Supplemental Material to:

Andreas Richter and Rolf Backofen. Accessibility and conservation: General features of bacterial small RNA-mRNA interactions? RNA Biology 2012; 9(7); http://dx.doi.org/10.4161/rna.20294

http://www.landesbioscience.com/journals/rnabiology/article/20294/

Supplementary Material

Accessibility and conservation - general features of bacterial small RNA-mRNA interactions?

Andreas S. Richter and Rolf Backofen

This supplement contains:

Supplementary Tables S1 to S3 Supplementary Figure S1 Supplementary References

Supplementary Tables

Table S1: Dataset of interactions in *E. coli* used in this study. Target interaction site positions are given as distance to the annotated translation start site (TLS) and to the transcription start site (TSS) used in this study. Genes that are located within an operon are indicated. Interactions are given in bracket notation, where the '&' symbol concatenates the sRNA with its target, matching brackets represent base pairs between the two sequences and dots represent unpaired positions. 'Compens. mutations' indicates that the sRNA-target interaction was validated by the introduction of compensatory mutations in sRNA and target.

sRNA	Target	sRNA site	Target site	Interaction	Validation	Ref.
			[TLS] [TSS]			
ArcZ	rpoS	66 – 91	-12099 / 449 - 470	((((((((((.((((.((((((((())))))))))))	compens. mutations	20
ChiX	chbC	38 - 58	-69 – -49 / [operon]	((((((((((((((((((((((((((((((())))))))	sRNA mutations	22
ChiX	chiP	45 – 56	-198 / 52 - 63	((((((((((((((((k)))))))))))))))))))))	compens. mutations	31
ChiX	dpiB	46 – 57	-3726 / 27 - 38	(((((((((((((((((()))))))))))))))))))	compens. mutations	19
CyaR	luxS	35 – 49	-12 - 3 / 134 - 148	$(\ldots (((((((((((((k)))))))))))))))))))))))$	compens. mutations	8
CyaR	nadE	35 - 49	-11 - 3 / 20 - 33	((((((((((((()))))))))))))))))))))))	compens. mutations	8
CyaR	ompX	38 - 48	-9 - 2 / 231 - 241	(.(((((((((((()))))))))))))))))))))))))	compens. mutations	8
CyaR	yqaE	31 - 50	-4 - 16 / 54 - 73	(.(.((((((((((緣))))))))))))))	compens. mutations	8
DsrA	hns	31 - 43	7 – 19 / 43 – 55	(((((((((((((((((()))))))))))))))))))	compens. mutations	16
DsrA	rpoS	8-32	-11995 / 450 - 474	(.((((((((((((((((((((((((((((())))))))	compens. mutations	17
FnrS	fol E	1 - 12	-2715 / 121 - 133	(((((((((((((()))))))))))))))))))))))	sRNA mutations	10
FnrS	fol X	1 – 6	-72 / 18 - 23	((((((&)))))))	sRNA mutations	10
FnrS	gpmA	38 - 57	-13 - 4 / 75 - 91	(((((((((((((((((((()))))))))))))))	compens. mutations	10
FnrS	maeA	31 – 65	-21 - 10 / 13 - 43	(((.(.(((((.(((.((((((((())))))))))))))	compens. mutations	10
)))))))))))))))))))))))))))))		
FnrS	sodB	1 - 8	13 – 20 / 66 – 73	((((((((((((()))))))))))	compens. mutations	10
GcvB	sstT	64 – 99	-34 - 2 / 50 - 85	(((.((((.(.((((((((((compens. mutations	30
))).))))))))))))))))))))))))))))))		
GlmZ	glmS	150 – 169	-4022 / 118 - 136	(((((((((((((((((((((((()))))))))))))	compens. mutations	38
MicA	ompA	8 - 24	-216 / 153 - 168	((((.((((((((((((((((()))))))))))))))))	compens. mutations	37
MicA	phoP	6 – 31	-15 - 8 / 30 - 52	((((((((((((((((((((((((((((((())))))))	compens. mutations	7
MicC	ompC	1 - 30	-4115 / 47 - 73	((((((((((((((((((((((((((((((((())))))	compens. mutations	6

2

(Continued)										
sRNA	Target	sRNA site	Target site [TLS] [TSS]	Interaction	Validation	Ref.				
MicF	ompF	1 – 33	-16 - 10 / 95 - 120	(((.(((((((((((((((((((())))))))))	in vitro probing	34				
OmrA	cirA	2 - 24	-3510 / 126 - 151	((((((((((((((((((((((((((())))))))))	compens. mutations	13				
OmrA	csgD	2 - 20	-7961 / 69 - 87	((((((((((((((((((((((((((((((((((((compens. mutations	14				
OmrA	ompR	1 – 19	-2911 / 134 - 152	(((((((((((((((((((((((((((((())))))))	compens. mutations	13				
OmrA	ompT	1 – 33	-12 - 20 / 20 - 51	(((((((((((((((((((((((((())))))))))))	compens. mutations	13				
	1))))).))))).))).))))))))	1					
OmrB	cirA	2 - 24	-3510 / 126 - 151	((((((((((((((((((((((((((((((())))))))	compens. mutations	13				
OmrB	csgD	2 - 20	-7961 / 69 - 87	((((((((((((((((~~))))))))))))))))))))	compens. mutations	14				
OmrB	ompR	1 – 19	-2911 / 134 - 152	((((((((((((((()))、)、)、)))))))))))	compens. mutations	13				
OmrB	ompT	1 - 32	-12 - 20 / 20 - 51	((((((((((((((((((((())))))))))))))))))	compens. mutations	13				
	-))))))))))))))))))))))))))))	-					
OxyS	fhlA	22 - 30	34 - 42 / 78 - 86	(((((((((((((()))))))))))))))))))))))	compens. mutations	1				
		98 - 104	-159 / 30 - 36	(((((((a))))))))	_					
RprA	rpoS	33 - 62	-11794 / 452 - 475	((((((((((())))))))))))))))))))))	compens. mutations	18				
RyhB	cysE	34 - 46	-4 - 9 / 116 - 128	((((((((((((((((k)))))))))))))))))))))	compens. mutations	33				
RyhB	fur	38 – 76	-9647 / 84 - 133	(((((((((((, (((((, ((((, (((, ())))))))	compens. mutations	39				
))).)))))).)).)))))))))))))))))	_					
RyhB	iscS	40 - 68	-26 – 3 / [operon]	((((((((()))))))))))))))))))))))))	in vitro probing	9				
RyhB	shiA	44 - 55	-5948 / 19 - 30	((((((((((((((())))))))))))))))))))))))	compens. mutations	28				
RyhB	sodB	38 - 46	-4 - 5 / 50 - 58	(((((((((((()))))))))))))))))))))))))))	in vitro probing	12				
SgrS	manX	159 – 172	24 - 37 / 137 - 150	((((((((((((((())))))))))))))))))))))	compens. mutations	32				
SgrS	ptsG	168 – 187	-289 / 213 - 232	((((((((((((((((((((((((((())))))))))	compens. mutations,	15,32				
					in vitro probing					
Spot42	galK	20 - 61	-19 – 21 / [operon]	((((.(.(((((((((((((((((()))))))))))))	in vitro probing	21				
)))))))),))),.)))),)))))))))))))))))						
Spot42	gltA	4 – 13	-131122 / 310 - 319	(((((((((((((()))))))))))))))))))))))))	sRNA mutations	3				
Spot42	nanC	1 - 17	-3316 / 395 - 412	(((((((((((((((((((((((()))))))))))))	compens. mutations	3				
Spot42	srlA	20 - 34	-151 / 90 - 104	((((((((((((((((())))))))))))))))))))))	compens. mutations	3				
Spot42	sthA	48 – 55	15 – 22 / 47 – 54	(((((((((&)))))))))	compens. mutations	3				

ω

	(Continued)									
sRNA	Target	sRNA site	Target site In		Interaction	Validation				
			[TLS]	[TSS]						
Spot42	xylF	1 – 33	2 - 40	/ 64 – 102	((.((((.(((((((((((((()))))))))))))))))	sRNA mutations	3			
)))))))))))))))))))))))))))))))))))					

4

Table S2: Dataset of interactions in *Salmonella* used in this study. Target interaction site positions are given as distance to the annotated translation start site (TLS) and to the transcription start site (TSS) used in this study. Genes that are located within an operon are indicated. Interactions are given in bracket notation, where the '&' symbol concatenates the sRNA with its target, matching brackets represent base pairs between the two sequences and dots represent unpaired positions. 'Compens. mutations' indicates that the sRNA-target interaction was validated by the introduction of compensatory mutations in sRNA and target.

sRNA	Target	sRNA site	Target site	Interaction	Validation	Ref.
			[TLS] [TSS]			
ArcZ	sdaC	62 - 71	-133 / 67 - 77	(((((((((((((())))))))))))	compens. mutations	25
ArcZ	STM3216	63 – 87	-255 / 67 - 87	(((((((((((((((((((((((((((((())))))))	compens. mutations	25
ArcZ	tpx	66 - 83	10-26 / 44-60	((((((())))))))	compens. mutations	25
ChiX	chbC	35 – 55	-66 – -46 / [operon]	((((((((((((((((((((((((((())))))))))	mRNA mutations	11
ChiX	chiP	42 - 53	-198 / 52 - 63	((((((((((((((())))))))))))))))))))))))	compens. mutations	11
CyaR	ompX	35 - 66	-30 - 3 / 210 - 242	((((((((((((((((((((((((&	compens. mutations	24
))).))))))))))))))))))))))))))))	compens. mutations	24
GcvB	argT	75 – 91	-5742 / 90 - 105	(((((((((((((((((((((()))))))))))))))	in vitro probing	35
GcvB	cycA	72 - 85	-3419 / 51 - 66	((((((((((((((((((((())))))))))))))))	in vitro probing	36
		138 – 161	-248 / 61 - 77	((((((((((((((((((((((((((((()))))))))		
GcvB	dppA	65 - 82	-3014 / 136 - 152	((((((((((((((((((((((((())))))))))))	in vitro probing	35
GcvB	gltI	65 – 76	-3827 / 70 - 81	((((((((((((((())))))))))))))))))))))))	in vitro probing	35
GcvB	livJ	63 - 87	-5128 / 54 - 77	((((((((((((((((((((((((((((((())))))))	in vitro probing	35
GcvB	livK	65 – 77	-2917 / 370 - 382	(((((((((((((((((k))))))))))))))))))))	in vitro probing	35
GcvB	oppA	65 – 89	-8 - 16 / 505 - 528	((((((((((((((((((((((((((((((())))))))	in vitro probing	35
GcvB	STM4351	69 – 79	-5443 / 12 - 23	((((((((((((()).))))))))))	in vitro probing	35
InvR	ompD	33 - 42	56 - 65 / 122 - 131	(((((((((((()))))))))))	in vitro probing	27
MicA	lamB	8 - 36	-9 – 18 / [operon]	$(((((\ldots ((((((((((((((((((((((((())))))))$	compens. mutations	4
MicC	ompD	1 - 12	67 – 78 / 133 – 144	((((((((((((((())))))))))))))))))))))))	compens. mutations	26
RybB	chiP	1 - 7	12 - 18 / 82 - 88	(((((((&)))))))	compens. mutations	2
RybB	fadL	1 - 8	49 – 56 / 150 – 157	((((((((((a))))))))))	compens. mutations	23
RybB	ompA	1 – 13	21 - 32 / 194 - 205	(((((((((((((((()))))))))))))))))))))))	compens. mutations	23
RybB	ompC	1 - 10	-5041 / 38 - 47	(((((((((((()))))))))))	in vitro probing	2,23
RybB	ompD	1 – 9	18 - 26 / 84 - 92	((((((((((((((())))))))))))))))))))))	compens. mutations	2,23
		1 - 10	10-20 / 76-86	(((((((((((((((()))))))))))))))))))))		

	(Continued)								
sRNA	Target	sRNA site	ite Target site I		Interaction	Validation	Ref.		
			[TLS]	[TSS]					
RybB	ompF	1 – 9	-4638 /	67 – 75	(((((((((((())))))))))	compens. mutations	23		
RybB	ompN	1 – 16	5-20 /	80 - 95	((((.((((((((((((((((())))))))))))))))	compens. mutations	5		
RybB	ompS	1 - 14	7-20 /	73 – 86	((((((((((((((((()))))))))))))))))))	sRNA deletion mutant	23		
RybB	ompW	1 – 13	3-20 /	32 – 49	(((((((((((((((((((()))))))))))))))))	compens. mutations	23		
RybB	tsx	1 – 16	-267 /	86 - 105	((((((((((((((()))))))))))))))))))))	compens. mutations	23		

6

Table S3: Dataset of non-functional interactions used in this study. Interaction site positions in the mRNA are given as distance to the annotated translation start site. Interactions are given in bracket notation, where the '&' symbol concatenates the sRNA with its target, matching brackets represent base pairs between the two sequences and dots represent unpaired positions. The last column gives for each non-functional interaction the true target of corresponding verified interaction.

Organism	sRNA	mRNA	sRNA site	mRNA site	Predicted non-functional interaction	True target
E. coli	ArcZ	ypdB	26 - 51	-133112	((((((((((((((((((((((())))))))))))	rpoS
E. coli	ChiX	ltaE	4 - 24	-371351	(((((((((((((((((((((((((((())))))))))	chbC
E. coli	ChiX	ybaK	12 - 23	-144133	(((((((((((((k))))))))))))))))))))))))	chiP
E. coli	ChiX	ybaK	2 – 13	-134123	((((((((((((((((((())))))))))))))))))	dpiB
E. coli	CyaR	hofO	69 - 83	-182168	$(\ldots (((((((((((((((())))))))))))))))))))$	luxS
E. coli	CyaR	livF	66 - 80	-127 – -114	$(((\ldots ((((((((((((((((()))))))))))))))))$	nadE
E. coli	CyaR	pabC	60 – 79	-7 - 13	$((((\ldots \ldots ((((((((((((((((())))))))))))))$	yqaE
E. coli	CyaR	rlpA	49 – 59	-256246	(.((((((((((())))))))).)	ompX
E. coli	DsrA	barA	73 – 85	34 - 46	((((((((((((((((((((())))))))))))))))	hns
E. coli	DsrA	ykgE	56 - 83	-5827	$((((\ldots (((((((((((((((((((((((((((((((($	rpoS
E. coli	FnrS	lspA	110 - 115	-132127	((((((&))))))	folX
E. coli	FnrS	rmuC	86 - 105	-12 - 5	((.((((((((((((((((((((((((((((((((((gpmA
E. coli	FnrS	rsmH	15 - 22	132 – 139	((((((((((k)))))))))	sodB
E. coli	FnrS	ubiE	27 - 38	-6048	((((((((((((((())))))))))))))))))))))	folE
E. coli	FnrS	yaeI	77 – 116	-115 – -73	((.(((((((.((((((((((((()))))))))	maeA
))))))))))))))))))))))))))))	
E. coli	GcvB	yfeY	6 - 41	-44 – -9	((.(.((((((((((((((((((sstT
)).)))))))))).))).))))))	
E. coli	GlmZ	gabT	65 - 84	-174 – -156	$((((\ldots,((((((((((((((((((((())))))))))))$	glmS
E. coli	MicA	aceF	45 - 61	-380365	((((((((((((((((((((((())))))))))))))	ompA
E. coli	MicA	tauC	36 - 68	-146113	(((((.(((())))))))))))))))))))))))	phoP
E. coli	MicC	yiiD	41 - 70	-5024	(((((((((((((((((((((((((((())))))))	ompC
E. coli	MicF	ileS	56 - 90	-353316	((((((((((((((((&	ompF
					$) \dots)))))))) \dots)))) \dots))))$	
E. coli	OmrA	gspM	43 – 75	-4110	(.(((((((((((((((((((((((((((((((((((ompT
E. coli	OmrA	insI	27 - 45	-18 – 1	((((((((((((((((((((())))))))))))))	ompR
E. coli	OmrA	marA	25 - 47	-7045	((((((((((((((((((((((((((((((((((((cirA

					(Continued)	
Organism	sRNA	mRNA	sRNA site	mRNA site	Predicted non-functional interaction	True target
E. coli	OmrA	ygcO	64 - 82	-4123	((((.(((((((((((((((((())))))))))))))))	csgD
E. coli	OmrB	hofC	36 - 54	-59 – -41	(((((.(.((.((((((((((())))))))))))))))	ompR
E. coli	OmrB	mcbA	31 - 63	-5623	((((((((((((((((((((((((((((((((((((csgD
E. coli	OmrB	pyrB	35 - 57	-146121	((((((((((((((((((((((((((((((((((((cirA
E. coli	OmrB	yfdQ	35 - 66	-8554	((((((((((((((((((((((((((((((((((ompT
E. coli	OxyS	apaH	7 – 13	-3024	(((((((&)))))))	fhlA
E. coli	OxyS	caiT	73 - 81	76 - 84	((((((((((((((())))))))))))))))))))))))	fhlA
E. coli	RprA	paaC	67 – 96	-37 – -14	(((((((((.(((((((((((())))))	rpoS
E. coli	RyhB	sdhC	48 - 60	-161 – -149	((((((((((((((((())))))))))))))))))))))	cysE
E. coli	RyhB	yagV	77 - 85	-397 – -389	((((((((((((((())))))))))))))))))))))))	sodB
E. coli	RyhB	yeaW	3 – 37	-131 – -75	(.((((((((((((((((((((((((((())))))))	fur
))))))).))))))))))))))))))))	
E. coli	RyhB	yicS	1 - 29	-180152	$(((\ldots (\ldots (\ldots ((((((((((((((((((((())))))))$	iscS
E. coli	RyhB	yigE	77 - 88	-188177	((((((((((((((((((())))))))))))))))))	shiA
E. coli	SgrS	hlyE	66 – 79	43 – 56	(((((((((((((((()))))))))))))))))))))	manX
E. coli	SgrS	putP	64 - 83	-121102	((.((((((.(((((((((((((((())))))))))))	ptsG
E. coli	Spot42	aat	43 – 59	-2811	((((((((((((((((((((((())))))))))))))	nanC
E. coli	Spot42	arnT	80 - 89	-37 – -28	(((((((((((((k))))))))))))))))))))))))	gltA
E. coli	Spot42	cynX	82 - 89	18 - 25	(((((((((()))))))))	sthA
E. coli	Spot42	rhlE	65 – 106	-401	((.((((((((((((((((((((((((())))))))))	galK
)))))).))))).)))).)))))))))))))))))))	
E. coli	Spot42	xylH	61 – 75	-123109	(((((((((((((((((((((()))))))))))))))	srlA
E. coli	Spot42	yggU	64 – 96	15 – 53	(((((((((((((((((((((((())))))))))))	xylF
))))),))))))),,)))),,)))))))))))	
Salmonella	ArcZ	STM3651	92 – 116	-125105	$((\ldots ((((((\ldots ((((((((((((((((((()))))))))$	STM3216
Salmonella	ArcZ	pduJ	73 - 82	-178 – -168	(((((((((((((((((()))))))))))))))))))	sdaC
Salmonella	ArcZ	purA	5 - 22	108 - 124	$(((((((\dots \dots ((((a))))))\dots ()))))))$	tpx
Salmonella	ChiX	atpB	4 - 24	-177 – -157	(((((((((((((((((((((((((((())))))))))	chbC
Salmonella	ChiX	ybaK	2 – 13	-135124	((((((((((((((((((())))))))))))))))))	chiP
Salmonella	CyaR	STM1787	1 – 32	-11078	$((((\ldots,((((\ldots,(((((\ldots,(((((((((((((((())))))))$	ompX

Richter and Backofen

					(Continued)	
Organism	sRNA	mRNA	sRNA site	mRNA site	Predicted non-functional interaction	True target
Salmonella	GcvB	STM1049	57 - 80	-165 – -149	((((((((((((((((((&)))))))))))))))	cycA
Salmonella	GcvB	STM2598	49 - 60	-169158	(((((((((((((((((()))))))))))))))))))	gltI
Salmonella	GcvB	STM2768	20 - 37	-142126	((((((((((((((((((((((((())))))))))))	dppA
Salmonella	GcvB	STM4002	49 – 65	-159 – -144	(((((((((((((((((((((()))))))))))))))	argT
Salmonella	GcvB	STM4032.2N	36 - 60	-20 - 4	((((((((((((((((((((((((((((((((())))))	livJ
Salmonella	GcvB	STM4032.2N	37 – 61	-21 – 3	(((((((((((((((((((((((((((()))))))))))	oppA
Salmonella	GcvB	flgJ	32 - 44	-139 – -127	(((((((((((((((((()))))))))))))))))))))	livK
Salmonella	GcvB	rfaJ	49 - 62	-422407	((((((((((((((((((((((())))))))))))))	cycA
Salmonella	GcvB	sspH2	40 - 50	-112101	((((((((((((((())))))))))))))))))))))))	STM4351
Salmonella	InvR	dps	50 - 59	63 – 72	((((((((((((((((())))))))))))))))))))))	ompD
Salmonella	MicA	STM0952	41 – 69	-5226	((((.((((((((((((((((((((((((((((((((lamB
Salmonella	MicC	yaeH	92 - 103	19 – 30	(((((((((((((((((((((()))))))))))))))	ompD
Salmonella	RybB	STM1632	32 - 40	-4032	(((((((((((((()))))))))))))))))))))))))	ompF
Salmonella	RybB	STM1636	30 - 45	-192173	((((((((((((((((((((((())))))))))))))	tsx
Salmonella	RybB	STM3356	62 - 77	3 – 18	((((.((((((((((((((((((())))))))))))))	ompN
Salmonella	RybB	pmrF	66 – 79	60 – 73	(((((((((((((((()))))))))))))))))))))	ompS
Salmonella	RybB	pps	19 - 28	69 – 79	((((((((((((((((()))))))))))))))))))))	ompD
Salmonella	RybB	pyrG	44 – 56	24 - 35	((((((((((((((((((((((((((((((((((((ompA
Salmonella	RybB	<i>rstB</i>	65 - 74	-78 – -69	((((((((((((((((())))))))))))))))))))))	ompC
Salmonella	RybB	secF	20 - 32	131 – 148	(((((((((((((((()))))))))))))))))))))	ompW
Salmonella	RybB	stfC	36 - 42	45 - 51	(((((((\()))))))))	chiP
Salmonella	RybB	wcaG	32 - 40	44 - 52	((((((((((((((())))))))))))))))))))))))	ompD
Salmonella	RybB	yabI	45 - 52	92 - 99	((((((((&)))))))))	fadL

Organism	RefSeq genome accession number
Citrobacter koseri	NC_009792
Citrobacter rodentium	NC_013716
Cronobacter sakazakii	NC_009778
Enterobacter sp. 638	NC_009436
Escherichia coli K-12	NC_000913
Escherichia fergusonii	NC_011740
Klebsiella pneumoniae	NC_009648
Pectobacterium carotovorum	NC_012917
Photorhabdus luminescens	NC_005126
Proteus mirabilis	NC_010554
Salmonella Typhimurium	NC_003197
Salmonella Typhi	NC_003198
Serratia proteamaculans	NC_009832
Shigella boydii	NC_007613
Shigella dysenteriae	NC_007606
Shigella flexneri	NC_004337
Shigella sonnei	NC_007384
Sodalis glossinidius	NC_007712
Yersinia enterocolitica	NC_008800
Yersinia pestis	NC_003143
Yersinia pseudotuberculosis	NC_006155

Table S4: Organisms used in this study and the respective NCBI RefSeq database genome accession numbers.²⁹

Supplementary Figures

Figure S1: Positions of the 5' end of all target sites from *E. coli* and *Salmonella* vs. the lengths of the 5' UTR of the target genes. Target site positions are given as distance to the annotated translation start site. All genes that are located within an operon are excluded. Target site location and 5' UTR length show modest negative correlation (Spearman's correlation coefficient $\rho = -0.54$).

Figure S2: Comparison of target gene accessibility between a functional (orange) and two nonfunctional data sets (blue and light blue). The plots show the accessibility of (**A**) the full 5' UTR and 150 nt CDS sequence, and (**B**) the interaction site only, respectively. In non-functional data set 2 (light blue), each non-functional target was not selected by the interaction free energy, but by the overall accessibility, which had to be as similar as possible to the overall accessibility of the corresponding true target. For both negative data sets, the difference in mean accessibility between functional and non-functional targets is larger and much more significant for the interaction sites only than for the whole sequence. All *p*-values were calculated by Wilcoxon rank sum test.

Figure S3: Comparison of the interaction site accessibility between functional (orange) and nonfunctional (blue) interactions. The plot shows the joint probability of being unpaired (PU^*) of all interaction seeds, i.e., all perfectly matching sub-interactions, of length two to ten. Interaction seeds in the experimentally verified interactions are significantly more accessible than in the non-functional interactions ($p < 4.8 \times 10^{-19}$ calculated by Wilcoxon rank sum test).

					10							20									
seq1	U <mark>G</mark>	AΑ	A	С	С	G	U	G	С	A	С	A	U	&	A	С	A	С	G	G	G
seq2	UG	ΑA	A	С	С	G	U	G	С	A	С	A	U	&	A	U	G	С	G	С	G
seq3	U <mark>G</mark>	ΑA	A	С	U	G	U	G	С	A	С	A	U	&	A	С	С	С	G	G	G
structure	* *	* *	*	(((((*	*	*	*	*	&	*)))))	*
bp types	* *	* *	*	1	2	1	2	2	*	*	*	*	*	&	*	2	2	1	2	1	*

Figure S4: Schematic illustration of different interaction base pairings between two interacting RNAs. The sequence alignment shows two multiple RNA alignments concatenated by the linker symbol '&'. The structure contains round brackets indicating intermolecular base pairs between the two RNAs and stars indicating positions that do not participate in the interaction. The number of different interaction base pairings is given for each interaction position. For example, alignment columns 9 and 19 support the base pair U-A in *seq1* and G-U in *seq2*, whereas *seq3* contains a mismatch. Consequently, alignment columns 9 and 19 contain two different base pair combinations. The average number of different interaction base pair combinations is 1.6 in this example.

Supplementary References

- [1] L. Argaman and S. Altuvia. *fhlA* repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. *Journal of Molecular Biology*, 300(5):1101–12, 2000.
- [2] R. Balbontín, F. Fiorini, N. Figueroa-Bossi, J. Casadesús, and L. Bossi. Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in *Salmonella enterica*. *Mol Microbiol*, 78(2):380–94, 2010.
- [3] C. L. Beisel and G. Storz. The base-pairing RNA Spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in *Escherichia coli*. *Mol Cell*, 41(3):286–97, 2011.
- [4] L. Bossi and N. Figueroa-Bossi. A small RNA downregulates LamB maltoporin in Salmonella. Mol Microbiol, 65(3):799–810, 2007.
- [5] M. Bouvier, C. M. Sharma, F. Mika, K. H. Nierhaus, and J. Vogel. Small RNA binding to 5' mRNA coding region inhibits translational initiation. *Mol Cell*, 32(6):827–37, 2008.
- [6] S. Chen, A. Zhang, L. B. Blyn, and G. Storz. MicC, a second small-RNA regulator of Omp protein expression in *Escherichia coli*. J Bacteriol, 186(20):6689–97, 2004.
- [7] A. Coornaert, A. Lu, P. Mandin, M. Springer, S. Gottesman, and M. Guillier. MicA sRNA links the PhoP regulon to cell envelope stress. *Mol Microbiol*, 76(2):467–79, 2010.
- [8] N. De Lay and S. Gottesman. The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol, 191(2):461–76, 2009.
- [9] G. Desnoyers, A. Morissette, K. Prévost, and E. Massé. Small RNA-induced differential degradation of the polycistronic mRNA *iscRSUA*. *EMBO J*, 28(11):1551–61, 2009.
- [10] S. Durand and G. Storz. Reprogramming of anaerobic metabolism by the FnrS small RNA. *Mol Microbiol*, 75(5):1215–31, 2010.
- [11] N. Figueroa-Bossi, M. Valentini, L. Malleret, F. Fiorini, and L. Bossi. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. *Genes Dev*, 23(17):2004–15, 2009.
- [12] T. A. Geissmann and D. Touati. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. *EMBO J*, 23(2):396–405, 2004.
- [13] M. Guillier and S. Gottesman. The 5' end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. *Nucleic Acids Research*, 36(21):6781–94, 2008.
- [14] E. Holmqvist, J. Reimegård, M. Sterk, N. Grantcharova, U. Römling, and E. G. H. Wagner. Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. *EMBO J*, 29(11):1840–50, 2010.
- [15] H. Kawamoto, Y. Koide, T. Morita, and H. Aiba. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. *Mol Microbiol*, 61(4):1013–22, 2006.
- [16] R. A. Lease, M. E. Cusick, and M. Belfort. Riboregulation in *Escherichia coli*: DsrA RNA acts by RNA:RNA interactions at multiple loci. *Proc Natl Acad Sci USA*, 95(21):12456–61, 1998.
- [17] N. Majdalani, C. Cunning, D. Sledjeski, T. Elliott, and S. Gottesman. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. *Proc Natl Acad Sci USA*, 95(21):12462–7, 1998.
- [18] N. Majdalani, D. Hernandez, and S. Gottesman. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. *Mol Microbiol*, 46(3):813–26, 2002.
- [19] P. Mandin and S. Gottesman. A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. *Mol Microbiol*, 72(3):551–65, 2009.
- [20] P. Mandin and S. Gottesman. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. *EMBO J*, 29(18):3094–107, 2010.
- [21] T. Møller, T. Franch, C. Udesen, K. Gerdes, and P. Valentin-Hansen. Spot 42 RNA mediates discoordinate expression of the *E. coli* galactose operon. *Genes Dev*, 16(13):1696–706, 2002.
- [22] M. Overgaard, J. Johansen, J. Møller-Jensen, and P. Valentin-Hansen. Switching off small RNA regulation with trap-mRNA. *Mol Microbiol*, 73(5):790–800, 2009.
- [23] K. Papenfort, M. Bouvier, F. Mika, C. M. Sharma, and J. Vogel. Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA. *Proc Natl Acad Sci USA*, 107(47):20435–40, 2010.

- [24] K. Papenfort, V. Pfeiffer, S. Lucchini, A. Sonawane, J. C. D. Hinton, and J. Vogel. Systematic deletion of *Salmonella* small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. *Mol Microbiol*, 68(4):890–906, 2008.
- [25] K. Papenfort, N. Said, T. Welsink, S. Lucchini, J. C. D. Hinton, and J. Vogel. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. *Mol Microbiol*, 74(1):139–58, 2009.
- [26] V. Pfeiffer, K. Papenfort, S. Lucchini, J. C. D. Hinton, and J. Vogel. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. *Nat Struct Mol Biol*, 16(8):840–6, 2009.
- [27] V. Pfeiffer, A. Sittka, R. Tomer, K. Tedin, V. Brinkmann, and J. Vogel. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the *Salmonella* core genome. *Mol Microbiol*, 66(5):1174–91, 2007.
- [28] K. Prévost, H. Salvail, G. Desnoyers, J.-F. Jacques, É. Phaneuf, and E. Massé. The small RNA RyhB activates the translation of *shiA* mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. *Mol Microbiol*, 64(5):1260–73, 2007.
- [29] K. D. Pruitt, T. Tatusova, W. Klimke, and D. R. Maglott. NCBI Reference Sequences: current status, policy and new initiatives. *Nucleic Acids Research*, 37(Database issue):D32–6, 2009.
- [30] S. C. Pulvermacher, L. T. Stauffer, and G. V. Stauffer. The small RNA GcvB regulates *sstT* mRNA expression in *Escherichia coli*. *J Bacteriol*, 191(1):238–48, 2009.
- [31] A. A. Rasmussen, J. Johansen, J. S. Nielsen, M. Overgaard, B. Kallipolitis, and P. Valentin-Hansen. A conserved small RNA promotes silencing of the outer membrane protein YbfM. *Mol Microbiol*, 72(3):566– 77, 2009.
- [32] J. B. Rice and C. K. Vanderpool. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. *Nucleic Acids Research*, 39(9):3806–19, 2011.
- [33] H. Salvail, P. Lanthier-Bourbonnais, J. M. Sobota, M. Caza, J.-A. M. Benjamin, M. E. S. Mendieta, F. Lépine, C. M. Dozois, J. Imlay, and E. Massé. A small RNA promotes siderophore production through transcriptional and metabolic remodeling. *Proc Natl Acad Sci USA*, 107(34):15223–8, 2010.
- [34] M. Schmidt, P. Zheng, and N. Delihas. Secondary structures of *Escherichia coli* antisense *micF* RNA, the 5'-end of the target *ompF* mRNA, and the RNA/RNA duplex. *Biochemistry*, 34(11):3621–31, 1995.
- [35] C. M. Sharma, F. Darfeuille, T. H. Plantinga, and J. Vogel. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. *Genes Dev*, 21(21):2804–17, 2007.
- [36] C. M. Sharma, K. Papenfort, S. R. Pernitzsch, H.-J. Mollenkopf, J. C. D. Hinton, and J. Vogel. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. *Mol Microbiol*, 81(5):1144–65, 2011.
- [37] K. I. Udekwu, F. Darfeuille, J. Vogel, J. Reimegård, E. Holmqvist, and E. G. H. Wagner. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. *Genes Dev*, 19(19):2355–66, 2005.
- [38] J. H. Urban and J. Vogel. Two seemingly homologous noncoding RNAs act hierarchically to activate *glmS* mRNA translation. *PLoS Biol*, 6(3):e64, 2008.
- [39] B. Večerek, I. Moll, and U. Bläsi. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. *EMBO J*, 26(4):965–75, 2007.