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Abstract

Seed and accessibility constraints are core features to enable highly accurate
sRNA target screens based on RNA-RNA interaction prediction. Currently,
available tools provide different (sets of) constraints and default parameter sets.
Thus, it is hard to impossible for users to estimate the influence of individual
restrictions on the prediction results.

Here, we present a systematic assessment of the impact of established and new
constraints on sRNA target prediction both on a qualitative as well as
computational level. This is done exemplarily based on the performance of
IntaRNA, one of the most exact sRNA target prediction tools. IntaRNA provides
various ways to constrain considered seed interactions, e.g. based on seed length,
its accessibility, minimal unpaired probabilities, or energy thresholds, beside
analogous constraints for the overall interaction. Thus, our results reveal the
impact of individual constraints and their combinations. This provides both a
guide for users what is important and recommendations for existing and
upcoming sRNA target prediction approaches.

We show on a large sRNA target screen benchmark data set that only by
altering the parameter set, IntaRNA recovers 30% more verified interactions
while becoming 5-times faster. This exemplifies the potential of seed, accessibility
and interaction constraints for sRNA target prediction.

Keywords: RNA-RNA interaction; sRNA; target prediction; seed; accessibility;
constraints

Background
Prediction of RNA-RNA interactions is a versatile approach to detect putative tar-

gets of non-coding RNAs [1]. Accessibility-based approaches combine the prediction

of a most stable interaction duplex with an energy penalty for making the inter-

action regions accessible, i.e. free of intra-molecular structure. They are very good

compromise between the computational complex prediction of joint structures and

a simple detection of stable duplexes. While accessibility-based approaches that

further incorporate seed constraints are best suited for in silico target screens of

prokaryotic sRNAs [2], available programs implement different (sets of) constraints

and respective thresholds to increase the prediction accuracy. Although there are

various studies that compare tools (based on their default parameters) [2, 3, 4],

so far no study investigated the impact and potential of the different constraints

in a systematic way. This is needed to both provide users with an intuition how
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the constraints influence the prediction results and to guide the development and

improvement of current and future tools.

Accessibility-based approaches can be split into two classes based on the ap-

plied accessibility model. The site-based approaches, like RNAup [5], IntaRNA[6, 7]

or RIsearch2 [8], compute and use explicit unpaired probabilities for the interacting

subregions. While this is exact, the precomputation time and space consumption

grows with the maximal length of considered interactions. Therefore, position-based

approaches, like RNAplex [9], AccessFold [10] or RIblast [11], estimate the regions’

accessibility based on unpaired probabilities of enclosed single positions. This re-

quires less precomputation but provides only approximate accessibility profiles and

thus energy values.

Methods that incorporate seed constraints can also be grouped into approaches

that use dynamic programming schemes operating on whole sequences, like

IntaRNA, or two-step approaches, like RIblast, RIsearch2 or sTarPicker [12],

that first identify putative seed interactions and subsequently find the optimal

interaction among low energy seed extensions. Due to the low number of puta-

tive seeds, seed-extension approaches consider only a sparse subset of all potential

interactions and are as such much faster than exhaustive dynamic programming

schemes.

Within this study, we do a systematic evaluation of established and new con-

straints for RNA-RNA interaction prediction for their potential to improve sRNA

target prediction. Beside a qualitative assessment, we also investigate respective

runtime effects since target screens are typically done on a genomic level [13, 14, 15]

and therefore time intensive. In detail, we are investigating the following constraints

and combinations:

Seed constraints:

• seed vs. no seed

• number of seed base pairs

• prohibition of GU base pairs in seeds

• maximal overall energy of seeds

• maximal hybridization energy of seeds

• minimal accessibility (unpaired probability) of seed regions

Interaction constraints:

• maximal energy of an interaction

• minimal accessibility (unpaired probability) of interacting regions

• maximal interaction length (region per RNA)

• maximal interior loop size

• impact of in silico SHAPE data from ShaKer

• energy parameter model

Results and Discussion
Within this study, we report as a quality assessment the relative number of re-

covered verified sRNA-target pairs among the top-100 predictions for each tested

sRNA. Furthermore, relative overall runtime of each parameter benchmark is de-

picted. The runtime normalization is done using the default parameter setup of

IntaRNA v2.3.1, which we extended with additional constraints tested here. If not
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Figure 1 Seed length and GU base pairs. (left) Relative number of recovered verified targets
among the top-100 predictions of each sRNA for different seed lengths (seedBP) with and without
GU base pairs, i.e. blue = [seed] and green = [seedNoGU], resp., where red = [no seed] refers to
results without seed constraints. (right) Relative overall runtime to process each parameter set.
The dotted gray lines mark respective values of IntaRNA with default parameters.

set explicitly, IntaRNA’s default values for version 2 are: 7 (canonical) base pairs in

seed, allowing for GU base pairs in seed, maximal overall energy of seed or inter-

action of 0 kcal/mol, minimal unpaired probability of seed or interaction site of 0,

maximal interaction length of 150, maximal interior/bulge loop size of 16. To reduce

the parameter space, we consider only canonical seeds, i.e. seed interactions that

show consecutive stackings only. For each tested parameter setting, we report the

recovery for each reference target within the supplementary material. Abbreviations

in figures and text are based on respective IntaRNA parameter names.

Seed constraint - Length of the seed

The length of considered seed interactions, i.e. the number of consecutively stacked

base pairs, is one of the first and most central feature of most sRNA target prediction

tools as it has a strong impact on the size of the search space and prediction quality.

While tools like IntaRNA [6, 7] or TargetRNA(2) [16, 17] require 7 base pairs, other

approaches as RIsearch2 [8], RIblast [11] or sTarPicker [12] are less restrictive

and require only 6, 5 or at least 5 (with additional constraints), respectively. Similar

constraints are also applied in the context of eukaryotic microRNAs [8, 18]

Figure 1 summarizes the results for various seed lengths using IntaRNA. A seed

length of 8 shows the best prediction results while further increasing the required

base pairs results in a rapid performance loss. These results are in line with [16].

Lower values provide similar results but require, due to the increased search space,

more runtime. Overall, we observe no tremendous impact of the seed length (below

the critical length of 9) on the prediction accuracy when compared to predictions

that do not require a seed interaction. Note, the increased runtime when enforcing

seed constraints is a result of the two-step recursions implemented by IntaRNA ver-

sion 1 and version 2 and can be drastically reduced when applying a seed-extension

strategy e.g. implemented in RIblast, RIsearch2 or the recent IntaRNA version 3.

Still, the same trends caused by seed length constraints apply due to the inverse

relation of seed length and the number of respective seeds to be processed.

Seed constraint - Avoiding weak GU base pairs in seeds

GU base pairings are the weakest among the considered base pairings in secondary

structure energy models. Since a seed interaction is considered to provide a strong
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Figure 2 Seed stability. (left) Relative number of recovered verified targets among the top-100
predictions of each sRNA for different thresholds on a seed’s overall energy and hybridization
energy, i.e. ball = [seedMaxE] and diamond = [seedMaxEhybrid], respectively. Results including
GU base pairs are in blue while values for seeds without GU base pairs are in green. (right)
Relative overall runtime to process each parameter set. The dotted gray lines mark respective
values of IntaRNA with default parameters.

initial binding platform for interaction formation, reducing [12] or even completely

forbidding GU base pairs in seeds is used by some approaches [19].

In Fig. 1 we show that forbidding GU base pairs in seeds indeed has a strong

impact on both prediction accuracy and runtime. While the same trends apply

(increase to maximum at 8 base pairs with a subsequent rapid drop for ≥ 9),

significantly more verified interactions are recovered when compared to respective

parameter sets that allow for GU base pairs. Furthermore, we observe a strong

runtime reduction since many putative seeds are filtered by this constraint.

Seed constraint - Enforcing stable (low energy) seeds

Reducing the number of GU base pairs in seeds, as investigated above, is an indirect

constraint on the stability of seeds to be considered for interaction prediction. Thus,

some approaches introduced constraints on the seeds energy [7, 12], which is a

measure of its thermodynamic stability. The rational here is that a stable seed

interaction should provide a good platform for a subsequent interaction formation

that is also kinetically favoured. Both restrictions on the overall seed energy [7] or

the seeds’ hybridization energy [8, 11] are known from the literature.

When restricting the overall energy of seeds, we constrain a mixture of hybridiza-

tion energy terms and the accessibility penalties of the seeds’ interaction site. Both

are connected with the seed length (longer seeds provide lower hybridization ener-

gies and higher accessibility penalties) and thus energy constraints are seed-length

specific. Here, we exemplarily investigate the effect of (hybridization) energy bounds

on seeds of length 7. Investigations of seed accessibility constraints are discussed in

a dedicated subsequent section.

Our results, depicted in Fig. 2, show that constraining the overall energy en-

ables higher prediction accuracy (maximum at about −5 kcal/mol for 7 seed base

pairs) while offering significant runtime reductions. In contrast, constraining only

the seeds’ hybridization energy provides no significant prediction gain and the re-

covery drops for thresholds below −7 kcal/mol.

Given the superior results for seeds without GU base pairs from the last section,

we also investigated the impact of energy thresholds for predictions confined to such
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Figure 3 Seed accessibility. (left) Relative number of recovered verified targets among the
top-100 predictions of each sRNA for different thresholds on a seed’s accessibility in terms of
minimal unpaired probability of both seed regions [seedMinPu] for different seed lengths [seedBP].
(right) Relative overall runtime to process each parameter set. The (top) and (bottom) graphs
show results when GU base pairs are allowed or forbidden in seeds, respectively. The dotted gray
lines mark respective values of IntaRNA with default parameters.

seeds. Disallowing GU base pairs should directly relate to more stable seeds within

the underlying energy model. In contrast to the discussed results for seeds including

GU base pairs, a (non-significant) maximal recovery is observed for −2 kcal/mol

both for overall and hybridization-only energy thresholds for no-GU-base-pair seeds.

For both constraints, the recovery rate drops with decreasing maximal energy values.

Also in contrast to the GU-including results, thresholds on overall seed energies are

not superior to constraints on hybridization-only energies of seeds without GU base

pairs. Overall, we conclude that forbidding GU base pairs has similar maximal

effects than restricting the overall energy of seeds including GU base pairs.

Seed constraint - Accessibility of seed regions

Given our results concerning seed stability, we next investigated the impact of the

accessibility of the seed regions, i.e. constraining considered seeds to sequence re-

gions that are likely unpaired using increasing thresholds. Such a constraint follows

the hypothesis that the initial interactions are formed between highly accessible

(unstructured) regions of the two RNAs, which subsequently expand into the full

interaction. This should again result in interactions that are kinetically favoured.

Figure 3 (top) visualizes the effect of seed accessibility constraints for different seed

lengths (when allowing GU base pairs in seeds). For all seed lengths, a maximum

is observed when enforcing a minimal unpaired probability between 0.001 and 0.1.

Too restrictive values result in the expected drop in the recovery rate since few to
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Figure 4 Interaction length. (left) Relative number of recovered verified targets among the
top-100 predictions of each sRNA for different thresholds on the overall interaction length. (right)
Relative overall runtime to process each parameter set. The dotted gray lines mark respective
values of IntaRNA with default parameters.

no putative seeds are left for prediction, while too soft thresholds (≤ 0.01) show no

significant effect.

For longer seeds (≥ 7 bp), we observe a runtime reduction for minimal unpaired

probabilities of at least 0.001, which results from the reduced seed set considered

for prediction.

When comparing the results for seed length 7 (seedBP7 in Fig. 3) with the seed-

MaxE results from Fig. 2, a similar (x-reversed) curve shape is observed. This

supports our hypothesis that the effects caused by constraining the seed’s overall

energy are mainly resulting from the seed’s accessibility, since unpaired probabilities

P are incorporated as accessibility penalties via −RT log(P ).

Figure 3 (bottom) shows respective results for seeds without GU base pairs. While

the overall recovery rates are higher, similar trends are observed. This plot also

shows that disallowing GU base pairs has stronger effects for longer seeds.

Since the maximal effect of seed accessibility constraints is less independent of

the seed length compared to energy constraints, we conclude that constraining the

seeds’ accessibility is to be preferred over using energy thresholds on the seed.

Interaction constraint - Maximal interaction length

Next we investigated how constraints on the overall interaction influence sRNA tar-

get prediction results. The most stringent restriction limits the interaction’s length,

here in terms of the maximal lengths of the subsequences covered by the inter-

action. This constraints stems from the observation that most known interactions

are relatively short, probably due to steric hindrances [20]. Also concerning maxi-

mal interaction length, defaults from the available tools differ in their constraints.

While IntaRNA uses very soft bounds enabling interactions of up to 150 nt, RNAup

predicts only interactions up to 25 nt (due to the vast computational cost of its

algorithm) and RIsearch2 restricts the maximal length to 30 nt. Since RNAup and

IntaRNA provide similar prediction results [2], it seems sufficient to consider only

short interactions for sRNA target prediction.

Figure 4 supports this hypothesis. If the maximal interaction size exceeds 50 nt, no

significant changes of the recovery rate are observed (60 provides the best results).
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Figure 5 Interaction stability. (left) Relative number of recovered verified targets among the
top-100 predictions of each sRNA for different thresholds on the overall interaction energy. (right)
Relative overall runtime to process each parameter set. The dotted gray lines mark respective
values of IntaRNA with default parameters.

Shorter interactions result in a reduced number of recovered interactions, which is

in accordance with the lower precision (PPV) results of RNAup reported in [2].

As expected, restricting the overall interaction length has a strong impact on

the prediction runtime. Thus, we conclude that using a maximal interaction length

threshold of about 60 provides a good trade-off between target prediction quality

and runtime.

Interaction constraint - Stability (energy) of interactions

Next, as done for seeds, we restricted the minimal stability of the overall interaction,

i.e. we set an upper bound on the overall energy of the interaction (covering both

hybridization and accessibility terms). This puts a constraint on the minimal (ther-

modynamic) stability assumed to be needed for regulatory effects of sRNA-target

interactions.

We observe (exemplarily for seed length 7) no effect for energy thresholds above

−10 kcal/mol. Below, the recovery rate drops significantly. Furthermore, no impact

on the prediction runtime is found. Thus, we conclude that restricting the interac-

tion stability (via energy thresholds) does not improve sRNA target screens.

This result is surprising on the first sight. There is, however, a possible explanation

why constraining interaction energy might have low or no effect. The components

of the overall interaction energy, namely hybridization and accessibility terms, are

negatively correlated with interaction length. Thus, while expanding interactions

typically results in lower hybridization terms, it directly results in increased ac-

cessibility penalties. The latter results from the fact that the unpaired probability

of a sequence is always lower than or equal to the probability of any of its sub-

sequences. Thus, interactions of very different lengths can show the same overall

energy. Therefore, constraining the overall energy shows no effect.

Interaction constraint - Accessibility of interacting regions

Given the results and insights from our interaction stability investigation, we sub-

sequently evaluated the impact of accessibility constraints. This reflects the as-

sumption that fast regulatory effects are due to interactions of accessible regions.

Interactions formed by the latter do not require extensive intra-molecular restruc-

turing of the involved RNAs, which might enable even more stable interactions in
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Figure 6 Interaction accessibility. (left) Relative number of recovered verified targets among the
top-100 predictions of each sRNA for different thresholds on the minimal unpaired probability
(accessibility) of the interacting regions. (right) Relative overall runtime to process each
parameter set. The dotted gray lines mark respective values of IntaRNA with default parameters.
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Figure 7 Maximal loop/bulge size. (left) Relative number of recovered verified targets among the
top-100 predictions of each sRNA for different thresholds on the maximal number of unpaired
bases within inter-molecular interior loops or bulges. (right) Relative overall runtime to process
each parameter set. The dotted gray lines mark respective values of IntaRNA with default
parameters.

thermodynamic equilibrium but take much more time to form. Thus, we restrict

the minimal unpaired probability of interacting sites.

The comparison of Fig. 6 with Fig. 3 (seedBP7) reveals that the effects of restrict-

ing the interaction site’s accessibility are similar to constraining the seed interaction

site only. That is, a maximal recovery is observed for a minimal unpaired probabil-

ity of about 0.01 and higher thresholds result in decreasing prediction performance.

In contrast to the seed site results, a much higher runtime reduction is observed,

which results from the exclusion of many interaction site combinations.

Interaction constraint - Maximal loop/bulge size

RNA-RNA interaction prediction tools typically restrict the size of interior and

bulge loops within the interaction, i.e. the number of unpaired bases between inter-

molecular base pairs, to reduce the computational complexity of the prediction. This

is done under the hypothesis that a loop’s energy relates to the loop size, i.e. the

larger loops show higher energies due to increased structural flexibility. Thus, it is

unlikely that very large loops are part of the optimal interaction and thus excluded

from the search space.
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In Fig. 7 the quadratic runtime effect of the maximal loop length becomes vis-

ible. Surprisingly, we do not observe a significant effect of the loop length on the

prediction quality. Even for extremely small loop sizes of 2, the recovery rate does

not drop.

These findings imply, that most of the top ranked interactions of the target screen

are mainly composed of nearly perfect stackings. Thus, disallowing large loops has

no effect. Nevertheless, these findings are not considering other constraints beside

that the seed has to show 7 base pairs. When combined with other restrictive

constraints, we observe a drop in the recovery rate when the interior loop length

falls below 8 (data not shown).

General settings - ShaKer-enhanced accessibility prediction

IntaRNA can integrate data from structure probing protocols such as dms [21] or

SHAPE [22], which can improve the assumed accessibility profiles and eventually

the predicted interactions [23]. Since this data is unavailable in the general case,

especially in the context of target prediction on a genome wide level, we investigated

the impact of SHAPE data predicted by the recent machine learning approach

ShaKer [24]. It was shown that SHAPE data predicted by ShaKer improves the

accessibility profile prediction of individual RNAs. Since the latter is a key feature

of RNA-RNA interaction prediction, using ShaKer should eventually improve sRNA

target prediction. We investigated three scenarios how SHAPE data predicted by

ShaKer is used: (a) for sRNA sequences only, (b) for target sequences only, and (c)

using predicted SHAPE data for both sequence sets.

When using ShaKer with the original prediction model that was trained on a small

data set of 16 RNAs with known SHAPE data and confirmed structures [24], we

observe (a) a reduced recovery when applied to sRNAs only (4 verified sRNA-target

pairs less recovered), (b) an improvement of +4 pairs when used on targets only,

and (c) no change when applied to both.

Recently, a larger SHAPE data set has been published by A. Mustoe [25] covering

194 RNAs for which no confirmed structure is available. We predicted putative

structures via RNAfold [26] using the SHAPE data and trained a new ShaKer model

for SHAPE prediction. Using this model, we observe (a) one less recovered pair when

applied to sRNAs only, (b) the same improvement (+4) as for the old model when

used on targets only, and (c) one additional verified sRNA-target pair was recovered

when applied to both.

These results suggest that especially the accessibility profiles of target sequences,

which are genomic subsequences around the start codons, can be improved with in

silico SHAPE data. Already, the ShaKer models show promising results even though

both were trained on tentative data sets; one containing only 16 sequences, the other

without reliable structure information. With better training data we expect even

better results.

General settings - Energy parameter set

So far, all predictions were based on the energy parameters introduced by the Turner

lab in 2004 [27], since most RNA structure or RNA-RNA interaction prediction tools

are using these parameters.
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Figure 8 Overall recommendations. (left) Relative number of recovered verified targets among
the top-100 predictions of each sRNA for an increasing set of recommended constraints, i.e. the
constraints accumulate from left to right. (right) Relative overall runtime to process each
parameter set. The dotted gray lines mark respective values of IntaRNA with default parameters.

Here, we tested the performance of other energy parameter sets (that are sup-

ported and shipped with the Vienna RNA package [28]). This covers beside (i)

the Turner-2004 parameters [27] (ii) the old Turner-1999 model [29], (iii) the

Andronescu-2007 model [30], and (iv) Langdon-2018 [31]. While the latter two are

in silico models based on parameter optimization for a large RNA data set, both

Turner lab models are also incorporating experimental data.

Eventually, all models provided a better recovery than the Turner-2004 model. In

detail, we we observe an increase in the number of recovered sRNA-target pairs (ii)

of +3 for Turner-1999, (iii) of +5 for Andronescu-2007, and (iv) of +4 when using

the Langdon-2018 energy parameters.

These results show that– in accordance with expectation –target prediction results

are sensitive to the used energy parameter set. Surprisingly, both in silico models

(iii + iv) provide similar performance, i.e. the improved RNA structure prediction

accuracy of Langdon-2018 over Andronescu-2007 does not translate to sRNA target

prediction.

Overall recommendations

Finally, we tested a final parameter combination that was compiled based on the

individual benchmarks, which provides (limited) insights concerning the interplay of

the different constraints tested. These results provide recommendations for users on

how to constrain the RNA-RNA interaction prediction tool at hand for most efficient

sRNA target prediction. Furthermore, this is useful for algorithm and software

developers to further improve the available programs.

Given our results, we recommend the following constraints:

• canonical seeds of 7 base pairs

• no GU base pairs in seed

• minimal unpaired probability of 0.001 of both seed sites

• maximal interaction length of 60

• maximal interior/bulge loop size of 8

• minimal unpaired probability of 0.001 of both interaction sites
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Figure 8 summarizes the results for increasing sets of the listed constraints for two

energy parameter sets, namely Turner-2004 and Andronescu-2007. For the Turner

model, the overall constraint set provides 30% more verified targets within 20% of

the runtime. Constraints on the seed only provide already a recovery improvement

of 26% in half the computation time. Further constraints on the overall interac-

tion mainly reduce runtime with the exception of the minimal accessibility of the

interaction site, which finally improves the recovery rate to its maximum.

We observe the same runtime behaviour for Andronescu-2007 as for the Turner-

2004 model but the impact on the recovery is much less. While seed constraints still

provide improvements, interaction constraints do not increase the recovery rate.

This shows that (parts of) our recommendation are restricted to the Turner model.

It remains open whether the Andronescu-2007 model provides less potential for

improving sRNA target prediction results or if our recommended values are not

suited for this model and need a dedicated investigation and optimization.

Comparison to alternative tools

To test whether the observations for IntaRNA translate to other sRNA target pre-

diction tools, we applied TargetRNA2 [17] and RIsearch2 version 2.1 [8], since both

tools support seed constraints. Other approaches like RNAup or RNAplex with high

prediction accuracy [2] allow only for the restriction of interaction length, for which

we did not observe significant impact on prediction quality (see above), such that

they were omitted from comparison.

For TargetRNA2, only a webserver is available, which supports the restriction of

seed and overall interaction length. Since the webserver does not support direct tar-

get sequence upload, we selected the respective organisms and set target sequence

extraction to the values used for our data set. Due to time-outs and thus no results

for many parameter setups tested within this study, only limited results can be

reported. RIsearch2 allows to constrain the number of seed base pairs and whether

or not GU base pairs are allowed within the seed. The overall interaction length

cannot be confined, only the maximal seed extension (per side). Since RIsearch2

implements a very simplified energy model, constraints on the overall interaction

energy cannot be well related to IntaRNA results. Given these observations, com-

parison was restricted to seed length and seed stability in terms of prohibition of

GU base pairs within seeds.

The results are provided in Fig. 9. The plot shows the overall superiority of

IntaRNA and validates that prohibiting GU base pairs within seeds can significantly

improve prediction accuracy. The latter is in accordance with the sensitivity analy-

sis for TargetRNA(1) [19]. Since we see a high correlation of the seedNoGU recovery

results of IntaRNA and RIsearch2 with the values of TargetRNA2, we assume that

the latter also applies per default a ’seed-no-GU’ constraint, which is neither doc-

umented within the respective literature or webserver nor available as webserver

option. In contrast to IntaRNA, both competitors yield highest recoveries for seed

lengths of 9-10. Since both tools apply simplified energy models to speedup predic-

tions, these results suggest that such models benefit from stronger seed constraints

to reduce false positive predictions.
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Figure 9 Seed-length impact for different sRNA target prediction tools. Relative number of
recovered verified targets among the top-100 predictions of each sRNA for various seed lengths
and tools. Since TargetRNA2 defaults restrict the maximal interaction length to 20, comparable
results using a similar constraint for IntaRNA are shown by IntaRNA intLenMax20. The dotted
gray line marks the recovery of IntaRNA with default parameters.

Conclusions
The identification of putative sRNA targets based on RNA-RNA interaction pre-

diction tools is often complicated due to the false positives (non-targets). Thus,

different constraints have been proposed to improve the prediction results. Most

successful was the incorporation of the interaction sites’ accessibility and the re-

quirement for stable seed subinteraction [2]. While available tools implement differ-

ent (combinations of) constraints and default thresholds, it remains unclear which

constraints and values are most effective and which are less important. Thus, we fo-

cus on accessibility-based RNA-RNA interaction approaches with seed constraints

like IntaRNA, RIsearch2, or RIblast.

Here, we investigated the impact of various constraints on seed, interaction and

accessibility features to tackle this problem. The benchmark is exemplarily done

using IntaRNA, which provides a flexible framework to test and combine different

constraints. Using a single tool enables a comparability of the results and thus

an abstraction from the absolute IntaRNA-specific performance to general trends

induced by the respective constraints.

Thus, the benchmark is based on an sRNA target screen pipeline for two organ-

isms. While this limits the generality of the study, it allows for a thorough investi-

gation of the effects caused by the different parameter sets. Since most interaction

details from the literature are based on single, arbitrary RNA-RNA interaction

prediction tools, it is currently hard to impossible to evaluate the correctness of

reported interaction details on a large scale. The prediction quality is assessed in

terms of recovery of verified sRNA-target pairs from the literature rather than eval-

uation on an inter-molecular base pair level following [6, 19, 20]. That way, a lower

bound on the true positives within the top-ranked predictions is measured.

In our study, we observed that seeds of length 7-8 provide the best results, which

can be significantly improved when disallowing GU base pairs. These results are in

line with but much simpler than the complicated seed-length-dependent GU/GC-

content handling of sTarPicker [12]. Furthermore, our results suggest that the

efforts done in RIsearch2 [8], to allow for GU base pairs within seeds, might be not

needed and thus even better runtime and prediction performance might be possible.
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We conclude that disallowing GU base pairs in seeds provide a powerful constraint

on the seed stability that is much less dependent on the seed length when com-

pared to seed energy constraints. Thus, ’no GU seed base pairs’ is more general

and its application is less likely to cause an overfitting of the used threshold value.

Furthermore, we could show that the accessibility of the seed site is also impor-

tant for the precision of the target prediction. This supports the hypothesis that

seed interactions indeed relate to an initial stable subinteraction that subsequently

grows into the final overall interaction. Finally, we have shown that low bounds

on the maximal interaction length as well as the size of inter-molecular loops still

allow high quality predictions while providing strong runtime reductions. The latter

outcome is restricted to approaches without early stop criteria as implemented e.g.

in RIblast. Eventually, we could show that sRNA target prediction can be signif-

icantly improved just by changing the parameter set. That is for IntaRNA we can

recover 30% more verified sRNA-target pairs within only 20% of the runtime with

appropriate parameters.

Methods
Formal preliminaries

We are focusing on accessibility-based RNA-RNA interaction prediction. To this

end, an accessibility profile for each RNA S has to be computed, which is typi-

cally based on unpaired probabilities Pu(i..j) [32, 33] for respective subsequences

Si..j . These translate into accessibility penalty terms ED = −RT log(Pu) (with gas

constant R and temperature T ) that encode how much energy is needed to free

the respective subsequence from intra-molecular base pairing to enable interaction

formation. The stability of an RNA-RNA interaction Ii..jk..l is then evaluated based

on the sum of its hybridization energy Eh(Ii..jk..l) defined by its inter-molecular base

pairs and two accessibility penalties ED1
i..j and ED2

k..l for each RNA, respectively.

Both energy and unpaired probability computation are based on the same nearest-

neighbor energy model for non-crossing secondary structures using a given set of

energy parameters (e.g. Turner-2004 [27]). Within this study, we consider only inter-

actions I that contain a seed subinteraction Is, which is here defined as a canonical

helix formed by a defined number of base pairs (named the seed length). For further

formal details on the energy model, probability computation, and technical details

of the approaches we refer to [6, 34, 35].

Data set

Within this study, we use the benchmark data set and pipeline that we introduced

in [20], which enables sRNA target screens for both Echericha coli (GenBank ac-

cession number NC 000913) and Salmonella typhimurium (NC 003197). The data

set consists of homologous sequences of 15 sRNAs expressed in both organisms.

As all these sRNAs have been shown to regulate translation of their targets via

RNA-RNA interaction near the start codon [1, 15], we are mostly interested in in-

teractions for these regions. Thus, target sequences are compiled by extracting the

genomic region from 200 nt upstream up to 100 nt downstream of the start codon of

each protein-coding gene. The data set contains 4,319 and 4,552 targets for E.coli

and S. typhimurium, respectively. Furthermore, we extracted 149 experimentally

verified sRNA-target pairs from the literature (supplementary material), which we

want to recover within the benchmark.
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Benchmarking pipeline

To measure the prediction performance to compare different constraints and pa-

rameter sets, we follow the pipeline used in [6, 19, 20]. That is, we run IntaRNA for

each sRNA-target combination and store the respective minimal free energy of the

most stable interaction. For each sRNA, we identify the 100 targets with the most

stable interaction (lowest energy) and accumulate how many of the verified inter-

actions are among these top-100 predictions (detailed recovery information within

the supplementary material). This number of recoveries provides a lower bound on

the number of true targets within the top-100 predictions of all sRNAs. If a con-

straint or parameter set reduces the recovery rate, this can either be based on (i)

an increase of false positive predictions, (ii) a decrease of true positives (verified

interactions) among the top ranks or (iii) a combination of both, which can not be

distinguished.

Computational performance is measured via the overall runtime needed to run

the benchmark once for all sRNAs and organisms for a given parameter set. This

directly relates to the computational cost of in silico target screens. Runtimes ex-

clude accessibility computation (using precomputed unpaired probabilities) if not

stated differently.

ShaKer-based precomputations

ShaKer trains a model on triplets of sequence, structure and SHAPE data. The

sequence and structure form a graph whose nodes are vectorized via a graph kernel

scheme [36]. Together with SHAPE reactivity values as targets, a regression model

is trained. For the prediction multiple structures are sampled [28] and annotated

by the model. These annotations are weighted by the probabilities of the structures

to obtain the final reactivity values for a sequence.
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