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Abstract

The crossdating of tree-ring series is typically based on tree-ring width se-
quences, which is a crude abstraction of the growth signal stored in tree rings.
In contrast, intra-annual wood density data allows a much more detailed com-
parison of wood growth processes and new measurement techniques scale well
to measure large amounts of samples. Thus, chronologies of intra-annual den-
sitometric curves can be built. Here, we investigate to what extent intra-annual
wood density information can improve crossdating. We evaluate different ap-
proaches on a data set of Norway spruce trees (Picea abies) and compare the
results to standard methods that are based on ring width or maximum den-
sity. Our results show that intra-annual densitometric data indeed increases
crossdating success rate notably for short tree ring series that cover less than
25 years.
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1. Introduction

Chronologies of tree-ring data are central to crossdate wood samples (Fritts,
1976; Savnik et al., 2000). This is possible, since the growth of trees is governed
by environmental conditions that are encoded within tree rings of the respec-
tive years (Cook and Pederson, 2011). Therefore, such chronologies have been5

successfully used to reconstruct various environmental factors like temperature
(Schweingruber et al., 1993; Allen et al., 2012), precipitation (Büntgen et al.,
2011), soil phosphorus availability (Kohler et al., 2019), or even cosmogenic
radiocarbon signatures (Büntgen et al., 2018).

∗Corresponding author
1Both authors contributed equally.

Preprint submitted to Dendrochronologia February 20, 2020



While tree-ring width is rather easy to assess, it was shown that the consid-10

eration of wood density enables even better correlations with climatic factors
(Briffa et al., 1998; Allen et al., 2012; Drew et al., 2012). Accordingly, already
in the 70th, density data was suggested for crossdating (Polge, 1970). While
well working for specific density properties, e.g. based on maximum late wood
density (Wang et al., 2010), the combination of different tree ring properties15

(width, density, etc.) seems to stabilize and improve predictions (Wood and
Smith, 2015).

Tree rings usually encode environmental conditions in higher than annual
resolution (Zhang, 2015), so the investigation of intra-annual wood density
curves2 allows a much more detailed comparison of wood growth processes20

(Allen et al., 2012; De Mil et al., 2016). Furthermore, intra-annual informa-
tion can be key for correct crossdating of Mediterranean trees (Cherubini et al.,
2013) and respective climate reconstruction (Campelo et al., 2013). Still, high
(intra-annual) resolution is not yet used by current density-based crossdating
methods and the tree ring is typically represented by a single value per year.25

This partially resulted from the high labor and time costs of measuring high
resolution densitometric data for a large number of trees that are needed to
build respective chronologies. This problem was solved in the last years via
the introduction of efficient measurement instrumentations and tools that scale
well for increasing sample sets. Examples are high-frequency (HF) densitometry30

(Schinker et al., 2003; Wassenberg et al., 2014) or X-ray computed tomography
densitometry (De Mil et al., 2016; Jacquin et al., 2019).

Standard ring-width-based crossdating approaches work best for samples
that cover extreme events with characteristic signals (pointer years) detectable
within the respective tree-ring (Yamaguchi, 1994; Dimitrov et al., 2016). Since35

shorter samples have a lower probability to cover pointer years, tree-ring se-
quences of less than 25 years are hard to crossdate with current approaches
(Wigley et al., 1987; Mills, 1992). Here, the investigation and comparison of
intra-annual density fluctuations (IADFs) (De Micco et al., 2016) might pro-
vide an option to overcome this problem.40

To test the potential of intra-annual density information for crossdating of
short tree-ring sequences, we build a high-resolution intra-annual densitometric
chronology based on HF measurements of Norway spruce (Picea abies) trees
from Southwest Germany. From this, we randomly extract samples to crossdate
covering only 5 to 25 consecutive years before building respective chronologies.45

We compare the success rate with which the samples can be crossdated based
on different tree-ring features. We consider full intra-annual density profiles,
standard measures like ring width or maximum late wood density, as well as
combinations. This enables an objective assessment if and how much intra-
annual density information can improve crossdating.50

2Within this work, we use the terms curve and profile synonymously.
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Figure 1: Number of available wood density profiles per calendar year within the data set.

2. Material and Methods

In the following, we introduce the data set used for our crossdating evalua-
tions along with the respective measures and crossdating methods applied. Raw
data and used R scripts are part of the supplementary material3.

2.1. Intra-annual data aggregation55

Measurement and post-processing. Our data set is based on 56 Norway spruce
sample trees (Picea abies) felled for stem analyses in 2005 in the Eastern Swabian
Alb in Germany at an average altitude of about 658 meters a.s.l. To measure
intra-annual density information, we follow and refer to the protocol from (Ben-
der et al., 2012). That is, for each sample tree, wood density profiles were60

measured along multiple directions of a stem disc (breast height) from pith
to bark using high-frequency densitometry (Schinker et al., 2003; Wassenberg
et al., 2014) excluding the first 5 years. Data was manually curated to remove
measurement errors, transformed into units of gravimetric density (Wassenberg
et al., 2014), and verified using conventional crossdating techniques.65

This results in multiple densitometric curves for each calendar year y and
tree t. A respective ring width w(y, t) was determined as the mean over all radial
measurements. To further reduce noise of individual wood density recordings
(Bender et al., 2012; Stangler et al., 2016), measured profiles were synchronized
using the MICA4 curve alignment software (Mann et al., 2018). Subsequently,70

a single representative profile of average values was computed for each year.
Each representative density profile was scaled to the average ring width of all
measurements. A linear interpolation to 100 equidistant data points defines the
final density profile ρ(y, t) and its maximum density ρ̂(y, t) = max(ρ(y, t)) for
each year y and tree t used within this study.75

3http://www.bioinf.uni-freiburg.de/Publications/Raden-crossdating-2019.supplement.zip
4Used MICA parameters: distFunc=3, distSample=500, distWarpScaling=0, maxWarping-

Factor=2.5, maxRelXShift=0.1, minRelIntervalLength=0.05, minRelMinMaxDist=0.02, min-
RelSlopeHeight=0.02.
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The final data set covers in total 2,843 tree-ring profiles spread over the
calendar years 1916 to 2004 as visualized in Fig. 1. The average sequence length
per tree is 50.9 years.

Separation into sample and chronology data. To simulate data to be crossdated,
we randomly extracted samples uniformly from our data set. A sample s is80

defined by the tuple (t, y, k) and consists of the data of tree t for k consec-
utive calendar years starting in year y, i.e. the sequences of density profiles
(ρ(y, t), .., ρ(y+k−1, t)), maximum densities (ρ̂(y, t), .., ρ̂(y+k−1, t)) and tree-
ring widths (w(y, t), .., w(y+k−1, t)).

For sample length k = 10, we pick at random a sample set S of 50 samples to85

be crossdated from our data set, which contains 2,329 consecutive subsequences
of length 10. Thus, S comprises about 18% of the data (50 ·10/2, 843). Average
cambial age of the tree-rings included in the sample data set is 34.4 years. While
this generates a most simple artificial sample set for crossdating, it enables a
detailed benchmarking of crossdating measures not biased by poor or missing90

sample data. Thus, results will depict the maximum crossdating performance
that can be reached without further information. The remaining data (excluding
S) provides the base for unbiased chronologies to crossdate the samples s ∈ S.

Due to the limited size of the data set, we can only pick a small sample set
to keep the chronology information stable. To counter a possible non-uniform95

distribution of samples within the time range of the chronology, we repeated
sampling and benchmarking 5 times for k = 10 and report averaged statistics
for the random sets of samples S1, .., S5 crossdated via respective chronologies.

To get samples of length k = 5, we split the samples of length 10 into
non-overlapping individual samples. For length k = 15, 20 and 25, sample set100

sizes are smaller (33, 25 and 21, resp.) to ensure that respective chronologies
are based on a similar amount of data. This enables a better comparison of
crossdating results for different sample lengths. To compensate for the smaller
sample sets for length 15, 20 and 25, repetition was based on 7, 10 and 12 sets,
respectively. That way, we crossdate at least 250 samples per sample length.105

Master chronology generation. The whole chronology data set of intra-annual
wood density profile data ρ(y, t) (excluding the sample data) defines the profile-
set chronology Cρ. That is for each year y, Cρ(y) provides the set of density
profiles ρ(y, t) of all trees t, which is illustrated in Fig. 2. Based on that,
we compile a ring-width chronology Cw, which provides a mean ring width for110

each year. To reduce outlier artifacts, we compute Tukey’s biweight robust
mean estimation5 (Beaton and Tukey, 1974) of all ring widths w(y, t) for each
year y following Bunn (2008). The maximum-density chronology C

ρ̂
is created

analogously.

5We follow Affymetrix http://tools.thermofisher.com/content/sfs/brochures/sadd whitepaper.pdf

using ε = 0.0001 and c = 9.
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Figure 2: Illustration of the different chronologies used within this work. All chronologies
are build from the sets of intra-annual wood density profiles (green lines) of individual trees t
available for each year y. This data set already defines the chronology of profile sets Cρ (green
box). The chronology of ring width Cw (black box) provides the mean profile length per year,
while the averaged maximum densities are covered by the chronology of maximum density C

ρ̂

(red box).

2.2. Crossdating and evaluation115

Given a distance function d(s, C, y′) that evaluates the similarity of a sample
s = (t, y, k) (data of tree t for calendar years y..(y+k−1)) and the subchronology
C(y′)..C(y′+k−1)). To crossdate s using a given chronology C, we have to
identify the year y∗ such that the distance d(s, C, y∗) is minimized, i.e. we are
searching for y∗ = arg miny′ (d(s, C, y′)). Thus, if y∗ equals the sample’s y, a120

correct crossdating was done.
To evaluate the success rate of a crossdating methods, we measure how often

the original year y of a given sample s = (t, y, k) is recovered, i.e. y = y∗.
We also assess crossdating reliability in terms of rank statistics. Here, the

rank r(s, C, d) provides the index of the sample’s year y within the list of all125

putative start years in C in ascending order for a given distance function d.
Thus, a rank of 1 corresponds to a correctly crossdated sample. For evaluation,
we accumulate rank statistics per sample set and report averaged values over
all sets. In the following, we introduce the distance functions used within this
study.130

Crossdating based on ring width and maximum density. The maximum-density
distance d

ρ̂
(s, C

ρ̂
, y′) of a sample s = (t, y, k) to a maximum-density subchronol-

ogy of C
ρ̂

starting in year y′ is computed based on the (negated6) Pearson

6Negation of test results is needed for distance minimization.
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correlation coefficient of the respective maximum-density series of length k.
To compute the respective ring-width distance dw(s, Cw, y

′) based on a ring-135

width chronology Cw, we follow (Bleicher, 2014; Nechita, 2014) and use the
(negated6) modified t-test7 based on Hollstein Wuchswert normalizations of
the respective ring-width sequences of length k. The Hollstein Wuchswert of a
year y for tree t is defined as log(w(y, t)/w(y− 1, t)) and provides a normalized
signal of growth changes of subsequent years (Hollstein, 1980). Other measures140

like correlation coefficients of the raw ring-width sequences or %-Gleichläufigkeit
(Schweingruber, 1989) showed inferior crossdating success rate compared to t-
tests on Hollstein Wuchswert (data not shown).

Crossdating based on intra-annual wood density. The profile distance d(a, b)
of two density profiles a and b of equal lengths is computed as the average145

point-wise difference of the slopes of the profiles’ z-values8. The use of z-values
(normalization) allows us to ignore multiplicative or additive differences between
profiles and is computed by substracting from each value the mean of a profile
followed by a division with its standard deviation. We assess the slope difference
since we want to measure the shape similarity of the two profiles. Slopes are150

derived via a linear model using a window of 5 data points. Similar distance
measures based on raw profiles or z-values only provided inferior results (data
not shown).

The profile-set distance dρ(s, Cρ, y
′) based on a profile-set chronology Cρ is

the sum of the minimal profile distance (over all profiles in Cρ) per year, i.e.155 ∑k−1
i=0 minx∈Cρ(y′+i) d(x, ρ(y+i, t)).

3. Results and Discussion

To evaluate the crossdating success rate achieved for the different chronolo-
gies and distance measures, we assess the percentage of correctly crossdated sam-
ples visualized in Fig. 3. Furthermore, we compiled rank statistics of samples’160

correct years within the overall distance distribution and collected respective
median, mean and variance values. Results are shown in Tab. 1 and discussed
in the following.

3.1. Crossdating based on ring-width and maximum density

Our results reproduce that it is not possible to reliably crossdate very short165

wood samples based on ring-width information only. For sample length k = 20,
the crossdating success rate is only about 68% and drops to 28% and even 7%
for length 10 and 5, respectively. This is in good agreement with the literature,
where sample lengths of 25 or above are recommended for reliable t-test statistics
(Hedderich and Sachs, 2018). High mean and variance values of the respective170

rank statistics (see Tab. 1) show that the correct crossdating often is not among

7tscore = cor ·
√
k − 2/(1− cor2), where cor denotes the Pearson correlation.

8Also known as z-score or standard score.
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Figure 3: Success rate in percent of correctly crossdated samples for different sample lengths
and optimized distance measures. Visualized values are detailed in Tab. 1.

crossdating % correct rank of sample year
approach k (rank=1) median mean variance

ring width

5 6.6 14.2 20.4 392
10 28.0 3.3 8.7 148
15 55.4 1.4 4.3 60
20 67.6 1 3.4 45
25 75.4 1 3 43

max. density

5 15.8 5.8 13.1 300
10 44.8 2 5.1 66
15 73.2 1 2.2 23
20 84.8 1 1.6 5
25 86.5 1 1.7 6

profile set

5 32.2 3.5 11.3 318
10 58.0 1.2 7.9 260
15 74.0 1 5.2 160
20 82.4 1 4.7 173
25 82.5 1 4.5 145

5 42.8
two-step approach 10 69.6

(1) max. dens 15 78.4 not available
(2) prof. set for top-20 20 88.0

25 87.3

Table 1: Crossdating success rate and rank statistics for different distance measures and
sample lengths (k). The values are averages for the respective sample sets per length.

the top-ranked crossdatings. Within the following, the ring-width-based results
define the ’gold standard’ to which we will compare to.

First, we tested the simplest approach based on maximum intra-annual wood
density as a basis for crossdating. While computationally as easy to use as ring-175
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width data (one data point per year within the chronology), a tree ring’s max-
imum density enables a much better crossdating success rate when compared
to its width. On average, we observe about 10-15% higher success rate over all
sample lengths. This is in good agreement with our expectations, since it has
been shown that wood density much better correlates with climatic conditions180

like temperature (Allen et al., 2012). These first results already point to the
high potential of intra-annual wood density for crossdating of short samples.

3.2. Crossdating based on intra-annual wood density

Next, we investigated the potential of intra-annual wood density profiles for
crossdating. The profile-set chronology shows superior results compared to all185

other methods tested so far. It significantly superseeds maximum density and
provides about 15-30% higher crossdating success rate compared to ring width
for k ≤ 20. The improvement is most prominent for short sample lengths.

When compared to maximum-density-based crossdating, profile-set chronolo-
gies show only better performance for very short sample lengths of 5 and 10.190

For length 15 to 25 the performance is approximately the same.
Note, neither ring-width nor maximum-density information is used within

the distance computation, since the latter is based on slopes of length-normalized
z-values. This suggests that the intra-annual shape of wood density profiles in-
deed well represents the calendar-year-specific growth information. In contrast,195

we observe inferior results (data not shown) when using a distance measure
based on absolute density values and non-z-normalized profiles, which would
provide some notion of mean-density distance.

3.3. Crossdating using a combined approach

While the profile-set chronologies show the best success rate among the200

tested approaches, they do not scale well computationally. In contrast to the
other approaches, computing the distance does not only consider a single (mean)
data point from the chronology per year but now the full set of available tree-
specific profiles is investigated. This dramatically slows down crossdating. Fur-
thermore, extending the chronology data will immediately result in a respective205

runtime increase, which is unfavorable.
As a first step to mitigate this problem we test a heuristic hierarchical pro-

cedure, in the following named two-step approach. It combines the fast but less
accurate maximum-density (MD) distance with the more accurate but slower
profile-set-based (PS) method. This is based on the observation of low me-210

dian and mean rank statistics from Tab. 1 for the MD approach. That is,
the respective year of most samples is among the top-ranked candidates but
maximum-density comparison is too coarse for the final crossdating. Therefore,
we want to reevaluate the top MD predictions using the more reliable but also
computationally more demanding PS method.215

In (Step 1), we first identify for a sample the top-20 candidate years based on
the MD chronology. In (Step 2), these 20 candidates are subsequently reevalu-
ated based on the respective PS distances, which defines their final ranking and
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thus crossdating (rank=1 candidate). However, the original year of the scored
sample might be missed by (Step 1), and is thus not within the final list of220

the reevaluated top-20 years. Therefore, no rank statistics can be provided in
Tab. 1.

Since our data set covers 89 years, the top-20 two-step approach speeds up
computation by a factor of about three to four compared to the exhaustive
profile-set evaluation. Furthermore, it even further improves prediction and225

provides the best crossdatings for all tested sample lengths. The improvement
is most notably for very short samples of lengths 5 or 10 as depicted in Fig. 3.

4. Conclusions

Ring width provides an easy to assess and reliable metric to crossdate wood
samples. Thus, ring-width sequences are widely used and multi-millennia chro-230

nologies for various tree species have been built. Since tree growth is not well
reflected by ring width alone, the use of intra-annual wood density information
was proposed to provide improved crossdating success rate (Polge, 1970). It
was hypothesized that the use of density-based chronologies can provide bet-
ter climate reconstructions since density was observed to correlate better with235

climatic factors like temperature (Allen et al., 2012).
Within this work, we tested the potential of intra-annual wood density

chronologies and measures for crossdating. Since ring-width-based crossdating
is often already very accurate for long samples, especially when characteristic
pointer years are covered, we focus in our intra-annual-data-based study on very240

short samples that are so far hard to annotate. For the evaluation and com-
parison of methods, we constructed a densitometric data set for Norway spruce
trees using HF densitometry. From this data set, short samples (covering 5 to
25 consecutive years) were extracted to test the crossdating reliability of dif-
ferent approaches. While such perfect samples reflect an artificial situation for245

crossdating, it provides benchmark results not biased by poor or missing data.
Thus, we can assess an upper bound of a method’s potential without additional
constraints or heuristics.

We observe improved success rates when using the maximum density per
year, which is in accordance with results from the literature (Polge, 1970). Fur-250

thermore, we tested the potential of crossdating based on detailed comparison
of densitometric curves taking the whole profile shape into account. We observe
superior results when identifying the most similar density profile of any tree
in the chronology per year. These results could be even improved, when com-
bined in a hierarchical two-step heuristic that (re)evaluates only high-ranked255

maximum-density crossdating candidates. This two-step procedure provides an
average crossdating success rate of 73% (over all samples) compared to only
47% for ring-width-based crossdatings.

Intra-annual densitometric curves are compared based on a shape (slope)
estimate of respective z-value curves, which makes it independent of absolute260

density values. Due to that it would be possible to combine densitometric data
from different sources and experiments (e.g. also using X-ray based series as

9



produced by xRing (Campelo et al., 2019)) to generate chronologies for cross-
dating.

While superior in quality, the two-step approach is still much slower than265

standard methods, since it compares each sample against respective data of all
individual trees from the chronology for the tested candidate years. This could
be countered by clustering methods to (a) define classes of similar densitometric
curves per year and (b) compute for each class a representative profile. The lat-
ter could be done similar to the described preprocessing of radial measurements270

of individual trees. That way, one could reduce the computational complexity
while still representing the spectrum of intra-annual density profiles per year.
For instance, for Pinus pinaster, a relation of tree age and the abundance of
intra-annual density fluctuations (IADFs) was shown (Campelo et al., 2013).
We observe a similar relationship of cambial age of a tree ring and the shape of275

its wood density profile by visual inspection (data not shown), which we expect
to be well covered by the suggested clustering.
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