexity. There are four different cases that need to be sped up, which results in
a total of four different candidate lists; for each sequence and each region, we
have to consider folding with interaction or without interaction, which gives rise
to two candidate lists per sequence. We emphasize that beyond reducing time
complexity, we obtain a similar space reduction even in the intricate setting of
four independent candidate lists.
Sparsification in RNA folding. The general technique of DP sparsification has
been used in the context of RNA-folding, to reduce the time and space com-
plexity of two central problems in this domain, namely (i) the calculation of the
MFE structure of a single RNA sequence folding [18, 19], and (ii) the Sankoff ap-
proach [20] of simultaneous folding and alignment of two RNAs [21, 19]. In both
cases, a (roughly) linear reduction in the time complexity was achieved on aver-
age.1 The time/space reduction is based on the assumption that RNA-structures
or consensus structures - in the simultaneous alignment and folding of RNAs,

1 To be more precise, the time complexity of RNA-folding was reduced from O(n3)
to O(nZ) and the space complexity was reduced from O(n2) to O(Z), where Z is
a sparsity factor satisfying n ≤ Z ≤ n2. An estimation [18] of the expected value
of a parameter related to Z, based on a probabilistic model for polymer folding and



satisfy the polymer-zeta behavior, which is an assumption that we employ in
predicting the intramolecular base-pairs observed in RNA joint structures. The
above approaches for RNA folding as well as simultaneous folding and alignment
use the polymer-zeta property for either a single RNA sequence and structure,
or for a consensus structure of two (structurally similar) RNAs, leading to a
single candidate list.
RNA-RNA interaction prediction methods. The first set of computational meth-
ods to calculate joint structures formed by interacting RNAs (e.g., RNAhy-
brid [22] or TargetRNA [23]) considered only the base-pairs between the two
different strands that form a duplex structure. Since this ignores the intramolec-
ular structures, later approaches aimed to predict a joint structure for both
interacting RNAs. This second generation of RNA-RNA interaction prediction
methods, which include pairfold [24], RNAcofold [25] and the method presented
by Dirks et al. as part of the NUpack package [26], consider joint structures
of mRNA and sRNA that are generated by concatenating the two sequences
using a special linker character. Then, a modified version of the standard RNA-
folding algorithms (such as Mfold [27] or RNAfold [28]) which preserve the basic
recursive structure of standard RNA-folding but specially treat loops that con-
tain the linker symbol, is applied. Unfortunately, none of the above approaches
can predict joint structures with kissing hairpin interactions. For that reason, a
third generation of RNA-RNA interaction prediction algorithms (in particular,
RNAup [29] and IntaRNA [30]) were recently introduced. These approaches first
determine the accessibility of all putative interaction sites, from which an energy
to make the sites free of intramolecular base-pairs can be calculated. Later, this
energy is combined with the energy of the duplex that can be formed between
different interaction sites.

Clearly, the third generation methods can only handle one interaction site
per sequence - which may not include any intramolecular base-pairs. As a result,
two or more kissing hairpins as per the interaction between OxyS and fhlA [31]
cannot be treated by these approaches. For the purpose of handling such complex
joint structures, more sophisticated DP-methods of Pervouchine [15] and Alkan
et al. [1], as well as the partition function variants by Chitsaz et al. [2] and Huang
et al. [16] were introduced. Finally, more recent methods introduced in [32, 33]
can be seen as heuristic approximations to the full model of [2], or as an extension
of the accessibility approaches (RNAup/IntaRNA) to several interaction sites.

2 Preliminaries

Throughout this paper, we denote the two nucleic acid strands by R and S.
Strand R is indexed from 1 to LR in 5′ to 3′ direction and S is indexed from 1 to
LS in 3′ to 5′ direction. Note that the two strands interact in opposite directions,
e.g. R in 5′ → 3′ with S in 3′ ← 5′ direction. Each nucleotide is paired with at
most one nucleotide in the same or the other strand. The subsequence from the

measured by simulations, shows that Z is significantly smaller than O(n2). Similar
results are given for the co-folding problem.



ith nucleotide to the jth nucleotide in a strand is denoted by [i, j]. We refer to
the ith nucleotide in R and S by iR and iS respectively. An intramolecular base
pair between the nucleotides i and j in a strand is called an arc and denoted
by a bullet i • j. An intermolecular base pair between the nucleotides iR and iS
is called a bond and denoted by a circle iR ◦ iS . An arc iR • jR (or respectively
iS • jS) covers a bond kR ◦ kS if iR < kR < jR (or iS < kS < jS). An arc
is called interaction arc if it covers a bond. A subsequence [iR, jR] (or [iS , jS ],
analogously) contains a direct bond, kR ◦ kS , if iR ≤ kR ≤ jR and no arc within
[iR, jR] covers kR ◦ kS . Two bonds iR ◦ iS and jR ◦ jS are called crossing bonds
if iR < jR and iS > jS or iR > jR and iS < jS . An interaction arc iR • jR in R
subsumes a subsequence [iS , jS ] in S if there is at least one bond kR ◦ kS , where
iR < kR < jR and iS < kS < jS , and for all bonds kR ◦ kS , if iS ≤ kS ≤ jS then
iR < kR < jR. Analogously, interaction arcs in S can subsume subsequences in
R. Two interaction arcs iR • jR and iS • jS are part of a zigzag, if there is a bond
kR ◦ kS , where iR < kR < jR and iS < kS < jS , but neither iR • jR subsumes
[iS , jS ] nor iS • jS subsumes [iR, jR].

We represent the recursions of our dynamic programming (DP) algorithm
in a graphical notation using the recursion diagrams introduced in [2]. Within
the recursion diagrams, a horizontal line indicates the phosphate backbone, a
solid curved line indicates an arc, and a dashed curved line encloses a region
and denotes its two terminal bases which may be paired or unpaired. Letters
within a region specify a recursive quantity. White regions are recursed over and
blue regions indicate those portions of the secondary structure that are fixed at
the current recursion level and contribute to the energy as defined by the energy
model. Green and red regions have the same recursion cases as the corresponding
white regions, except that for the green regions multiloop energy and for red
regions kissing loop energy is applied, i.e. the corresponding penalties for each
unpaired base and base pair should be applied. A solid vertical line indicates a
bond, a dashed vertical line denotes two terminal bases of a region which may
be base paired or unpaired, and a dotted vertical line denotes two terminal bases
of a region which are assumed to be unpaired. A terminal determined by • is
starting point of either an interaction arc or a bond.

3 Methods

In this section we discuss an algorithm for RNA-RNA interaction prediction via
total free energy minimization, under the assumption that there are no (internal)
pseudoknots, crossing bonds (i.e. external pseudoknots), or zigzags in the joint
structure. The algorithm is similar to the one introduced by Alkan et al. [1] on a
simpler energy model. We use sparsification techniques to reduce the complexity
of the original algorithm from O(n6) time and O(n4) space to O(n4ψ(n)) time
and O(n2ψ(n)+n3) space for some function ψ(n) = O(n) on average. To simplify
the presentation, we discuss the sparsification for the joint structure prediction
via total base pair maximization. Note that RNA-RNA interaction based on
base pair maximization is the generalized version of the Nussinov model [34] for



single RNA folding and was employed by Pervouchine [15] as well as Alkan et
al. [1] for RNA-RNA interaction prediction. Later in the paper we also provide
all concepts for generalizing the algorithm to capture a more realistic energy
model provided by Chitsaz et al. [2].

3.1 Sparsification for Maximizing Base Pairs

Given two RNA sequences R and S, N(iR, jR, iS , jS) denotes the maximum
number of base pairs in the joint structure of [iR, jR] and [iS , jS ], and NX(i, j)
(for X ∈ {R,S}) denotes the maximum number of base pairs of the subse-
quence [i, j] of the single sequence X. The recursion cases for computing the
maximum number of base pairs for RNA-RNA interaction are illustrated in Fig.
1. N(iR, jR, iS , jS) and NX(i, j) for X ∈ {R,S} are calculated by the following
recursions

N(iR, jR, iS , jS) = max



N(iR + 1, jR, iS , jS) (a)
N(iR, jR, iS + 1, jS) (b)
N(iR + 1, jR, iS + 1, jS) + 1 (c)

max
iR<k≤jR

R[iR],R[k] compl.

(
1 +NR(iR + 1, k − 1)

+N(k + 1, jR, iS , jS)

)
(d)

max
iS≤k<jS

S[iS ],S[k] compl.

(
1 +NS(iS + 1, k − 1)

+N(iR, jR, k + 1, jS)

)
(e)

max
iR<kR≤jR
iS<kS≤jS

R[iR],R[kR] compl.

(
1 +N(iR + 1, kR − 1, iS , kS)

+N(kR + 1, jR, kS + 1, jS)

)
(f)

max
iR<kR≤jR
iS<kS≤jS

S[iS ],S[kS ] compl.

(
1 +N(iR, kR, iS + 1, kS − 1)

+N(kR + 1, jR, kS + 1, jS)

)
(g)

(1)

NX(i, j) = max


NX(i+ 1, j) (a)

max
i<k≤j

X[i],X[k] compl.

(
1 +NX(i+ 1, k − 1)

+NX(k + 1, j)

)
(b)

(2)

In Eq. 1, the cases (a) and (b) introduce an unpaired base at positions iR and iS
respectively, and case (c) introduces a bond iR ◦ iS . Cases (d) and (f) introduce
an arc at iR • k and cases (e) and (g) at iS • k, where cases (f) and (g) assume
that the arc is an interaction arc and cases (d) and (e) assume that this is not
the case.

Time reduction by sparsification We will apply a sparsification technique
to reduce the number of cases necessary to be considered for Eq 1(d)-(g), as well
as Eq 2(b).

Concerning sparsification, the simple cases are Eq 1(d),(e), and Eq 2(b),
which correspond to the folding of a single sequence. The sparsification of these
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Fig. 1. Recursion cases for computing the maximum base pairing joint structure of
[iR, jR] and [iS , jS ].

cases works in close analogy to the sparsification of RNA structure prediction as
described by Wexler et al. [18]. We will briefly review their approach adapted to
case Eq 2(b). Thereafter, we describe sparsification of the complex cases.

Sparsifying recursion cases for single structure folding The key to sparsification
is a triangle inequality property of the DP matrix. In the case of NX, for every
subsequence [i, j] and i < k ≤ j the following inequality holds:

NX(i, j) ≥ NX(i, k) +NX(k + 1, j).

Due to this property, it is sufficient to maximize in Eq. 2(b) for each i only
over certain candidates k instead of all k with i < k ≤ j. In this case, k is a
candidate for i, iff NX(i + 1, k) < NX(i, k) and for all i < k′ < k, 1 + NX(i +
1, k′ − 1) + NX(k′ + 1, k) < NX(i, k). Operationally, during the computation
of NX(i, k) we detect that k is a candidate for i by checking that the instance
1+NX(i+1, k−1)+NX(k+1, k) of recursion case Eq. 2(b) is the only maximal
case.

For non-candidates k there exists some k′, i ≤ k′ < k, where NX(i, k) =
NX(i, k′) + NX(k′ + 1, k). Then for all j > k, NX(i, k) + NX(k + 1, j) =
NX(i, k′) +NX(k′ + 1, k) +NX(k+ 1, j), and by triangle inequality NX(i, k) +
NX(k + 1, j) ≤ NX(i, k′) + NX(k′ + 1, j). This means that, whenever a non-
candidate k yields a maximal value, then there is already a k′ < k that yields
the same value. Therefore k does not need to be considered, because the smallest
such k′ is taken into account.

Wexler et al. showed that sparsification reduces the expected time complexity
of RNA folding by a linear factor, since the expected number of candidates for
each i is constant. The transfer of sparsification to cases Eq 1(d) and (e) is
straightforward, because only one subsequence is decomposed and the indices of
the other subsequence remain fixed.

Sparsifying recursion cases for joint structure folding We extend the sparsifica-
tion idea to the recursion cases Eq 1(f) and (g), which split both sequences and
therefore minimize over a pair of split points (kR, kS). For the four dimensional
matrix N(iR, jR, iS , jS), the following generalization of the triangle inequality
holds.

Observation 1 (Triangle inequality for N(iR, jR, iS , jS)) For every subse-
quence [iR, jR] and [iS , jS ] and for every iR < kR ≤ jR and iS ≤ kS < jS,
N(iR, jR, iS , jS) ≥ N(iR, kR, iS , kS) + N(kR + 1, jR, kS + 1, jS).



Note that in principle both cases Eq 1(f) and (g) split the two subsequences at kR

and kS , respectively, into the pairs [iR, kR], [iS , kS ] and [kR + 1, jR], [kS + 1, jS ].
The only difference is that within the first pair of subsequences, [iR, kR], [iS , kS ],
case (f) assumes an arc iR • kR and case (g) assumes an arc iS • kS . We consider
only the case Eq 1(f), the case (g) is analogous.

Definition 1. (Candidate for case Eq. 1(f)) For case Eq. 1(f), a pair (kR, kS)
is a candidate for (iR, iS), iff iR and kR are complementary and for all (k′R, k

′
S) 6=

(kR, kS) with iR < k′R ≤ kR, iS < k′S ≤ kS,

1 +N(iR + 1, kR − 1, iS , kS) +N(kR + 1, kR, kS + 1, kS)
> 1 +N(iR + 1, k′R − 1, k′S , kS) +N(k′R + 1, kR, k

′
S + 1, kS),

With respect to the recursion case (f) a candidate (kR, kS) implies that the in-
stance with kR = jR and kS = jS (i.e. 1 + N(iR + 1, kR − 1, iS , kS) + N(kR +
1, kR, kS + 1, kS)) is the only maximal instance in the maximization of (f).
Furthermore, it implies that none of the cases (a)-(e) in the computation of
N(iR, kR, iS , kS) yields a larger value than case (f).

Lemma 1. For correctness of the recursion of Eq. 1, in the maximization of
Eq. 1(f) it suffices to consider only the set of candidates given above.

Proof. For any non-candidate (kR, kS), there exists some (k′R, k
′
S) with iR− 1 ≤

k′R ≤ kR, iS − 1 ≤ k′S ≤ kS , (k′R, k
′
S) 6= (kR, kS), (k′R, k

′
S) 6= (iR − 1, iS − 1), and

1+N(iR +1, kR−1, iS , kS) ≤ N(iR, k′R, iS , k
′
S)+N(k′R +1, kR, k

′
S +1, kS). (3)

Note that k′R = iR − 1 or k′S = iS − 1 in Eq. 3 occurs when (kR, kS) is not a
candidate due to one of the recursion cases (a)-(e).

Eq. 3 and the triangle inequality imply that for all jR > kR and jS > kS

1 +N(iR + 1, kR − 1, kS , jS) +N(kR + 1, jR, kS + 1, jS)
≤ N(iR, k′R, iS , k

′
S) +N(k′R + 1, kR, k

′
S + 1, kS) +N(kR + 1, jR, kS + 1, jS)

(4)

≤ N(iR, k′R, iS , k
′
S) +N(k′R + 1, jR, k′S + 1, jS).

Non-candidates (kR, kS) for (iR, iS) do not need to be considered in the
recursions of allN(iR, jR, iS , jS), because there exists a recursion case splitting at
(k′R, k

′
S) that yields the same or better score for N(iR, kR, iS , kS). The equivalent

case is considered in the recursion of N(iR, jR, iS , jS) and, due to Eq. 4, yields
a greater or equal score. �

Therefore the recursion case Eq. 1(f) can be updated such that the maxi-
mization runs only over the candidates for this case.

max
iR<kR≤jR
iS<kS≤jS

(kR,kS) candidate for (iR, iS)

(
1 +N(iR + 1, kR − 1, iS , kS)

+N(kR + 1, jR, kS + 1, jS)

)
(5)



Analogously, we define candidates for case Eq. 1(g). The candidate criterion
for Eq. 1(g) is stricter than for Eq. 1(f), since we require that a candidate for
Eq. 1(g) is better than all cases Eq. 1(a)-(e) and (f).

Definition 2 (Expected number of candidates). ψ1(n) denotes the ex-
pected number of candidates k ≤ n + i for some i in cases Eq. 1(d),(e), and
Eq. 2(b). ψ2(n) is the expected number of candidates (kR, kS), kR ≤ iR + n,
kS ≤ iS + n, for some (iR, iS) in cases Eq. 1(f) and (g).

Applying the described sparsification to all non-constant cases in recursions
Eq. 1 and Eq. 2, yields the following.

Theorem 2. N(1, LR, 1, LS) can be computed in O((ψ1(n)+ψ2(n))n4) expected
time, where n = max(LR, LS).

For a theoretical bound on ψ1(n) and ψ2(n), we assume the polymer-zeta
property holds for each one of the RNA sequences that are involved in the inter-
action (with the other RNA sequence). The polymer-zeta property states that
in any long polymer chain the probability of having arc between two monomers
with distance m converges to b.m−c, where b, c > 0 are some constants. For a
polymer as a self-avoiding random walk on a square lattice, it has been known
that c > 1 [35]. The exponent c for the denaturation transition of DNA in both
2D and 3D models is found to be larger than 2 [36]. Since RNA folds similar
to other polymers, one can assume that RNA folding obeys the polymer-zeta
property; i.e. the probability that a structure is formed over the subsequence of
length m converges to b.m−c, where c > 1. Although the property is not proven
for RNA molecules, there is empirical evidence, as shown by Wexler et al. [18],
that a version of polymer-zeta property holds for RNA molecules as well.

Lemma 2. Assume that the two interacting RNAs independently satisfy the
polymer-zeta property with c > 1, i.e. there exist constants b > 0 and c > 1 such
that the probability for any internal base pair i • (i+m) is bounded by b ·m−c -
even when two RNAs interact. Then ψ1(n) = O(1) and ψ2(n) = O(n).

Proof. ψ1(n) = O(1) follows from Wexler et al. [18]. For ψ2(n) = O(n), consider
all candidates (kR, kS) for (iR, iS) and case Eq. 1(f). (Case Eq. 1(g) is sym-
metric.) Note that in Eq. 1(f), iR • kR. For a fixed kS analogously to Wexler
et al. [18], the expected number of kR with iR • kR is b

∑n
i=1 i

−c < b
∑∞

i=1 i
−c

which converges to a constant for c > 1. Hence for each of the O(n) possible
values of kS , kR takes only a constant number of different values and hence on
average we have O(n) such candidates. �

Space efficient strategy The space complexity of the algorithm can be reduced
from O(n4) to O(n3 +ψ(n)n2) as follows. The matrices NR and NS only require
O(n2) space. All cases for the computation of an entry N(iR, jR, iS , jS) only rely
on entries N(i′R, j

′
R, i
′
S , j
′
S) that satisfy one of the following two properties. (i)

j′R ∈ {jR − 1, jR} and j′S ∈ {jS − 1, jS} or (ii) N(i′R, j
′
R, i
′
S , j
′
S) corresponds to



Algorithm: Space efficient evaluation of Eq. 1

precompute matrices NR and NS ;
initialize empty lists for candidates ;
for jR = 1..LR do

allocate and init matrix slice N(·, jR, ·, ·) ;
for jS = 1..LS, iR = jR..1, iS = jS ..1 do

compute N(iR, jR, iS , jS) ;
if jR is candidate for iR and Eq. 1(d) then

store NR(iR + 1, jR − 1, iS , jS) in list for iR and Eq. 1(d)
else if jS is candidate for iS and Eq. 1(e) then

store NS(iS + 1, jS − 1) in list for iS and Eq. 1(e)
else if candidate for Eq. 1(f) then

store N(iR + 1, jR − 1, iS , jS) in list for (iR, iS) and Eq. 1(f)
else if candidate for Eq. 1(g) then

store N(iR, jR, iS + 1, jS + 1) in list for (iR, iS) and Eq. 1(g)
end

end
free matrix slice N(·, jR − 1, ·, ·) ;

end

some candidate of the respective case, i.e. in case Eq. 1(d) j′R + 1 is a candidate
for i′R − 1 = iR, in case (e) j′S + 1 is a candidate for i′S − 1 = iS , in case (f)
(j′R + 1, j′S) is a candidate for (i′R− 1, i′S) = (iR, jR), and in case (g) (j′R, j

′
S + 1)

is a candidate for (i′R, i
′
S − 1) = (iR, jR). As shown in the following algorithm,

all values that satisfy (i) can be stored in a three dimensional matrix and all
values that satisfy (ii) can be stored in candidate lists of length ψ(n) for each of
the O(n2) instances of (iR, iS).

Note that, in the pseudocode, we maintain two three dimensional matrices,
namely N(·, jR, ·, ·) and N(·, jR−1, ·, ·) during the computation of the values for
jR. In practice, we save half of this memory, because any entry N(·, jR− 1, ·, js)
can be freed as soon as all N(·, jR, ·, jS) are computed.

Trace-Back We describe the recursive trace-back starting from a matrix entry
(iR, jR, iS , jS). Computing the Trace-back involves some recomputation. First,
the entire matrix slice N(·, jR, ·, jS) is recomputed unless it is already in memory.
This requires access to only entries in the same matrix slice and candidates.
Then, the best case in the recursion for N(iR, jR, iS , jS) is identified. In cases
(a)-(c), we recurse to the respective entry. In cases (d)-(g), which split in a first
and second entry, we first recurse to the second one, which is in the same matrix
slice. Then, we free the memory for the current matrix slice and recurse to the
first entry, which will cause recomputation. Since each entry is recomputed at
most once, the trace-back does not affect the asymptotic complexity.

3.2 Sparsification for Minimizing Free Energy

Alkan et al. [1] describe minimization of the free energy of RNA-RNA-interaction
based on a simple stacked-pair energy model assuming there are no pseudoknots,
crossing bonds, and zigzags in the joint structure. Here we discuss an algorithm



for RNA-RNA interaction free energy minimization on the same type of inter-
actions based on the interaction energy model of Chitsaz et al. [2]. Since the
general recursive structure of this algorithm is identical to base pair maximiza-
tion, our sparsification technique can be applied to reduce their time and space
complexity in the same way. The exact recursions of our sparsified free energy
minimization algorithm are given in the appendix. Compared to base pair max-
imization, these recursions distinguish several matrices representing differently
scored substructures. Notably, they are formulated such that all cases that split
an entry (iR, jR, iS , jS) at (kR, kS) are of the same form as cases Eq. 1(f) and (g)
or kR and kS are bounded due to the loop length restriction of the energy model.
Achieving the same space complexity requires one additional consideration. For
assigning correct energy to internal loops formed by interaction arcs, an entry
(iR, jR, iS , jS) can depend on (i′R, j

′
R, iS , jS), where j′R is neither jR nor jR − 1.

However, jR − j′R is still bounded by the maximal loop length ` of the energy
model, i.e. jR − j′R < `. Hence, it suffices to store ` matrix slices (·, j′R, ·, ·) for
jR − ` < j′R ≤ jR.

Theorem 3. The MFE interaction of two RNAs of maximal length n can be
computed in expected time O((ψ1(n) +ψ2(n))n4) and expected space O((ψ1(n) +
ψ2(n))n2 + n3).

4 Experimental Results

For evaluating the effect of sparsification on RNA-RNA-interaction, we imple-
mented three variants of the total free energy minimization algorithm for RNA-
RNA-interaction prediction: the first variant does not perform any sparsifica-
tion, the second employs sparsification for improving the time complexity, and
the third improves both time and space complexity. Below, we first demonstrate
that sparsification leads to a significant reduction of the time and space require-
ments in practice. Then we study the relationship between the sequence length
and the number of candidates per each base on a large set of confirmed RNA-
RNA interactions and study the average time/space behavior of the algorithms.

Since sparsification does not affect the calculated free energy values (i.e.
optimality of the calculated joint free energy of the interaction), the accuracy of
the predicted interactions is identical to previous approaches for general RNA-
RNA-interactions based on the same scoring scheme [1, 2, 32]. As a result, the
reader is referred to Salari et al. [32] for an assessment of sensitivity, positive
prediction value, and F-measure of these methods (which will be identical to
that of the method presented here) on the data set of Kato et al. [37] which
involves five distinct RNA-RNA interactions.

Time and space requirements of total free energy minimization

We applied the three variants of the MFE algorithm to five distinct RNA-RNA
interactions reported by Kato et al. [37], which were used by Salari et al. [32] to



(a) Run-time improvement (b) Space improvement (c) Average No. candi-
dates

Fig. 2. Performance of three variants of the RNA-RNA interaction prediction algorithm
via total free energy minimization, on a set of interactions compiled by Kato et al. [37].
All values for time and space usage are normalized by the usage of the non-sparsified
algorithm, for which absolute time/space usage figures are also given.

assess the accuracy of available RNA-RNA interaction methods with no sparsifi-
cation. Note that the available methods are not capable of handling interactions
involving longer RNAs.

Fig. 2 shows (in absolute terms) time and space usage of the algorithms (with
or without sparsification) on a Sun Fire X4600 server with 2.6 GHz processor
speed. The results show that sparsification significantly improves the perfor-
mance of the algorithms. In fact, Fig. 2 demonstrates that as the RNA sequences
in question get longer, the relative performance of the sparsified algorithms (with
respect to the non-sparsified ones) improve. Although the pure time optimiza-
tion causes a small space overhead due to maintaining the candidate lists, the
time and space optimization not only improve the space utilization, as expected,
but also results in further reduction in running time.

Number of Candidates

The time and space complexity of the (time and space) sparsified RNA-RNA-
interaction prediction algorithm is linearly proportional to the (average) num-
ber of interaction partner candidates per base. Fig. 2(c) shows how the average
number of candidates (kR, kS) change as the lengths of the two RNA sequences
increase. While the non-sparsified algorithms need to consider a quadratic num-
ber of split points (kR, kS), the number of candidates (and hence the number of
split points) is much lower for the sparsified algorithms.

In order to observe the effects of sparsification on a much larger data set
involving longer RNA sequences, we employ the algorithm for RNA-RNA inter-
action prediction which maximizes the number of (internal and external) base
pairs. The data set we use for this purpose includes 43 pairs of ncRNAs and
their known target mRNAs. This set not only includes (i) the data set of Kato
et al. [37], but also (ii) a recently compiled test set of Busch et al. [30] con-
sisting of 18 sRNA-target pairs, as well as (iii) all ncRNA-target interactions of
E.coli from NPinter [38]. Among these interactions 32 are from E.coli, 8 are from
Salmonella typhimurium and 3 are from HIV. Since the majority of the known
ncRNAs bind to their target mRNAs in close proximity of the start codon, we



extracted - as the target region - a subsequence comprising 300nt upstream and
50nt downstream of the first base of the start codon of each mRNA from Gen-
Bank [39]. As a result, the maximum sequence length is 227nt for ncRNAs and
350nt for target mRNAs.

The experimental results on this larger data set confirm that the sparsifica-
tion technique works for a single RNA folding via base pair maximization: the
average number of candidates for those cases is low (roughly 5) as previously
reported by Wexler et al. [18].

The recursion cases Eq. 1(f) and (g) split both RNAs simultaneously at
points (kR, kS). Therefore they dominate the running time of the algorithm.
For these cases, we counted the candidates that were considered during the
computation of (the maximum number of base pairs of) each subsequence pair.
The average number of candidates for different subsequence lengths, both for
ncRNAs and mRNAs are depicted in Fig. 3 - specific cases that correspond
to Eq. 1(f) as well as Eq. 1(g) are provided separately. Note that the average
number of candidates are generally low regardless of the sequence lengths: among
all possible combinations of split points (kR, kS) (respectively in ncRNA and
mRNA), even for the longest subsequences (e.g. ncRNA length lS = 252 and
mRNA length lR = 202), no more than 40 pairs (of the possible 252 x 202 =
50, 904 combinations for this example) are actual candidates on the average.2
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Fig. 3. Average number of candidates as a function of subsequence lengths.

Conclusion
In this paper, we consider the problem of predicting the joint structure of two
interacting RNAs via minimizing their total free energy as a tool for detect-
ing/verifying mRNA targets of regulatory ncRNAs. Earlier approaches to the
2 Note that certain combinations of lR and lS there is no value for the number of

candidates due to the fact that there is no data for lR > 111 and lS > 252 as well
as lR > 202 and lS > 153.



problem either use a restricted interaction model, not covering many known
joint structures, or require significant computational resources for many practi-
cal instances. Here we show that sparsification, a technique that has been applied
to single RNA folding, can be applied to the problem of RNA-RNA interaction
prediction, to significantly improve both the running time and the space utiliza-
tion of these approaches. In fact, by employing a version of the polymer-zeta
property for interacting RNA-structures (a property generally assumed to be
held by many polymers, and has been empirically shown for single RNAs), we
show how to reduce the running time and space of RNA-RNA interaction predic-
tion, from O(n6) time and O(n4) space to O(n4ψ(n)) time and O(n2ψ(n) + n3)
space, for a function ψ(n) = O(n) on average. These theoretical predictions are
verified by our experiments; as a result it is now possible to employ computa-
tional prediction of RNA-RNA interactions to a much wider range of potential
regulatory ncRNAs and their targets.
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APPENDIX

Total number of fragments for different ncRNA and target subsequence lengths
The plot of Fig. 4 shows the total number of fragments for different ncRNA and
target subsequence lengths. The white region on top right of the plot in Fig. 4
(lR > 111 ∧ lS > 252 and lR > 202 ∧ lS > 153) denotes the area that there are
no fragments in our data set.

Number of fragments

 0  50  100  150  200
ncRNA length

 0

 50

 100

 150

 200

 250

 300

 350

ta
rg

et
 le

ng
th

 0

 2e+05

 4e+05

 6e+05

 8e+05

 10e+05

 12e+05

Fig. 4. Total number of fragments for different ncRNA and target lengths.



Sparsification of Energy Minimization RNA-RNA-Interaction Here, we present
our sparsified algorithm for RNA-RNA interaction free energy minimization
based on the interaction energy model of Chitsaz et al. [2]. The minimum free
energy (mfe) joint structure M(iR, jR, iS , jS) derived from one of the seven possi-
ble cases shown in Fig. 4(b). The first two cases are when iR or iS is an unpaired
base. In third case iR interacts with iS , this bond starts a special type of joint
structure denoted by Ib and it is explained in Fig. 4(c). The forth and fifth cases
are when iR or iS is forming intramolecular base pairs. In other possible cases ei-
ther iR•kR is an interaction arc subsuming [iS , kS ] or iS •kS is an interaction arc
subsuming [iR, kR]. The sparsified DP algorithm for free energy minimization,
M(iR, jR, iS , jS), is defined as follows:

M(iR, jR, iS , jS)=max



M(iR + 1, jR, iS , jS) (a)
M(iR, jR, iS + 1, jS) (b)
M Ib(iR, jR, iS , j) (c)

max
iR<k≤jR

k cand. for (iR)

(
MR.b(iR, k)

+M(k + 1, jR, iS , jS)

)
(d)

max
iS≤k<jS

k cand. for (iS)

(
MS.b(iS , k)

+M(iR, jR, k + 1, jS)

)
(e)

max
iR<kR≤jR
iS<kS≤jS

(kR,kS) cand. for (iR, iS)

(
M Is(iR, kR, iS , kS)

+M(kR + 1, jR, kS + 1, jS)

)
(f)

max
iR<kR≤jR
iS<kS≤jS

(kR,kS) cand. for (iR, iS)

(
M Is′(iR, kR, iS , kS)

+M(kR + 1, jR, kS + 1, jS)

)
(g)

(6)

MX(i, j)=max


MX(i+ 1, j) (a)

max
i<k≤j

(k) cand. for (i)

(
MX.b(i, k)

+MX(k + 1, j)

)
(b)

(7)

M Ib(iR, jR, iS , jS) (Fig. 4(c)) is the mfe for the joint structure of [iR, jR] and
[iS , jS ] assuming iR ·jS is an interaction bond, and M Is(iR, jR, iS , jS) (Fig. 4(d))
is the mfe for the joint structure of [iR, jR] and [iS , jS ] assuming iR ◦ jR is an
interaction arc subsuming [iS , jS ]. M Is′ is symmetric to M Is where iS ◦ jS is an
interaction arc subsuming [iR, jR]. In QIsl, [iS , jS ] contains at least interaction
arc and in QIsk, [iS , jS ] contains at least one direct bond. The other auxiliary
matrices are QIll, QIlk, QIkl, and QIkk (Fig. 4(g)). QIll includes all cases where
both [iR, jR] and [iS , jS ] have at least one interaction arc. QIlk (symmetric to
Ikl) includes all cases where [iR, jR] has at least one interaction arc and [iS , jS ]
has at least one direct bond. QIkk includes all cases where both [iR, jR] and
[iS , jS ] have at least one direct bond.
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Fig. 5. a) Recursion cases for MFE single structure. b) Recursion cases for MFE joint
structure. c) Recursion cases for MFE joint structure while iR ◦ jS is a bond. Here
iR < kR ≤ min iR + `, jR and iS < kS ≤ min iS + `, jS w. ` is the maximal loop length.
d) In recursive quantity Is, iR•jR is an interaction arc which subsumes interval [iS , jS ].
The subsumed area contains at least one direct bond or at least one interaction arcs.
e) Recursion cases for Isl or Isk which extract the interaction arc iR • jR. f) In Ikk,
Ikl, Ilk, or Ill, if the terminal point iR (or jS) is not an end point of interaction
bond or arc, some recursions should be applied to extract the internal structure. g)
Recursion for joint structures that has direct interactions on both subsequences (Ikk),
direct interaction on one subsequence and interaction arc on the other (Ikl and Ilk
which are symmetric), and interaction arcs on both subsequences (Ill).


