Supplementary Material

Accessibility and conservation in bacterial small RNA-mRNA interactions and implications for genome-wide target predictions

Andreas S. Richter

Rolf Backofen

Accessibility
and
conservation
in
sRNA-mRNA
interactions

Table S1: Data set of interactions in *E. coli* used in this study. Target interaction site positions are given relative to the annotated translation start. Interactions are given in bracket notation, where the "&" symbol concatenates the sRNA with its target, matching brackets represent base pairs between the two sequences and dots represent unpaired positions.

sRNA	Target	sRNA site	Target site	Interaction	Validation	Reference
ArcZ	rpoS	66 – 91	-12099	((((((((((.((((.((((.(((())))))))))))	compensatory mutations	[20]
ChiX	chbC	38 - 58	-69 – -49	(((((((((((((((((((((((((((()))))))))	sRNA mutations	[22]
ChiX	dpiB	46 - 57	-37 – -26	(((((((((((((()))))))))))))))))))))))))	compensatory mutations	[19]
ChiX	chiP	45 – 56	-198	((((((((((((((())))))))))))))))))))))))	compensatory mutations	[30]
CyaR	luxS	35 – 49	-12 - 3	$(\ldots ((((((((((((a))))))))))))))))))))))))$	compensatory mutations	[8]
CyaR	nadE	35 – 49	-11 - 3	$(\dots (((((((((((((a)))))))))))))))))))))))$	compensatory mutations	[8]
CyaR	ompX	38 - 48	-9 - 2	(.(((((((((能))))))).)	compensatory mutations	[8]
CyaR	yqaE	31 – 50	-4 - 16	(.(.(((((((((((&)))))))))))))	compensatory mutations	[8]
DsrA	hns	31 – 43	7 – 19	((((((((((((((((k)))))))))))))))))))))	compensatory mutations	[16]
DsrA	rpoS	8-32	-119 – -95	(.(((((((((、.(((((((((((((()))))))))))))	compensatory mutations	[17]
FnrS	folE	1 - 12	-2715	(((((((((((((()))))))))))))))))))))))	sRNA mutations	[10]
FnrS	folX	1 – 6	-72	((((((&))))))	sRNA mutations	[10]
FnrS	gpmA	38 - 57	-13 - 4	((((((((((((((((((((())))))))))))))	compensatory mutations	[10]
FnrS	maeA	31 – 65	-21 – 10	(((.(.((((((((((((((((((((()))))))))))	compensatory mutations	[10]
)))))))))))))))))))))))))))))))))))))))		
FnrS	sodB	1 - 8	13 - 20	(((((((((a))))))))))	compensatory mutations	[10]
GcvB	sstT	64 – 99	-34 - 2	(((.((((((((((((((((())))))))))))))	compensatory mutations	[29]
))).))))))))))))))))))))))))))))))		
GlmZ	glmS	150 – 169	-4022	(((((((((((((((((((((((()))))))))))))	compensatory mutations	[37]
MicA	ompA	8 - 24	-216	((((.(((((((((((((((((((()))))))))))))	compensatory mutations	[36]
MicA	phoP	6 – 31	-15 – 8	(((((((((((((((((((((((((((((((()))))))	compensatory mutations	[7]
MicC	ompC	1 – 30	-4115	((((((((((((((((((((((((((((((((((((compensatory mutations	[6]
MicF	ompF	1 – 33	-16 – 10	(((.((((((((((((((((((((((())))))))	in vitro probing	[33]
OmrA	cirA	2 - 24	-3510	(((((((((((((((((((((((((((())))))))))	compensatory mutations	[13]
OmrA	csgD	2 - 20	-79 – -61	((((((((((((((((((((((((((())))))))))	compensatory mutations	[14]
OmrA	ompR	1 – 19	-2911	((((((((((((((((((((((((())))))))))))	compensatory mutations	[13]
OmrA	ompT	1 – 33	-12 - 20	((((((((((((((((((((((((()))))))))))))	compensatory mutations	[13]
))))).))))).))).)))))))))))	-	

				(Continued)		
sRNA	Target	sRNA site	Target site	Interaction	Validation	Reference
OmrB	cirA	2 - 24	-3510	(((((((((((((((((((((((((((((((()))))))	compensatory mutations	[13]
OmrB	csgD	2 - 20	-79 – -61	(((((((((((((((((((((((((((())))))))))	compensatory mutations	[14]
OmrB	ompR	1 – 19	-29 – -11	((((((((((((((((((((((((((((((((((((compensatory mutations	[13]
OmrB	ompT	1 - 32	-12 - 20	(((((((((((((((((((((((())))))))))))))	compensatory mutations	[13]
)))))))))),))))))))))		
OxyS	fhlA	22 - 30	34 - 42	((((((((((((())))))))))))	compensatory mutations	[1]
		98 – 104	-15 – -9	(((((((&))))))))		
RprA	rpoS	33 - 62	-117 – -94	(((((((((((()))))))))))))))))))))	compensatory mutations	[18]
RyhB	cysE	34 - 46	-4 - 9	((((((((((((((((((((())))))))))))))))	compensatory mutations	[32]
RyhB	iscS	40 - 68	-26 – 3	(((((((((())))))))))))))))))))))))	in vitro probing	[9]
RyhB	fur	38 - 76	-96 – -47	((((((((((((((((((((()	compensatory mutations	[38]
))).)))))))))))))))))))))))))))))))))		
RyhB	shiA	44 – 55	-5948	(((((((((((((((()))))))))))))))))))))))	compensatory mutations	[28]
RyhB	sodB	38 - 46	-4 - 5	((((((((((((((())))))))))))))))))))))))	in vitro probing	[12]
SgrS	manX	159 – 172	24 - 37	(((((((((((((((())))))))))))))))))))	compensatory mutations	[31]
SgrS	ptsG	168 – 187	-28 – -9	((((((((((((((((((((((((((())))))))))	compensatory mutations,	[15, 31]
					in vitro probing	
Spot42	galK	20 - 61	-19 – 21	((((.(.(((((((((((((((((()))))))))))))	in vitro probing	[21]
))))))))))))))))))))))))))))))))))))		
Spot42	gltA	4 – 13	-131122	(((((((((((((((()))))))))))))))))))))))	sRNA mutations	[3]
Spot42	nanC	1 - 17	-3316	(((((((((((((((((((((((())))))))))))))	compensatory mutations	[3]
Spot42	srlA	20 - 34	-15 – -1	(((((((((((((((((((((((()))))))))))))	compensatory mutations	[3]
Spot42	sthA	48 – 55	15 - 22	((((((((&)))))))))	compensatory mutations	[3]
Spot42	xylF	1 – 33	2 - 40	((.((((.(((((((((((((((((()))))))))))))	sRNA mutations	[3]
)))))))))))))))))))))))))))))))))))		

ω

sRNA	Target	sRNA site	Target site	Interaction	Validation	Reference
ArcZ	sdaC	62 – 71	-133	(((((((((((((()))))))))))))))))))))))))	compensatory mutations	[25]
ArcZ	STM3216	63 - 87	-255	(((((((((((((((((((((((((((((())))))))	compensatory mutations	[25]
ArcZ	tpx	66 - 83	10 - 26	$(((((((\dots,\dots,(((((\&))))))\dots,()))))))$	compensatory mutations	[25]
ChiX	chbC	35 - 55	-6646	((((((((((((((((((((((((((())))))))))	mRNA mutations	[11]
ChiX	chiP	42 - 53	-198	(((((((((((((()))))))))))))))))))))))))	compensatory mutations	[11]
CyaR	ompX	35 - 66	-30 - 3	((((((((((((((((((((((&	compensatory mutations	[24]
))).))))))))))))))))))))))))))))	compensatory mutations	[24]
GcvB	argT	75 – 91	-5742	((((((((((((((((((((((())))))))))))))	in vitro probing	[34]
GcvB	cycA	72 - 85	-34 – -19	((((((((((((((((((((((())))))))))))))	in vitro probing	[35]
		138 – 161	-248	((((((((((((((((((((((((((((()))))))))		
GcvB	dppA	65 - 82	-3014	((((((((((((((((((((((((())))))))))))	in vitro probing	[34]
GcvB	gltI	65 - 76	-3827	(((((((((((((()))))))))))))))))))))))))	in vitro probing	[34]
GcvB	livJ	63 - 87	-5128	((((((((((((((((((((((((((((((())))))))	in vitro probing	[34]
GcvB	livK	65 – 77	-29 – -17	((((((((((((((())))))))))))))))))))))))	in vitro probing	[34]
GcvB	oppA	65 - 89	-8 - 16	(((((((((((((((((((((((((((((((()))))))	in vitro probing	[34]
GcvB	STM4351	69 – 79	-5443	(((((((((((((()).))))))))))))))))))))))	in vitro probing	[34]
InvR	ompD	33 - 42	56 - 65	((((((((((&))))))))))))))))	in vitro probing	[27]
MicA	lamB	8 - 36	-9 – 18	(((((((.((((((((((((((((((()))))))))	compensatory mutations	[4]
MicC	ompD	1 - 12	67 – 78	(((((((((((((()))))))))))))))))))))))))	compensatory mutations	[26]
RybB	chiP	1 - 7	12 - 18	(((((((&)))))))	compensatory mutations	[2]
RybB	fadL	1 - 8	49 – 56	(((((((((k))))))))))	compensatory mutations	[23]
RybB	ompA	1 – 13	21 - 32	(((((((((((&))))))))))	compensatory mutations	[23]
RybB	ompC	1 - 10	-5041	(((((((((((((()))))))))))))))))))))))))	in vitro probing	[2, 23]
RybB	ompD	1 – 9	18 - 26	(((((((((((()))))))))))))))))))))))))))	compensatory mutations	[2, 23]
-	-	1 - 10	10 - 20	((((((((((&))).)))))))		
RybB	ompF	1 – 9	-4638	(((((((((((()))))))))))))))))))))))))))	compensatory mutations	[23]
RybB	ompN	1 – 16	5 - 20	((((.(((((((((((((((()))))))))))))))))	compensatory mutations	[5]
RybB	ompS	1 - 14	7 - 20	(((((((((((((((ac))))))))))))))))))))))))))	sRNA deletion mutant	[23]

Table S2: Data set of interactions in Salmonella used in this study. Target interaction site positions are given relative to the annotated translation start. Interactions are given in bracket notation, where the "&" symbol concatenates the sRNA with its target, matching brackets represent base pairs

between the two sequences and dots represent unpaired positions.

Accessibility and conservation in sRNA-mRNA interactions

	(Continued)					
sRNA	Target	sRNA site	Target site	Interaction	Validation	Reference
RybB RybB	ompW tsx	1 – 13 1 – 16	3 – 20 -26 – -7	······································	compensatory mutations compensatory mutations	[23] [23]

Table S3:	Organisms	used in	this st	tudy a	nd the	respective	NCBI	RefSeq	database	genome	accession
numbers.											

Organism	RefSeq genome accession number
Citrobacter koseri	NC_009792
Citrobacter rodentium	NC_013716
Cronobacter sakazakii	NC_009778
Enterobacter sp. 638	NC_009436
Escherichia coli	NC_000913
Escherichia fergusonii	NC_011740
Klebsiella pneumoniae	NC_009648
Pectobacterium carotovorum	NC_012917
Photorhabdus luminescens	NC_005126
Proteus mirabilis	NC_010554
Salmonella typhimurium	NC_003197
Salmonella enterica serovar Typhi	NC_003198
Serratia proteamaculans	NC_009832
Shigella boydii	NC_007613
Shigella dysenteriae	NC_007606
Shigella flexneri	NC_004337
Shigella sonnei	NC_007384
Sodalis glossinidius	NC_007712
Yersinia enterocolitica	NC_008800
Yersinia pestis	NC_003143
Yersinia pseudotuberculosis	NC_006155

Supplementary References

- [1] L. Argaman and S. Altuvia. *fhlA* repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. *Journal of Molecular Biology*, 300(5):1101–12, 2000.
- [2] R. Balbontín, F. Fiorini, N. Figueroa-Bossi, J. Casadesús, and L. Bossi. Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in *Salmonella enterica*. *Mol Microbiol*, 78(2):380–94, 2010.
- [3] C. L. Beisel and G. Storz. The base-pairing RNA Spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in *Escherichia coli*. *Mol Cell*, 41(3):286–97, 2011.
- [4] L. Bossi and N. Figueroa-Bossi. A small RNA downregulates LamB maltoporin in Salmonella. Mol Microbiol, 65(3):799–810, 2007.
- [5] M. Bouvier, C. M. Sharma, F. Mika, K. H. Nierhaus, and J. Vogel. Small RNA binding to 5' mRNA coding region inhibits translational initiation. *Mol Cell*, 32(6):827–37, 2008.
- [6] S. Chen, A. Zhang, L. B. Blyn, and G. Storz. MicC, a second small-RNA regulator of Omp protein expression in *Escherichia coli*. J Bacteriol, 186(20):6689–97, 2004.
- [7] A. Coornaert, A. Lu, P. Mandin, M. Springer, S. Gottesman, and M. Guillier. MicA sRNA links the PhoP regulon to cell envelope stress. *Mol Microbiol*, 76(2):467–79, 2010.
- [8] N. De Lay and S. Gottesman. The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol, 191(2):461–76, 2009.
- [9] G. Desnoyers, A. Morissette, K. Prévost, and E. Massé. Small RNA-induced differential degradation of the polycistronic mRNA *iscRSUA*. *EMBO J*, 28(11):1551–61, 2009.
- [10] S. Durand and G. Storz. Reprogramming of anaerobic metabolism by the FnrS small RNA. *Mol Microbiol*, 75(5):1215–31, 2010.
- [11] N. Figueroa-Bossi, M. Valentini, L. Malleret, F. Fiorini, and L. Bossi. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. *Genes Dev*, 23(17):2004–15, 2009.
- [12] T. A. Geissmann and D. Touati. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. *EMBO J*, 23(2):396–405, 2004.
- [13] M. Guillier and S. Gottesman. The 5' end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. *Nucleic Acids Research*, 36(21):6781–94, 2008.
- [14] E. Holmqvist, J. Reimegård, M. Sterk, N. Grantcharova, U. Römling, and E. G. H. Wagner. Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. *EMBO J*, 29(11):1840–50, 2010.
- [15] H. Kawamoto, Y. Koide, T. Morita, and H. Aiba. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. *Mol Microbiol*, 61(4):1013–22, 2006.
- [16] R. A. Lease, M. E. Cusick, and M. Belfort. Riboregulation in *Escherichia coli*: DsrA RNA acts by RNA:RNA interactions at multiple loci. *Proc. Natl. Acad. Sci. USA*, 95(21):12456–61, 1998.
- [17] N. Majdalani, C. Cunning, D. Sledjeski, T. Elliott, and S. Gottesman. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. *Proc. Natl. Acad. Sci. USA*, 95(21):12462–7, 1998.
- [18] N. Majdalani, D. Hernandez, and S. Gottesman. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. *Mol Microbiol*, 46(3):813–26, 2002.
- [19] P. Mandin and S. Gottesman. A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. *Mol Microbiol*, 72(3):551–65, 2009.
- [20] P. Mandin and S. Gottesman. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. *EMBO J*, 29(18):3094–107, 2010.
- [21] T. Møller, T. Franch, C. Udesen, K. Gerdes, and P. Valentin-Hansen. Spot 42 RNA mediates discoordinate expression of the *E. coli* galactose operon. *Genes Dev*, 16(13):1696–706, 2002.
- [22] M. Overgaard, J. Johansen, J. Møller-Jensen, and P. Valentin-Hansen. Switching off small RNA regulation with trap-mRNA. *Mol Microbiol*, 73(5):790–800, 2009.
- [23] K. Papenfort, M. Bouvier, F. Mika, C. M. Sharma, and J. Vogel. Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA. *Proc. Natl. Acad. Sci. USA*, 107(47):20435–40, 2010.

- [24] K. Papenfort, V. Pfeiffer, S. Lucchini, A. Sonawane, J. C. D. Hinton, and J. Vogel. Systematic deletion of *Salmonella* small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. *Mol Microbiol*, 68(4):890–906, 2008.
- [25] K. Papenfort, N. Said, T. Welsink, S. Lucchini, J. C. D. Hinton, and J. Vogel. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. *Mol Microbiol*, 74(1):139–58, 2009.
- [26] V. Pfeiffer, K. Papenfort, S. Lucchini, J. C. D. Hinton, and J. Vogel. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. *Nat Struct Mol Biol*, 16(8):840–6, 2009.
- [27] V. Pfeiffer, A. Sittka, R. Tomer, K. Tedin, V. Brinkmann, and J. Vogel. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the *Salmonella* core genome. *Mol Microbiol*, 66(5):1174–91, 2007.
- [28] K. Prévost, H. Salvail, G. Desnoyers, J.-F. Jacques, É. Phaneuf, and E. Massé. The small RNA RyhB activates the translation of *shiA* mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. *Mol Microbiol*, 64(5):1260–73, 2007.
- [29] S. C. Pulvermacher, L. T. Stauffer, and G. V. Stauffer. The small RNA GcvB regulates *sstT* mRNA expression in *Escherichia coli*. *J Bacteriol*, 191(1):238–48, 2009.
- [30] A. A. Rasmussen, J. Johansen, J. S. Nielsen, M. Overgaard, B. Kallipolitis, and P. Valentin-Hansen. A conserved small RNA promotes silencing of the outer membrane protein YbfM. *Mol Microbiol*, 72(3):566– 77, 2009.
- [31] J. B. Rice and C. K. Vanderpool. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. *Nucleic Acids Research*, 39(9):3806–19, 2011.
- [32] H. Salvail, P. Lanthier-Bourbonnais, J. M. Sobota, M. Caza, J.-A. M. Benjamin, M. E. S. Mendieta, F. Lépine, C. M. Dozois, J. Imlay, and E. Massé. A small RNA promotes siderophore production through transcriptional and metabolic remodeling. *Proc. Natl. Acad. Sci. USA*, 107(34):15223–8, 2010.
- [33] M. Schmidt, P. Zheng, and N. Delihas. Secondary structures of *Escherichia coli* antisense *micF* RNA, the 5'-end of the target *ompF* mRNA, and the RNA/RNA duplex. *Biochemistry*, 34(11):3621–31, 1995.
- [34] C. M. Sharma, F. Darfeuille, T. H. Plantinga, and J. Vogel. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. *Genes Dev*, 21(21):2804–17, 2007.
- [35] C. M. Sharma, K. Papenfort, S. R. Pernitzsch, H.-J. Mollenkopf, J. C. D. Hinton, and J. Vogel. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. *Mol Microbiol*, 2011. doi:10.1111/j.1365-2958.2011.07751.x.
- [36] K. I. Udekwu, F. Darfeuille, J. Vogel, J. Reimegård, E. Holmqvist, and E. G. H. Wagner. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. *Genes Dev*, 19(19):2355–66, 2005.
- [37] J. H. Urban and J. Vogel. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol, 6(3):e64, 2008.
- [38] B. Večerek, I. Moll, and U. Bläsi. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. *EMBO J*, 26(4):965–75, 2007.