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ABSTRACT  
MicroRNAs (miRNAs) can serve as activation signals for membrane receptors, a recently discovered function that is 
independent of the miRNAs’ conventional role in post-transcriptional gene regulation. Here, we introduce a machine 
learning approach, BrainDead, to identify oligonucleotides that act as ligands for single-stranded RNA-detecting Toll-
like receptors (TLR)7/8, thereby triggering an immune response. BrainDead was trained on activation data obtained 
from in vitro experiments on murine microglia, incorporating sequence, intra-molecular structure, as well as inter-
molecular homo-dimerization potential of candidate RNAs. It was applied to analyze all known human miRNAs 
regarding their potential to induce TLR7/8 signaling and microglia activation. We validated the predicted functional 
activity of subsets of high- and low-scoring miRNAs experimentally, of which a selection has been linked to Alzheimer’s 
disease. High agreement of predictions and experiments confirms the robustness and power of BrainDead. The results 
provide new insight into the mechanisms how miRNAs act as TLR ligands. Eventually, BrainDead implements a generic 
machine learning methodology for learning and predicting functions of short RNAs in any context. 
 

INTRODUCTION 
MicroRNAs (miRNAs) are very short non-coding RNAs (~22 nt) that predominantly bind to the 3´ untranslated regions 
of mRNAs to regulate their expression post-transcriptionally. To date, more than 2,000 miRNAs have been discovered 
in humans, and it is believed that they collectively regulate about one third of the genes in the human genome (1). 
miRNAs play important roles in development and physiology, and have been linked to various human diseases. These 
days these small RNAs are increasingly pursued as both clinical diagnostics and therapeutic targets relevant in many 
medical fields, ranging from cancer to neurodegenerative disease. Particularly, miRNAs are considered as potential 
biomarkers for diseases and treatment responses (2, 3). Under certain conditions such as cellular stress and 
malignancy, miRNAs are released from cells, thereby potentially acting as extracellular signaling molecules enabling 
intercellular communication (4, 5). In line with this, it has been recently discovered that some extracellular miRNAs 
directly activate membrane receptors such as Toll-like receptors (TLRs) (4, 6, 7), thereby expanding the function of 
miRNAs beyond their conventional role in gene regulation.  
TLRs are pattern recognition receptors detecting both pathogen-associated molecules, and damage-associated 
factors, such as those derived from dying cells and tumor tissue. Upon activation, TLRs signal through a complex array 
of effector proteins, resulting in an inflammatory response (8, 9). Among the different TLR family members, TLR7 and 
TLR8 (TLR7/8) primarily recognize single-stranded RNA (ssRNA) 40 derived from human immunodeficiency virus-1 
(HIV-1). The RNA’s GU-rich motifs are essential for species-specific TLR7/8 recognition (10–12), and a specific activating 
consensus sequence composed of GUUGUGU repeats (G, guanosine; U, uridine) was linked to the degree of receptor 
activation (13).  Forsbach et al. systematically narrowed down GU-rich and AU-rich nt tri- and tetramers to be crucial 
for activation of human TLR7/8. Furthermore, diverse motifs exhibit specific receptor preferences, thereby triggering 
the release of cytokines, such as TNF-α and IFN-α (14). TLR7 was recently found to detect host-derived RNA, including 
miRNAs (4, 6, 15). let-7 miRNA, when extracellularly present in the brain, activates TLR7 in microglia, the resident 
immune cells in the central nervous system (CNS). Consequently, microglia release inflammatory molecules, and cause 
neurodegeneration in the cerebral cortex (4, 16). Moreover, cerebrospinal fluid of patients with Alzheimer’s disease 
(AD), the most common neurodegenerative disease in humans, exhibits elevated levels of let-7 copies (3, 4, 17). 
Overall, these findings suggest a mechanistic contribution of the interaction between miRNAs and TLR7 to 
neurodegenerative processes.  
Not only pre-miRNA, but also mature miRNAs can form stable secondary structures that potentially are not only 
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important for their extracellular stability, but may also affect the presentation of specific sequence motifs to TLR7/8 
(18). To reduce time- and cost-intensive experiments on the mechanism of the interaction between miRNAs and TLRs 
in a given disease context effectively, reliable in silico prediction methods are needed for the identification of 
oligonucleotides serving as receptor ligands and activating an immune cell response. Previous studies on in silico 
classification of nt sequences have been mainly focused on genomic DNA or RNA within the genomic context. Lee et 
al. introduced a method to predict putative enhancers in the mouse and human genome based on DNA sequence (19). 
kmer-SVM is a Support Vector Machine (SVM) that uses a string kernel operating on subsequences of length k, so 
called k-mers (20). Most of the follow-up algorithms focused on the identification of DNA genomic elements, for 
instance, from large Chip-seq datasets (e.g. gkmSVM (21)) or using DNA-specific structure properties (e.g. PseKNC 
(22)). Zhang et al. proposed a solution for identification of piwi-interacting RNAs using k-mer features from the genome 
sequence without considering structure (23), while iMcRNA uses sequence- and structure-based features to identify 
precursor miRNAs via a pseudo amino acid composition approach (24). The vectorization server repRNA  (25) generates 
k-mer and pseudo-structure features of RNAs based on reduced representation of their minimum-free-energy (mfe) 
structures to enable machine learning tasks. However, to the authors’ knowledge, no accessible solution for the 
classification of short RNAs potentially serving as receptor ligands exists so far. Also, it is often desired to integrate 
previous knowledge of the applied features to better interpret and link the prediction process with knowledge from 
literature and other experimental sources that cannot easily be incorporated without an interpretable methodology. 
The let-7 miRNAs’ UUGU motif represents the required minimum motif to induce cytokine release from microglia 
through TLR7 (16). Whether structural features of a given oligonucleotide, e.g. a miRNA, are beneficial for TLR7/8 
activation/binding or potentially mask/inhibit the association to its binding sites remains unexplored to date. Still, 
secondary structure should be considered as an essential feature for predicting an oligonucleotide’s potential to 
activate TLR7/8. As mature miRNA is very short, transient hairpin structures can be formed. Thus, bioinformatics 
solutions designed to classify highly structured RNA molecules (26) are not suitable to predict oligonucleotides as 
receptor ligands. Instead, a fine-tuned flexible definition of structuredness accompanied by sequence information is 
required. Particularly, as homo-dimerization likely occurs when miRNAs are released in larger quantities (18), base-
pairing potential in homo-duplex formation should be taken into account by a model aiming to predict miRNAs as 
extracellular signaling molecules. 
The major aim of this work was to identify miRNAs that act as TLR7/8 ligands in human and mouse. Since an 
experimental validation of a vast number of miRNA candidates able to activate TLR7/8 within a reasonable time frame 
is cumbersome and costly, we applied BrainDead, a novel machine learning (ML) approach for the identification of 
TLR7/8-activating miRNAs. The methodology assesses an RNA’s accessibility via its ensemble of most stable structures 
and combines this information with k-mer feature generation for a user-defined set of motifs. BrainDead was trained 
on a smaller set of previously validated miRNAs that in their extracellular form activate microglia, and used on all 
known human miRNAs. The predicted functional activity of a subset of in total 20 high- and low-scoring miRNAs, which 
in part have been previously linked to AD, were tested for their capacity to activate murine TLR7, as well as human 
TLR7 and human TLR8 expressed in HEK TLR reporter cells. We found that oligonucleotide-induced activation of TLR7/8 
operated sequence-specifically and preferred binding of unpaired bases. The experimental validation results well 
support the in silico classification of BrainDead, highlighting its power to drive and support experimental design and 
studies. 

 

MATERIALS AND METHODS 
BrainDead pipeline 

BrainDead is a machine learning (ML) approach to classify short RNA sequences/oligonucleotides such as miRNAs 
based on sequence and secondary structure features. The workflow is depicted in (Figure 1). First, BrainDead analyzes 
the occurrence of k-mers within different structural contexts. The respective feature sets of each RNA are 
subsequently used to train a machine learning model based on the available pre-classification. Four sets/types of 
features are supported by the BrainDead pipeline. Sequence features are defined as the presence or absence of short 
subsequences or their count. These so-called k-mers, of which k defines the length of the subsequence, are problem-
specific. Their selection is discussed in a subsequent section. The collected data defines the feature set ‘k-mer in any 
context’. 
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Figure 1. Depiction of BrainDead’s workflow of feature generation (center), model training, and candidate 
classification (bottom). 

 

The considered k-mers are assumed to be important for the RNAs’ function, which typically involves direct interaction 
with target molecules. Thus, the structural context of each k-mer is important, i.e. whether it occurs within an 
unstructured/single-stranded region, or is involved in intra-molecular structure formation. To this end, the pipeline 
predicts all stable putative secondary structures via RNAsubopt (27). A structure is considered stable if its predicted 
free energy is below a user-defined absolute threshold (default -3 kcal/mol). If a k-mer is not involved in base-pairing 
in any stable structure, it is considered ‘unpaired in intra-molecular context’. This defines a second set of features that 
encodes k-mers in unstructured regions. 
We integrated a novel approach to consider inter-molecular interactions under the assumption that oligonucleotides 
are present in high concentrations, which can occur in cells or extracellularly. When great amounts of mature miRNAs 
are released, it is likely that intermolecular homo-duplex interactions are formed (18). The homo-duplex features are 
computed by predicting suboptimal homo-duplex RNA-RNA interactions using IntaRNA (28), with a subsequent 
‘unpaired in homo-duplex’ feature generation analog to the primary single-stranded features. The procedure is 
illustrated in (Figure 2), and an example for a mature miRNA sequence from the training dataset is provided in (Figure 
S2). 
 

 

Figure 2. Illustration of context-sensitive k-mer counting for feature generation. One of the two occurrences of a 
fictive k-mer (blue bar) within an RNA (gray bar) is masked by intra-molecular structure formation while both 
locations are involved in homo-dimerization. See Supplementary Material for a miRNA example. 

 
Finally, both intra- and intermolecular structure information is combined into a fourth feature set encoding ‘k-mer 
unpaired in any context’. The feature sets (and the positions of each k-mer) are generated by the first module of the 
pipeline and provide the database for training and application of BrainDead’s ML models. 
To train a model, a set of RNAs has to be provided that is accompanied by the reference labels or values for the 
biological function under study (e.g. whether the RNA can trigger some effect or not). In addition, the set of k-mers 
has to be given. One can provide the whole set of k-mers of specific lengths (e.g. all 3-mers or 4-mers). Alternatively, 
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users can provide a set of kmers that are known to be important in the target problem either from previous studies or 
following a feature-selection strategy (see Results). The latter approach can boost the classification performance 
through pruning the feature space. The motifs are used to generate the parameter space of the model and to integrate 
biological knowledge. Based on this, per default, a support vector machine (SVM) is trained, but other models such as 
logistic regression from the scikit package (29) can be selected. The SVM and its parameterization were chosen based 
on a comparative evaluation of four logistic and SVM models with and without hyperparameter optimization. Further 
details are discussed within the Supplementary Material. 
Finally, the trained BrainDead model is used for an automated classification of RNAs with unknown activity. For each 
such candidate RNA, the feature sets are generated and the ML model is applied for its classification (i.e. its putative 
functional impact). The source code is freely available at https://github.com/BackofenLab/BrainDead.  
 

BrainDead web server 

To simplify BrainDead’s application for experimentalists, a web server is freely available as part of the Freiburg RNA 
tools (30) at http://rna.informatik.uni-freiburg.de/BrainDead/. 
As input for training the ML model, the server only needs a set of sequences in FASTA format and a list of k-mers.  Each 
sequence header from the training set must have a label from a binary pre-classification (+-1). This data is used to 
automatically train a ML prediction model. The generated feature tables, as well as training statistics are available for 
download and inspection. This model is applied on a user-provided set of candidate sequences with unknown 
classification to predict their outcome. Their classification is visualized in the result page. 
The web server is supplemented with the data obtained from our analysis of immune cell activation, which is discussed 
in the following. 
 
Microglial activation training data 

Immune response data was obtained from the exposure of primary microglia derived from C57BL/6 mice to synthetic 
oligoribonucleotides. As activated microglia release inflammatory molecules, also in response to oligoribonucleotides 
that induce TLR7 signaling (4, 15), we determined TNF-α amounts in the microglial supernatant after 
oligoribonucleotide treatment via ELISA, thereby assessing the degree of microglia activation. We included 50 
oligoribonucleotide sequences with a large fraction of mature miRNA origin of which we analyzed concentrations of 
TNF-α released from microglia, after 24 h exposure to the individual oligoribonucleotide. Setting a cut-off of Fold 
Change > 12 compared to unstimulated control condition relying on at least two biological repetitions, we defined 22 
of the tested oligoribonucleotides as microglia-activating and the remaining 28 as non-activating miRNAs as reference 
classification for training BrainDead’s ML models (Table S1). These activation data is based on previous in-house 
experiments (4, 15, 31) and (Wallach et al., unpublished).  
 
k-mers for microglial activation training data 

We generated an exhaustive feature set covering all possible k-mers of lengths 1-4 for the analyzed miRNAs of the 
murine microglia training set, since it was unknown what sequence k-mers and which structure features are important 
for classifying microglia activation. The range of lengths was chosen based on previous findings concerning sequence 
motives activating TLR7/8, considering both structural (39) and sequential aspects (14), to limit the search range, and 
to avoid long k-mers that might be too specific and not represent a general pattern. Given the reference classification 
of the training data, the resulting feature set was subsequently analysed to identify k-mer subsets associated with the 
biologically validated reference classification of the training set. We scored the features based on their importance for 
a robust classification. To this end, we applied the ReliefF algorithm (32) as implemented in the ReBATE package (33) 
and extracted the top-ranked features according to ReliefF scores as detailed in the Supplementary Material. 
 
miRNA candidate selection for verification 

We applied the BrainDead pipeline on all known human miRNAs to evaluate BrainDead predictions for the case of 
microglial activation, as experimentally assessed and described above. To this end, BrainDead predictions for 2,656 
human miRNAs from mirBase v22.1 (34) were ranked by BrainDead’s prediction score. The highest- and lowest-scored 
five miRNAs from that list were selected as candidate list 1 for verification. Noteworthy, the sequences from the 
candidate list do not overlap with the training data. We furthermore extracted the five highest-/lowest-scored 
candidates from the subset of human miRNAs that are linked to AD, serving as an example for a common disease 
affecting the human brain, as the second set of candidates. This selection was in particular motivated by our previous 
findings on let-7b-5p, which is (i) able to extracellularly induce mTLR7 signaling, thereby triggering inflammation and 
neurodegeneration in the CNS and (ii) specifically elevated in cerebrospinal  fluid of AD patients (4, 17). Therefore, the 
overall list was pruned to miRNAs with the tag ‘Alzheimer’s’ and ‘increased expression’ in the disease annotation 
database PhenomiR v2.0 that includes expression profiles of the stored disease-associated miRNAs (35). Table S4 
provides details for both candidate lists that cover in total 20 miRNAs. 
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Validation experiments 

Oligoribonucleotides 
To validate the predicted miRNAs’ activation of immune cells and to test their potential to induce mTLR7 and/or 
hTLR7/8 signaling, we used miRNA mimics. Oligoribonucleotides were modified with 5´ phosphorylation and 
phosphorothioate bonds in every base (Integrated DNA Technologies, Coralville, IA, USA). Sequence information for 
experimentally tested miRNAs is provided in (Table S4). A non-activating oligoribonucleotide containing a mutated let-
7b sequence, referred to as control in (Table S1), served as negative control for sequence-specific microglial activation 
and HEK TLR7/8 reporter cell induction (4). 
 
Mice and cell lines 
C57BL/6 mice were bred at the FEM, Charité – Universitätsmedizin Berlin, Germany. All animals were maintained 
according to the guidelines of the committee for animal care. All animal procedures were approved by the Landesamt 
für Gesundheit und Soziales (LAGeSo) Berlin, Germany. HEK-BlueTM cells expressing mouse TLR7, human TLR7, or 
human TLR8, as well as the respective control cell lines HEK-BlueTM Null2-k, Null1-k and Null-1 (Invivogen, San Diego, 
CA, USA) were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen #41965062, Carlsbad, CA, USA). 
DMEM was supplemented with 10% heat-inactivated fetal calf serum (FCS, Gibco #10082-147, Thermo Fisher 
Scientific, Waltham, MA, USA) and penicillin (100 U/ml)/streptomycin (100 μg/ml; Gibco #15140-122, Thermo Fisher 
Scientific, Waltham, MA, USA). Cells were cultured at 37°C in humidified air with 5% (v/v) CO2. 
 
Primary cultures of microglia 
Primary cell cultures of microglia were generated as previously described (36). Briefly, microglia were isolated from 
mouse brains on postnatal day 1-4. Meninges, superficial blood vessels, and cerebellum were removed from cortices. 
Cortices were then homogenized with 3 ml Trypsin (2.5%; Gibco #15090-046, Thermo Fisher Scientific, Waltham, MA, 
USA) for 25 min at 37˚C. Trypsin reaction was stopped with FCS (Gibco #10082-147, Thermo Fisher Scientific, Waltham, 
MA, USA). 100 µl DNase (Roche #ROD 1284932, Basel, Switzerland) were added. Cell suspension was centrifuged at 
1200 rpm at 4˚ C for 5 min. Pellets were resuspended in DMEM (Invitrogen #41965062, Carlsbad, CA, USA) 
supplemented with 10% FCS (Gibco #10082-147, Thermo Fisher Scientific, Waltham, MA, USA) and 1% 
penicillin/streptomycin (Gibco #15140-122, Thermo Fisher Scientific, Waltham, MA, USA), mechanically disassociated, 
and passed through a 70-µm-cell strainer. Microglia were grown in T75 flasks for 10-14 d in 12 ml of DMEM (Invitrogen 
#41965062, Carlsbad, CA, USA) at 37˚C in humidified air with 5% (v/v) CO2. Cells were seeded in 96-well plates. On the 
following day cells were transfected with the synthetic oligonucleotides (10 µg/ml) or control oligonucleotide (10 
µg/ml) complexed to the transfection agent LyoVec (InvivoGen #LYEC-RNA, San Diego, CA, USA) according to the 
manufacturer’s instructions.  
 
HEK-Blue TLR activation assays 
Human Embryonic Kidney 293 Blue (HEK-Blue) SEAP reporter cells overexpressing murine TLR7, human TLR7, or human 
TLR8 were used in activation assays. The parental control cell lines HEK-Blue Null2-k, Null1-k and Null1 were used as 
control. All cell lines were purchased from InvivoGen (San Diego, CA, USA). Cells were seeded into 96-well plates (5 x 
104/well). After 24 h, cells were transfected with the synthetic oligonucleotides (5 µg/ml) or control oligonucleotide 
complexed to the transfection agent LyoVec (InvivoGen #LYEC-RNA, San Diego, CA, USA) according to the 
manufacturer’s instructions. Cells were stimulated with indicated agents dissolved in HEK-Blue detection reagent 
(InvivoGen #hb-det2, San Diego, CA, USA). Each condition was performed in duplicate. The reporter protein SEAP was 
detected using the Varioskan Flash device (Thermo Fisher Scientific, Waltham, MA, USA) at a wavelength of OD 655 
nm. 
 

RESULTS 
Sequence-structure features associated with microglial activation 

Using feature selection techniques, we identified a specific set of k-mers that are important for the classification of 
microglial activation, which was considered to represent an immune cell response.  The identified k-mers were AA, 
AGA, AGGU, AGU, AGUU, CU, GAA, GAGG, GG, GGG, GU, GUU, UGA, UGU, UU, UUG, UUGU, and UUU. For most top-
ranked k-mers, occurence in a structure-free context, i.e. unpaired/accessible within the folded structure, was 
important (see Figure S3a), indicating the impact of structure on activation. However, homo-dimerization (inter-
molecular pairing of the same miRNA species) was found to be less important. k-mers that correlate with microglial 
activation aligned around central motifs (G)UU(G) and AGU, while k-mers that correlate with non-activation aligned 
around (U)GG(A) and AGAA. Further details on the k-mer selection and their properties are provided in the 
Supplementary Material. 

Training of the BrainDead model on microglial activation 
We trained a ML classifier to learn a model of microglial activation and to predict oligonucleotides as TLR7/8 ligands 
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given their extracellular mode of function and sequence. The model uses the k-mers identified in the previous step in 
each structural context (any, single-stranded, unpaired in homo-dimer, unpaired in both structure and dimer). As 
applied for the training model, we evaluated several ML classifiers with a stratified 3-fold strategy on the training data 
to identify the suitable algorithm. Among the scikit models, support vector machines (SVM) and logistic regression 
(logit) kernels had the best classification score measured by F-score as the harmonic mean of precision and recall (see 
Supplementary Material Section 3). Both SVM and logit achieved high F-scores. However, since it was crucial for our 
experimental validation studies to have a low false-positive rate, the model with highest precision, i.e. SVM-rbf, was 
selected as the final model for the prediction of microglial activation. 
 

BrainDead predictions and candidate selection 
Figure 3 summarizes the distribution of predicted scores with respective activation potential classification of all human 
miRNAs identified so far. The major portion of human miRNAs has exhibited a low BrainDead score (< 0.3). This was 
expected, since only a limited subset of human miRNAs are anticipated to function as microglia-activating receptor 
ligands. The learned model has set the score 0.54 as the ligand classification threshold. While scores higher than the 
threshold are predicted to be activating, we would expect candidates scored in the boundary region as unlikely to 
activate despite being predicted as positive. The bottom plot in Figure 3 shows the score distribution of the 93 miRNAs 
that are listed with the tags ‘increased expression’, and ‘Alzheimer’ in the PhenomiR database. Their scores are 
distributed over the whole BrainDead scoring range. 
 

 

 

Figure 3. Distribution of BrainDead scores and predicted activation potential (orange and blue) for all 2,656 human 
miRNAs annotated in mirBase. The bottom histogram (light blue) provides the distribution of 93 BrainDead scores 
of Alzheimer’s disease (AD)-associated miRNAs according to the PhenomiR database. 

 
The “high-5” miRNAs with highest activation score among all human miRNAs were: hsa-miR-6888-3p, hsa-miR-374b-
3p, hsa-miR-130b-5p, hsa-miR-4288, hsa-miR-5701; the “low-5” were: hsa-miR-4727-3p, hsa-miR-3198, hsa-miR-361-
5p, hsa-miR-422a, and hsa-miR-541-3p (list 1, Table S4). The “high-5”-scored human miRNAs associated with AD were: 
hsa-miR-30a-3p, hsa-miR-9-5p, hsa-miR-30e-3p, hsa-miR-375-3p, hsa-miR-381-5p; the “low-5” were: hsa-miR-191-5p, 
hsa-miR-216a-3p, hsa-miR-501-3p, hsa-miR-204-3p, and hsa-miR-422a (list 2, Table S4). Noteworthy, both high- as well 
as low-scored miRNAs from list 2 are AD-associated. Both lists were used for the downstream experimental 
verification. Further details are provided in the Supplementary Material. 
 
Experimental candidate verification 

For validation, we tested all miRNA candidates from list 1 and list 2 (in total 20 miRNAs) using primary mouse microglia, 
i.e. the same cellular system that the microglial activation training data is based on. To do so, microglia isolated from 
C57BL/6 (wild-type, WT) mice were exposed to miRNA mimics for 24 h. Subsequently, supernatants were collected, 
and TNF-α concentration was measured via ELISA (Figure 4, Table S5). Four out of the five top-scored candidates 
predicted by the BrainDead pipeline from list 1 significantly induced TNF-α release from microglia (Figure 4a, blue 
bars), whereas all low-5 candidates did not induce significant TNF-α release (Figure 4a, orange bars). In addition, all 
tested high-5 AD-associated miRNAs from list 2, but none of the corresponding low-5 candidates, significantly induced 
TNF-α release from microglia (Figure 4b). In both experimental approaches testing miRNA candidates of list 1 and list 
2, the non-activating mutant control (ctrl) oligonucleotide did not induce TNF-α production in microglia.   
 



 

Figure 4. Experimentally assessed TNF-α release from microglia.  (a) list 1 - miRNA candidates that were selected 
based on BrainDead score only and (b) list 2 - AD-associated miRNAs. miRNAs are arranged by ascending BrainDead 
prediction score. Blue and orange coloring refers to BrainDead prediction, i.e. activating (high-5) and non-activating 
(low-5), respectively. Control conditions are indicated by gray color. Microglia were exposed to 10 µg/ml of the 
indicated miRNA mimic for 24 h. The established TLR7 agonist loxoribine (1 mM) andthe TLR4 agonist 
lipopolysaccharide (LPS, 100 ng/ml) served as positive control for microglial activation. Control mutant 
oligonucleotide (10 µg/ml), unstimulated cells, and the transfection agent LyoVec were used as negative control. 
Bars represent mean values +/- SEM (n = 4) of depicted measurements (dots). **P < 0.01; ****P < 0.0001 compared 
to unstimulated condition, two-tailed Student’s t-test. 

 

To further validate the oligonucleotide-induced effects observed in microglia and to analyze the miRNA candidates’ 
capacity to activate mTLR7, we made use of HEK-Blue reporter cells overexpressing mTLR7. In these cells, the Secreted 
Embryonic Alkaline Phosphatase (SEAP) reporter gene was inserted directly after the NF-𝜅𝜅B/AP-1-promoter, a well-
established output of TLR7/8 signaling (8). SEAP activity was determined via colorimetric change of the SEAP-substrate 
reporter media. Four out of high-5 miRNAs of list 1, miR-6888-3p, miR-130b-5p, miR-4288, and miR-5701, significantly 
activated mTLR7 (Figure S6a). Exposure of mTLR7 HEK reporter cells to the high-5 list 1 candidate miR-374b-3p led to 
NF-kB induction compared to control, although not reaching statistical significance (Figure S6a). Exposure of mTLR7 
HEK reporter cells to the low-5 candidates of list 1 did not induce any response (Figure S6a). The high-5 AD-associated 
miRNAs of list 2, miR-30e-3p, miR-375-3p, and miR-381-5p significantly induced mTLR7 reporter activation (Figure 
S6b). The high-5 AD-associated candidates miR-9-5p and miR-30a-3p induced NF-kB responses compared to control, 
although not reaching significance. Out of the low-5 AD-associated candidates of list 2, only miR-216a-3p significantly 
induced mTLR7 activation, while all other tested miRNAs of the low-5 AD-associated candidate list 2, miR-422a, miR-
204-3p, miR-501-3p, and miR-191-5p did not induce receptor activation (Figure S6b). Results on activation of mTLR7 
expressed in HEK TLR reporter cells (see Figure S6, Figure 5) were in line with the experiments on microglial activation 
described above (see Figure 4, Figure 5). For instance, miR-4288 (classified as activating miRNA) consistently induced 
strong responses in both cell systems compared to control condition, while only a weak response in terms of microglial 
activation and mTLR7 induction was assessed in the case of miR-374b-3p (also classified as activating miRNA). A 
consistent trend is observed in Fig. S7, which shows in total 38 miRNAs that were experimentally tested for receptor 
activation within our study. This includes both the 20 candidates classified by BrainDead (see above) as well as 18 
additional miRNAs from the ML training data set that were also analyzed in the HEK mTLR7 reporter cell system. The 
similar and consistent results obtained from the experiments analyzing activation of mouse microglia and HEK TLR 
reporter cells overexpressing mTLR7 indicate that mouse microglial activation is likely mediated through mTLR7 
signaling.  

To transfer the results obtained from the ML approach described above to the human system, we analyzed the miRNA 
candidates of list 1 and list 2 with respect to their potential to activate human TLR7 and/or human TLR8 using HEK 
reporter cells overexpressing hTLR7 or hTLR8. As TLRs are highly conserved among species, we expected the model 
trained on mouse microglia data as being able to predict miRNAs that activate human TLRs. Indeed, testing for hTLR7 
activation we observed a similar response pattern (Figure S8) as observed for mTLR7 activation (see Figure S6) 
described above. From list 1, hTLR7 was significantly activated by the high-5 ranked miR-6888-3p, miR-4288, and miR-
5701, while miR-374b-3p and miR-130b-5p incubation resulted in receptor activation by trend compared to control. 
In contrast, none of the tested low-5 miRNA candidates induced hTLR7 activation (Figure S8a). Among the high-5 AD-
related miRNAs (list 2), miR-9-5p induced significant hTLR7 activation, while exposure to miR-30a-3p, miR-30e-3p, miR-
375-3p, and miR-381-5p led to NF-kB activation compared to control, although not reaching statistical significance 

https://www.zotero.org/google-docs/?NI71mQ


(Figure S8b). miR-501-3p of list 2, categorized as low-5 candidate, significantly induced hTLR7, while miR-191-5p, miR-
216a-3p, miR-204-3p, and miR-422a from this test group did not induce any response (Figure S8b).  

Testing for hTLR8 activation revealed that four out of the five high-5 list 1 candidates, namely miR-6888-3p, miR-374b-
3p, miR-130b-5p, and miR-5701, significantly induced hTLR8 reporter activation, while miR-4288, classified as 
activating candidate, and all tested miRNAs of the low-5 list 1 candidate group, miR-4727-3p, miR-3198, miR-361-5p, 
miR-422a, and miR-541-3p did not induce such a response (Figure S9a). From list 2, the AD-related candidates 
according to the PhenomiR database (35), miR-30a-3p, miR-9-5p, miR-30e-3p, and miR-381-5p ranked as the high-5 
candidate group, significantly induced hTLR8 activation, while only one of the high-5 candidates, namely miR-375-3p, 
did not induce such a response (Figure S9b). Out of the low-5 candidate group from list 2, miR-216a-3p significantly 
induced hTLR8 activation, while miR-191-5p, miR-501-3p, miR-204-3p, and miR-422a did not induce receptor 
activation (Figure S9b). 

 

 

Figure 5. Relation of activity measurements from mouse microglia and mTLR7 reporter cells. Each point represents 
a miRNA from the respective candidate list, i.e. list 1 includes candidates that were selected based on BrainDead 
score only (circles), while list 2 includes AD-associated miRNAs classified by BrainDead (squares). TNF-α 
concentrations (mouse microglia, y-axis) and SEAP activity expressed as fold change (mTLR7 reporter activation, x-
axis) averaged from four replicates are shown. The annotated numbers indicate the ranking predicted by BrainDead 
for the high-5 activating miRNAs of the two lists. See Figure S7 for an extended version of the plot. 

 

DISCUSSION  

BrainDead - generic and customizable RNA classification 

BrainDead is a generic and customizable RNA classification pipeline that can be tailored to predict activity of any 
biological problem with a binary classification nature. This machine learning approach considers both sequence k-mers 
and their structural context, and requires a reference pre-classified dataset for training. Since tailored to short RNAs, 
it can take all (semi)-stable structures into account and is not restricted to a single putative structure per RNA, e.g. 
only the minimum-free-energy structure as considered by repRNA (25). That way, stable structure alternatives are 
considered that are otherwise ignored. Furthermore, BrainDead has a simple but powerful definition of ‘stability’ via 
a customizable absolute energy threshold. This allows, in contrast to alternatives based on unpaired probability (37), 
a fine-tuned classification of stability adjusted for the studied RNA. The indirect incorporation of structure via k-mer 
context allows to integrate a low evolutionary structure conservation and to investigate context- rather than 
localization-based structural similarities without requiring an overall or local similarity. This distinguishes BrainDead 
from available solutions for structure-based classification and clustering that are designed to identify similar folds and 
homology analysis (26, 38). 
The customizable sequence feature generation based on a user-provided list of k-mers enables a fast and problem-
specific feature generation. Thus, beside its application as an all-in-one classifier, BrainDead can be used as a feature 
generator, similar to the functionality of repRNA, which only provides exhaustive feature generation. BrainDead’s 
feature tables can be employed in any other pipeline if the BrainDead model has to be extended. The latter is also 
possible by direct modification of its open Python source code. 

https://www.zotero.org/google-docs/?KWpS65
https://www.zotero.org/google-docs/?SpkIV4
https://www.zotero.org/google-docs/?rLLpuk
https://www.zotero.org/google-docs/?2wPJZy


 

BrainDead web server 

To simplify application and enable reproducibility, a web server interface of BrainDead is available. Given a pre-
classified set of RNAs (FASTA format with binary class label in each header) and a problem-specific set of k-mers, the 
web server will generate the respective feature tables and train a classification model. Features, as well as the model 
and training statistics are available for download and inspection. For a provided set of candidate RNAs (FASTA format), 
classification results are visualized in the result page and available for download (CSV format). Thus, the BrainDead 
web server provides a simple but yet powerful platform to develop and use a problem-specific RNA prediction model, 
thereby supporting the design of experimental studies. 
 

BrainDead microglial activation model 

Sequence motifs identified and used to train BrainDead for receptor-mediated microglial activation, i.e. activation of 
an immune response by extracellular host-derived RNA, fall into two classes based on their occurrence in the training 
data, i.e. whether they are mainly found in (i) activating or (ii) non-activating RNAs (see Fig. S3). The latter class 
distinguishes the BrainDead model from classic approaches that focus on activation only (14). Based on such studies, 
it is known that GG- and/or GU-rich motifs are important for TLR activation. This knowledge was independently 
revealed by our (uninformed) feature extraction performed to select important motifs (Table S2), thereby 
demonstrating the power of automated systems. Most activation-related k-mers are UG-/GU-rich and some, like 
UUGU, were also top-ranked in the study by Forsbach et al. (14). 
Three-dimensional structure analysis of TLR7 revealed that this receptor harbors two different ligand binding sites, 
which can act synergistically on receptor dimerization and consequent immune cell activation (Z. Zhang et al. 2016). 
The first binding site exhibits a preference for G over U, while the second binding interface co-crystallizes with G- and 
U-rich ssRNA fragments. The second site requires a trimer of bases with one U present in the central position. These 
receptor features regarding structure and sequence are well matched by the k-mers identified in our current study. 
Forsbach and colleagues used a battery of 4-mer sequence motifs to generate TLR7/8 activation data based on TNF-α 
and IFN-α release from peripheral immune cells (14). However, this study did not consider sequence information and 
thus impact of a whole mature miRNA. Since different binding sites with different RNA base preferences are located 
within TLR7 (see above, (39)) it is likely that bases within one miRNA bind to both receptor sites to achieve activation. 
Thus,miRNAs may be considered as TLR-activating chimeras. Consequently, we used the activation data generated 
from short single-stranded oligonucleotides of 21-26 nt length (Table S1), including a large fraction of mature miRNA 
sequences for our training paradigm. The U and GU content of miRNAs was previously described to correlate with the 
degree of TLR7/8 activation (41, 42). However, specific sequence and structure features that enable a miRNA to act as 
functional ligand for TLR7/8 remained unexplored so far. In our current study, we not only raised the question which 
sequential features of a given miRNA are required to activate/bind to TLR7/8, but also whether these motifs are (not) 
masked (i.e. free accessible) for TLR7/8 binding by intramolecular and homo-dimerization structure formation. Our 
results indicate that activating k-mers are likely structure-free (unpaired/accessible), whereas homo-dimerization was 
not important for TLR7/8 activation.   
 
Experimental candidate verification 

The finding that four out of five high-scored miRNA candidates (list 1) defined by BrainDead significantly activated 
primary mouse microglia was reproduced in experiments using HEK reporter cells overexpressing mTLR7. However, 
out of the high-5 AD-linked candidates (list 2), which all induced microglial activation, only three (miR-30e-3p, miR-
375-3p, miR-381-5p) induced statistically significant mTLR7 activation, and out of the five candidates from the low-5 
group, which did not induce a significant response in microglia, miR-216-3p significantly activated mTLR7 in the HEK 
TLR reporter cells. These different findings regarding statistical significance obtained from the experiments testing 
microglial activation and mTLR7 reporter induction is likely due to a higher variation of the measured values derived 
from the mTLR7 reporter induction analysis. Still, in general, activation of mTLR7 by low-scored miRNAs expressed as 
Fold change was much lower compared to the activation induced by the high-scored miRNA candidates. The validation 
experiments testing for human TLR7 and human TLR8 activation also supported the consistent prediction results of 
BrainDead. Besides minor exceptions, only high-ranked candidate miRNAs activated the respective tested TLR. These 
findings point to the presence of specific miRNAs’ sequence motifs relevant for the interaction with both receptors, 
TLR7 and TLR8, in mouse and human. Thus, a model trained on data obtained from experiments on mouse immune 
cells such as BrainDead seems to be capable of supporting research on RNA acting as ligands of human TLRs, especially 
in a human disease context.Furthermore, the consistent scoring of AD-related list 2 candidates and the uniform 
distribution of AD association within the BrainDead scoring scheme (see Figure 3) suggests that candidate selection 
purely based on AD database annotation would provide a much lower rate of activating candidates compared to 
BrainDead-based filtering. 

CONCLUSION 
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We present here a novel, customizable, and generic machine learning approach for the functional classification of 
small oligonucleotides. It was applied for the prediction of human miRNAs serving as TLR7/8 ligands and activating 
immune cells. While our training dataset was based on mouse microglial activation the results obtained from validation 
experiments on mTLR7 and hTLR7/8 activation demonstrated the ligand character of the tested candidate miRNAs. 
The experimentally assessed potential of 20 tested miRNAs regarding TLR7/8 activation was congruent with the 
classification predicted by our in silico machine learning pipeline. The BrainDead model takes the structural context of 
k-mers concerning unpairedness/accessibility in intra-molecular, as well as homo-dimer structure formation into 
account. Future work will broaden the supported context types to e.g. motifs occurring in RNA helices, specific 
substructures like hairpin loops, or tertiary motifs. We plan to incorporate more generic k-mer motif definitions via 
sequence logos or regular expressions, and the integration of measured affinity information of specific k-mers into the 
model. Overall, our study shows that BrainDead is well suited to support experimental study design based on its 
comprehensible model definition, simple user interface, and predictive power. While miRNAs play important roles in 
human health and diseases, TLR7 and TLR8 are key regulators of immune responses, are involved in organ-specific 
processes, such as neurodegeneration in the CNS, and also play complex roles in human diseases, e.g. rare TLR7 
variants can implicate COVID-19 severity (40). The power of the presented and online-provided model trained on 
immune cell activation can be used for any short RNA molecule to be tested for ligand-mediated TLR activation, 
considering any cell type capable of functional TLR7/8 signaling. 
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