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Abstract

Bacterial small RNAs (sRNAs) are a class of structural RNAs that often regulate mRNA targets
via post-transcriptional base pair interactions. In this study, we assessed the accessibility and conser-
vation of the interaction sites and the influence of these features on genome-wide target predictions.
For this purpose, we compiled a set of 71 experimentally verified sRNA-target pairs from Escherichia
coli and Salmonella, and collected genome-wide information on 5’ untranslated regions of annotated
genes. Then, features of the confirmed interactions were compared to a set of non-interactions.

We found that the interaction sites both in sRNA and target are more accessible than in the
negative data. Furthermore, interaction sites in the sRNAs, but not in the targets, show high sequence
conservation. The base pairing between sRNA and target was not found to be generally conserved
across more distantly related species. We then present two approaches to constrain the region of
interaction initiation to (1) well-accessible regions in both interaction partners or (2) unstructured
conserved sRNA regions derived from reliability profiles of multiple sRNA alignments. Using these
constraints, genome-wide target predictions were improved in terms of specificity.

1 Introduction

In recent years small regulatory RNAs (sRNAs) in bacteria have received growing attention. The largest
and most extensively studied group of sRNAs base pair trans-encoded target mRNAs to post-transcrip-
tionally regulate their translation or alter their stability [36]. Therefore, these sRNAs can be considered
as functional analogues to eukaryotic microRNAs (miRNAs). In contrast to miRNAs, sRNAs are hetero-
geneous in size (typically 50-250 nt) and structure, but there are examples where a conserved 5’ sRNA
domain is used to regulate multiple targets in analogy to miRNA seed pairing [24].

Several computational approaches have been developed to date for the prediction of sRNA targets and
sRNA-target interactions. The methods employed range from alignment-like scoring [35] and machine
learning [5] over energy-based models incorporating interaction site accessibility [3, 23, 34] to complex
joint secondary structure prediction models [6, 19, 30, 32].

The pairing between sRNA and target usually involves a core interaction of six to eight contiguous
base pairs, which we denote seed region in the following [13]. Our method IntaRNA employs this
interaction feature and predicts RNA-RNA interactions starting from such a seed region. Furthermore,
its scoring accounts for the structure of the two interaction partners via interaction site accessibility. In
previous work, we predicted targets of the sRNA Yfr1 using an ultraconserved unpaired sequence motif
as putative interaction seed, which reduced the number of target candidates remarkably. Two Yfr1 targets
could be confirmed experimentally [29].

In this study, we explore to which extent accessibility and sequence conservation are general features
of interaction sites in sRNA-mRNA interactions. A recent study by Peer and Margalit [26] showed for
Escherichia coli (E. coli) that interaction sites in sRNAs are marked by accessibility and conservation.
Here, we analyse a more comprehensive set of 74 interactions from E. coli and Salmonella typhimurium
(Salmonella) to study accessibility and conservation both in sRNAs and their targets. Furthermore, we
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investigate the covariance in the sRNA-mRNA interaction. Finally, we combine our findings with our
target prediction method IntaRNA to improve the specificity of genome-wide sRNA target predictions.

2 Material and Methods

2.1 Data set of sRNA-mRNA interactions

This analysis uses a data set of 71 sRNA-target pairs involving 19 distinct sRNAs from the two bacterial
model organisms E. coli and Salmonella (see Supplementary Tables S1 and S2). Three sRNA-mRNA
pairs include two separate interaction sites, such that the total number of interactions sums up to 74.
All interactions were verified experimentally by in vitro (structural) probing or mutational studies at the
interaction site. The seed lengths of these interactions range from 5 to 19 nt. The interaction sites in the
targets are located between positions -131 and +78 relative to the translation start.

Homologous sRNA and mRNA sequences were searched in 21 enterobacterial species (see Supple-
mentary Table S3). The complete genome of each species was retrieved from NCBI RefSeq database [27].
Groups of orthologous genes were identified with OrthoMCL [21].

The semi-global alignment tool GotohScan [15] was used to search homologous sequences of each
E. coli and Salmonella sRNA (E-value < 0.01). Because sequence-based methods perform best for
a pairwise sequence identity of at least 50-60% [11], sequences with < 60% sequence identity to the
query sequence were rejected. Each set of homologous sRNA sequences was structurally aligned with
LocARNA-P applying probabilistic consistency transformation (parameters �probabilistic �consis-

tency-transformation �max-diff=60) [37, 38].
To compile a set of all mRNAs with accurate 5’ regions, the lengths of 5’ untranslated regions

(5’UTRs) were obtained from two genome-wide studies that characterised the transcription unit archi-
tecture of the E. coli genome by high-throughput sequencing or directed mapping of transcription start
sites (TSSs) [7, 22]. Since both data sets missed the TSS of two E. coli and six Salmonella genes of our
interaction data set, we determined their 5’UTR lengths from literature. In total, the 5’UTR lengths of
2313 different E. coli genes, which is about 56% of all annotated genes, were obtained. 5’UTR lengths
of Salmonella genes were derived from the length of the corresponding E. coli orthologs. In case of am-
biguities, the 5’UTR length was set to the maximal value found. For each annotated mRNA, the 5’UTR
sequence and 150 nt of the coding sequence (CDS) were extracted from the genomic sequence. These
sequences are denoted target regions in the following. If the TSS position was unknown, e.g., because
the gene is part of an operon, 200 nt upstream of the start codon were used instead of the 5’UTR. A
sequence length of 200 nt covers the majority of E. coli 5’UTRs, which mostly vary from 20 to 40 nt in
length [22]. Target regions of orthologous genes were then locally aligned with MAFFT (method E-INS-i
for generalized affine gap costs) [20].

2.2 Negative data

Selected features of the experimentally validated sRNA-mRNA interactions were evaluated by compari-
son to a negative data set. To study the interaction site features accessibility and sequence conservation
independent of the hybridization between the two RNAs, each non-interaction has to closely resemble
the intermolecular base pairing and free energy of the respective proven interaction. Furthermore, for
each interaction in the negative data, the mRNA and the interaction site in the sRNA have to be distinct
from the validated interaction.

To this end, we first predicted putative hybridisations between all E. coli and Salmonella sRNAs and
all target regions with at least one identified ortholog. The hybridisations were predicted with IntaRNA

neglecting accessibility (parameters -a 0 -b 0 -p 6 -s 2) [3]. Then, for each known interaction,
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a set comprising all sub-interactions of these predicted hybridisations satisfying the following proper-
ties was determined: mRNA different from true target, sRNA interaction site non-overlapping with true
sRNA interaction site, equal interaction pattern or number of base pairs (and optionally equal interac-
tion length) with true interaction, and mRNA interaction site located in CDS if the same applies to the
true target since protein-coding and non-coding regions are subject to different evolutionary constraints.
Finally, the hybridisation free energies of each true interaction and all sub-interactions complying with
the aforementioned requirements were calculated with RNAeval [18]. For each validated interaction, the
non-interaction having the closest energy to the validated interaction was selected as negative interaction.

The sRNA GcvB is known to directly regulate 21 mRNAs, which is the largest number of validated
targets for a single sRNA [33]. In total, GcvB alters mRNA expression levels of ~1% of all protein-
coding genes. Assuming that each sRNA has a similar number of targets, it is very unlikely that a
random mRNA selected as non-target is actually a true target of the sRNA, which is additionally paired
at exactly the region chosen in the negative data set.

Negative data could have also been obtained from the database sRNATarBase, which contains ex-
perimentally proven non-interactions [4]. However, it was not used in this study as it does not contain
enough entries to obtain a non-interaction for each true interaction.

2.3 Accessibility

The accessibility of interacting regions was assessed by the free energy needed to open the region, which
is equivalent to its probability PU of being unpaired. This measure has the advantage to account for all
possible secondary structures.

The unpaired probabilities of sRNA sequences were computed by global folding with RNAup (pa-
rameters -d2 -u 1-10) [23]. mRNA sequences were locally folded with a sliding window approach
by RNAplfold allowing a maximal base pair span of 70 in a folding window of 140 nt (parameters -d2
-W 140 -L 70 -u 10) [1].

The length of interaction sites varies for each sRNA-target pair. Since unpaired probabilities can
only be compared for regions of equal length, we instead computed the expected fraction EF of unpaired
bases at the interaction site [16]. This measure is length-independent.

The EFa,b of a subsequence Sa . . .Sb of RNA sequence S is defined by

EFa,b = ∑
b
i=a PUi,i

b−a+1
,

where PUi,i is the probability that nucleotide Si is unpaired.
Furthermore, let S1 and S2 be two RNA sequences where the subsequences S1

i . . .S1
j and S2

k . . .S2
l form

an interaction enclosed by base pairs (i,k) and ( j, l). We then define the joint probability PU∗i, j,k,l that the
interacting subsequences S1

i . . .S1
j and S2

k . . .S2
l are unpaired by

PU∗i, j,k,l = PUi, j ·PUk,l,

where PUi, j and PUk,l are the probabilities that the respective subsequences are unpaired. This defini-
tion is based on the assumption that both sequences fold independently, i.e., PUi, j and PUk,l are stochas-
tically independent.

2.4 Sequence conservation

The sequence conservation of interacting regions was assessed by their information content. This mea-
sure allows to compare the values of alignments that differ in the number of included species. We used an
extended expression of the information content that incorporates scoring of gaps in the alignment [12].
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The information content Ii of an alignment position Ai is defined by

Ii = ∑
k∈A

Iik = ∑
k∈A

qik log2
qik

pk
,

where A = {A,C,G,U,-} is the set of nucleotides including gaps, qik is the observed frequency of
symbol k ∈ A at position i, and pk is the background symbol distribution [12]. We set p− = 1 and assume
uniform background nucleotide distribution, i.e., pk = 0.25.

We then define the sequence conservation Ca,b of consecutive alignment columns Aa to Ab by

Ca,b = ∑
b
i=a Ii

b−a+1
.

When calculating the sequence conservation of a particular sRNA and mRNA, we included only
sequences of species where homologs of both the sRNA and its target were found.

2.5 Determining conserved and accessible sRNA regions

Probabilistic alignment with LocARNA-P [37] gives column-wise reliabilities for sequence and base pair
matches. These reliability profiles can be used to determine regions that are weakly structured and
well-conserved in sequence. Given a multiple sRNA alignment A, we first determined structure and
sequence reliability background signals strrelbg

A and seqrelbg
A as average of the respective reliabilities

over all alignment columns. Then, we identified windows of a fixed length n with an average sequence
reliability seqrelwin

A ≥ γ seqrelbg
A and an average structure reliability strrelwin

A ≤ δ strrelbg
A . In this study,

we used γ = 1.0 and δ = 0.8. Each window satisfying these two conditions was considered as conserved
accessible region.

2.6 Genome-wide target prediction

Genome-wide sRNA target predictions with IntaRNA [3] were performed with the following settings:
minimal seed length of seven consecutive base pairs and local mRNA folding with a maximal base
pair span of 70 in a folding window of 140 nt (parameters -p 7 -w 140 -L 70). Optionally, seed
constraints were used as introduced below. All target regions (full 5’UTR and first 150 nt of CDS) with
at least one identified orthologous gene were considered for the target search. Since the target sites of
all experimentally confirmed interactions are located between positions -131 to +78 relative to the start
codon, we filtered all predictions to be in range -150 to +100. The list of putative targets was then sorted
by the IntaRNA energy score, which is the sum of hybridisation energy and opening energy of both
interaction sites.

Genome-wide target predictions with TargetRNA [35] were performed with its default settings, but
the search was restricted to the region -150 to +100 relative to the start codon. Furthermore, the p-
value threshold was increased to obtain 100 target predictions per sRNA, which is the maximal number
supported by the web server.

3 Results

3.1 Accessibility of interaction sites

The accessibility of the interaction sites in sRNAs and mRNAs was compared between the experimen-
tally verified interactions and the non-interactions. For this purpose, we computed individually for each
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A B

Figure 1: Comparison of the interaction site accessibility between interactions (grey) and non-
interactions (white). The plots show the accessibility of (A) the whole interaction site and (B) the joint
probability of being unpaired (PU∗) of all seeds of given length. Interaction sites in experimentally
verified interactions are significantly more accessible than random regions. p-values were calculated by
Wilcoxon rank sum test.

sRNA and its target mRNA(s) the expected fraction EF of bases unpaired at the interaction site (see
Section 2.3).

As shown in Fig. 1A, the interaction sites of the experimentally verified interactions are more ac-
cessible than the random interaction regions of the negative data. This difference in accessibility is
statistically significant both for sRNAs and targets (p-value of 5.7× 10−14 and 2.1× 10−7 for sRNAs
and targets, respectively, calculated by Wilcoxon rank sum test).

These results motivated us to explore how the accessibility information of the interacting RNAs can
be combined into a single feature that discriminates interactions from non-interactions. As elucidated
in Section 2.3, the degree of single-strandedness of a specific RNA region can be evaluated by its PU
value, which is the probability that the region is unpaired. To assess the accessibility of two interacting
regions, we computed the joint unpaired probability PU∗ of all perfectly matching sub-interactions of
length two to ten. We then compared the joint unpaired probabilities of these interaction seeds between
true interactions and non-interactions. For all analysed seed lengths, the PU∗ of the positive data were
significantly higher (Fig. 1B, p < 4.8×10−19 by Wilcoxon rank sum test).

Our target prediction tool IntaRNA predicts RNA-RNA interactions starting from an interaction seed,
i.e., a region of (nearly) perfect sequence complementarity to facilitate interaction initiation. This region
of initial pairing is often located at well-accessible structures such as hairpin loops [2]. Therefore, it
seems reasonable to require for genome-wide sRNA target searches that the interaction seed is located
at highly accessible regions in both RNAs, which can be ensured by only allowing seeds with a high
PU∗. Since the background accessibility signal depends on sequence composition, e.g., GC-content, and
folding parameters such as temperature and folding windows, we wanted to avoid fixed PU∗ thresholds
that define a valid seed. Instead, the PU∗ cut-off is computed individually for each pair of RNA sequences
as q-quantile of the sequences’ background PU∗ for a user-defined q.

We integrated into IntaRNA the feature of allowing only interaction seeds with a PU∗ greater than
the q-quantile of the background PU∗ (which is computed from all subsequences of length equal to the
seed). An evaluation of this feature is presented in Section 3.3.
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A B

Figure 2: Comparison of (A) interaction site sequence conservation and (B) average number of different
interaction base pairings between interactions (grey) and non-interactions (white). True interaction sites
in sRNAs, but not in mRNAs, are significantly more conserved than random regions. Furthermore, the
average number of intermolecular base pair combinations is significantly lower in the true interactions.
p-values were calculated by Wilcoxon rank sum test.

3.2 Conservation of interaction sites

The sequence conservation of the sRNA and mRNA interaction sites was also compared between the
positive and negative interaction data set. We assessed the conservation of each sRNA and mRNA
interaction site by its average information content (see Section 2.4).

Fig. 2A shows that true sRNA interaction sites are significantly more conserved than random regions
(p = 1.5×10−6 by Wilcoxon rank sum test). Intriguingly, the target sites exhibit no significant difference
in sequence conservation (p = 0.39 by Wilcoxon rank sum test).

The missing sequence conservation in the targets, in contrast to the sRNAs, gives rise to the suspicion
that conservation of sRNA-mRNA interactions among related bacterial species is not a general feature.
However, despite lack of target sequence conservation, the intermolecular base pairings could still be
preserved by consistent mutations in the target. In consistent mutations, only one of the two pairing
bases changes, e.g., A-U mutates to G-U [17]. We checked this possibility by comparing the number
of base pair types (out of the possible combinations C-G, G-C, A-U, U-A, G-U and U-G) per interaction
position between positive and negative data to examine to which extent consistent or compensatory mu-
tations occurred. The results in Fig. 2B show that there are even less different base pair types in the
confirmed interactions than in the random data (p = 9.0×10−5 by Wilcoxon rank sum test). Hence, we
can conclude that interactions between sRNAs and their targets are not structurally conserved in general.

3.3 Seed constraints in genome-wide target prediction

In the previous two sections, we showed that high interaction site accessibility and strong sRNA in-
teraction site sequence conservation seem to be common features of bacterial sRNA-mRNA interac-
tions. These observations suggest the following strategy to improve the false positive rate of sRNA
target predictions: (i) identify conserved and weakly structured regions in the sRNA that might serve
as target-binding region, and (ii) focus the target search to interactions that are located at such a region.
A possibility to focus a target search to a specific region is to constrain the position of the interaction
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Figure 3: Performance of IntaRNA and TargetRNA in genome-wide target predictions for 25 sRNAs.
IntaRNA was used with four different parameter settings. For each sRNA, the list of putative targets
was sorted by (energy) score and the ranks of true positive predictions were determined. Subsequently,
the ranks were sorted. The plot shows the average rank (y-axis) for the n best true positives (x-axis).
The prediction performance of IntaRNA was best when requiring a seed region that is highly accessible
in both interaction partners (dark blue and orange bars). Independent of the used parameter setting,
IntaRNA clearly outperformed TargetRNA (grey bars).

seed region. Therefore, we extended the IntaRNA program by an option that allows to constrain the
seed search to several user-definable regions. These candidate sRNA seed regions were derived from
LocARNA-P reliability profiles using the approach described in Section 2.5 with window length equal to
seed length followed by projecting the alignment window to the sRNA sequence of interest.

To evaluate the seed constraints introduced above and in Section 3.1, we conducted genome-wide
target predictions in E. coli and Salmonella for every sRNA of our data set. Four different IntaRNA
settings were used: (1) seed without accessibility and conservation constraints (default), (2) seed con-
straints derived from LocARNA-P reliability profile, (3) seed with PU∗ in upper quartile (0.75-quantile)
of background distribution, and (4) combining seed constraints of settings (2) and (3). Additionally, we
present the prediction results of the widely used sRNA target prediction tool TargetRNA for comparison.

The bar chart in Fig. 3 shows the average rank of the true positive predictions vs. the number of true
positives for all four IntaRNA settings and for TargetRNA. It can be seen that the correctly predicted
targets rank best, i.e., lowest, in the two IntaRNA settings that required a seed region that is highly
accessible in both interacting RNAs (dark blue and orange bars). Restricting the interaction seeds to
conserved and weakly structured sRNA regions alone (light blue bars) gave a smaller improvement over
the default method without constraining the seed region (red bars). For all parameter settings, IntaRNA
clearly outperformed TargetRNA (grey bars), which returned only 20 true positive predictions in total.

It is expected that many more true targets can be found among the predictions that we considered
as “false positives”. For example, a very recent study by Sharma et al. identified thirteen additional
targets of the GcvB sRNA that were not yet considered in our analysis [33]. Thus, both IntaRNA and
TargetRNA should indeed perform better in predicting novel targets than observed in our experiments.
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4 Discussion

In this study, we compiled a set of 71 sRNA-target pairs including 74 interaction sites. By comparing
these interactions to a negative data set, we found that both sRNA and target interaction sites are highly
accessible, and that the interaction sites in the sRNAs are additionally highly conserved. The overall
interaction site accessibility in the targets was lower than in the sRNAs and the difference to the non-
interactions was also less pronounced (even though still highly significant). This observation can be
explained by the finding that structural RNAs, but not mRNAs, have in general lower folding energies
than random RNAs of the same dinucleotide frequency [8, 9, 39]. Furthermore, prediction of local
mRNA structures with a sliding window approach might be less reliable than prediction of global sRNA
structures.

Our results on sRNA interaction site accessibility and conservation are in line with the results of
a recent study by Peer and Margalit [26]. However, we could not observe a considerable reduction of
false positives by narrowing down the search space to interactions in conserved accessible sRNA regions
as suggested in their study. Instead, we found that the number of putative targets can be reduced more
successfully by restricting the target search to interactions that contain a seed region that is highly acces-
sible in both interaction partners. This finding supports the idea that target recognition is mediated by
initial annealing of two well-accessible RNA regions, which form a strong duplex due to high sequence
complementarity. Restricting the interactions seeds to highly accessible regions instead of conserved
unstructured sRNA regions has also the advantage that it does not require the identification of sRNA
candidate seed sites, e.g., by a probabilistic classifier or LocARNA-P reliability plots. Thus, our approach
solely based on seed accessibility does not employ machine learning and does not depend on additional
parameters apart from a cut-off relative to the background signal.

The comparison between verified interactions and non-interactions did not provide evidence that
interaction sites in targets are generally conserved. This observation is somewhat contrary to miRNAs,
where target site conservation is an often used feature for target prediction, e.g., [10]. Furthermore, our
results also did not show an enrichment for compensating or consistent mutations in the interactions.
Taken together, these observations indicate that the base pairing between sRNAs and their targets is not
generally conserved across related species. Furthermore, our results suggest that comparative methods
using covariance scoring does not appear to be very promising for the prediction of bacterial sRNA-
mRNA interactions. The paucity of sequence covariation between sRNA and target (which is consistent
with our recent findings in [31]) can be explained by the high evolutionary conservation of the sRNA
interaction site and missing consistent mutations in the target.

The question remains why sRNA interaction sites exhibit a very high sequence conservation when
neither target sites are sequentially conserved nor interactions are structurally conserved. A possible
explanation for missing target site conservation are technical issues as misalignment of target sites or
false positive prediction of orthologous genes. However, we could not find any indication of these when
inspecting a subset of the analysed targets. Another possible explanation is that, for particular sRNAs,
regulation of the target could be conserved, but not the interaction itself. In this case, the target site has
been shifted to another position (which is also known as target site mobility). Finally, for sRNAs with
multiple targets, conservation of regulation also does not have to be present for all target genes. Many
sRNAs of our data set directly regulate multiple targets by binding via a single interaction site (although
some sRNAs also use more than one site, e.g., FnrS, GcvB and Spot42). Consequently, conservation of
the sRNA in distant species does not necessarily imply full conservation of all of its target genes or of the
base pairing even if the target gene is conserved [14, 25, 28]. Instead, for a particular sRNA, only one or
some particular targets out of multiple targets might be critical for the evolution of this sRNA and, thus,
be linked to the evolutionary conservation of the sRNA interaction site [13].
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