@article{Rodrigues2022, user = {mmann}, title = {Temporal annotation of high-resolution intra-annual wood density information of Eucalyptus urophylla and its correlation with hydroclimatic conditions}, journal = {Dendrochronologia}, volume = {74}, pages = {125978}, year = {2022}, issn = {1125-7865}, doi = {https://doi.org/10.1016/j.dendro.2022.125978}, author = {Gleice Gomes Rodrigues and Martin Raden and Luciana Duque Silva and Hans-Peter Kahle}, abstract = {Three different Eucalyptus urophylla clones grown under two different spacing regimes in an experimental site in the state of São Paulo, Brazil, were analyzed to test effects of clone identity, spacing, cambial age and hydroclimatic conditions on high-resolution intra-annual wood density profiles. Since distinct periodic tree-ring boundaries were not visible on the stem cross-sectional surfaces, finding an alternative method for synchronization of density profiles was crucial for the analysis. The challenge was to generate intra- and inter-tree synchronized density profiles that possess high amplitude variation and low phase variation. Thus, we developed a protocol and workflow of how such high-resolution density profiles can be spatially aligned and temporally annotated to enable correlation analyses between trees and with time series of environmental stimuli. Mean wood density was significantly different between clones, but not between the spacings. Wood density increased significantly with increasing cambial age and decreasing growth rate. Principal component analysis showed that the overall variability in the temporally annotated density profiles is dominated by a highly significant common signal. We found significant negative correlation values for precipitation, indicating that water supply is the main driver of stem growth at the site, and providing evidence for the correctness of the method. The developed workflow can easily be adjusted to the analysis of other intra-annual tree-ring features like anatomical xylem cell traits or isotopic signals in the wood. It has a large potential to be used as a general guideline for the synchronization of intra-annual tree-ring traits, especially when distinct tree-ring boundaries are missing, as it is often the case under tropical climatic conditions. The workflow supports the development of spatially aligned and temporally annotated chronologies under non-annual growth rhythms.} }