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Abstract

The investigation of RNA-based regulation of cellular processes is becoming an
increasingly important part of biological or medical research. For the analysis of this
type of data, RNA-related prediction tools integrated into of many pipelines and
workflows. In order to correctly apply and tune these programs, the user has to have a
precise understanding of their limitations and concepts. Within this manuscript, we
provide the mathematical foundations and extract the algorithmic ideas that are core to
state-of-the-art RNA structure and RNA-RNA interaction prediction algorithms. To
allow the reader to change and adapt the algorithms or to play with different inputs, we
provide an open-source web interface to JavaScript implementations and visualizations
of each algorithm.

The conceptual, teaching-focused presentation enables a high-level survey of the
approaches while providing sufficient details for understanding important concepts.
This is boosted by the simple generation and study of examples using the web interface
available under http://rna.informatik.uni-freiburg.de/Teaching/. In combination, we
provide a valuable resource for teaching, learning and understanding the discussed
prediction tools and thus enable a more informed analysis of RNA-related effects.

Author summary

RNA molecules are central players in many cellular processes. Thus, the analysis of 1

RNA-based regulation has provided valuable insights and is often pivotal to biological 2

and medical research. In order to correctly select appropriate algorithms and apply 3

available RNA structure and RNA-RNA interaction prediction software, it is crucial to 4

have a good understanding of their limitations and concepts. Such an overview is hard 5

to achieve by end users, since most state-of-the-art tools are introduced on expert level 6

and are not discussed in text books. Within this manuscript, we provide the 7

mathematical means and extract the algorithmic concepts that are core to 8

state-of-the-art RNA structure and RNA-RNA interaction prediction algorithms. The 9

conceptual, teaching-focused presentation enables a detailed understanding of the 10
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approaches using a simplified model for didactic purposes. We support this process by 11

providing clear examples using the web interface of our algorithm implementation. In 12

summary, we have compiled material and web applications for teaching - and the 13

selfstudy of - several state-of-the-art algorithms commonly used to investigate the role 14

of RNA in regulatory processes. 15

Background 16

Bioinformatics analyses has become indispensable to biological research. While 17

platforms like Galaxy enable the setup of tool pipelines without expert knowledge [1, 2], 18

one requires a general understanding of underlying concepts and algorithms to be able 19

to successfully apply and adapt these pipelines to biological data [3, 4]. Thus, 20

bioinformatics is thought in both computer science and biology studies. 21

It has been established that when teaching mathematics a combination of reflected 22

example study and problem solving by hand fosters learning. This learning effect is 23

heightened when done iteratively with increasing difficulty [5]. Thus, diverse examples 24

covering different aspects of the topic have to be provided to guide the learning process. 25

This is even more important in an e-learning or self-study context, where the study of 26

examples that show different aspects of a problem might compensate for the missing 27

interaction with a teacher [6, 7]. 28

Here, we focus on RNA-related bioinformatics and especially on approaches for RNA 29

structure and RNA-RNA interaction prediction. Both are essential when investigating 30

the vast amount of regulatory RNA that is common to all kingdoms of life [8, 9]. The 31

function of many RNA species is guided by their structure that is defined by the 32

formation of intramolecular base pairs. For instance, prokaryotic small RNAs show 33

evolutionary-conserved unstructured regions that regulate the expression of their target 34

mRNAs via intermolecular base pairing [10, 11]. Thus, the prediction of both functional 35

intramolecular structures of RNAs as well as their intermolecular (RNA-RNA) 36

interaction potentials are central bioinformatics tasks. 37

Most computational methods for RNA structure or RNA-RNA interaction prediction 38

are based on thermodynamic models and provide an efficient computation since Richard 39

Bellman’s principle of optimality [12] can be applied. This means that optimal solutions 40

of a problem can be composed of optimal solutions of (independent) subproblems. This 41

is used by dynamic programming approaches that decompose a problem into smaller 42

problems and tabularize partial solutions. Robert Giegerich and colleagues developed a 43

rigorous framework, namely Algebraic Dynamic Programming (ADP) [13,14], to 44

systematically study and develop dynamic programming approaches in a computer 45

science context. In addition, they provided an online platform to study ADP programs 46

for various problems also covering RNA related topics [15]. The central idea of ADP is 47

to separate the strategy how a problem is decomposed into subproblems from the 48

evaluation strategy, i.e. the objective of the optimization. We use the counting of 49

structure alternatives for a given RNA to illustrate how dynamic programming can be 50

applied to predictions problems. In particular, we introduce the decomposition strategy 51

for (nested) RNA structure models. 52

The teaching of dynamic programming approaches is typically split into a theoretical 53

introduction by the lecturer showing individual examples and a subsequent manual 54

application by students where the methods are implemented or applied to solve 55

small-scale problems for exercise. This leads often to a very small set of examples 56

discussed due to the high amount of work needed for manual application and the 57

limited gain of knowledge by iterated usage of once understood solution strategies. To 58

increase the number of examples, e.g., to focus on different aspects of an individual 59

method or to compare different approaches, either partial solutions have to be provided 60
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or implementations made available. Beside single instances like the Nussinov algorithm, 61

most state-of-the-art methods and their underlying algorithmic ideas are not covered by 62

textbooks, e.g. [16–18]. Resorting to the original literature for teaching these algorithm, 63

however, is complicated, as most approaches are introduced for very sophisticated 64

energy models. While these advanced energy models are required for a successful 65

application of these tools in real world scenarios, they often mask the basic and 66

transferable algorithmic ideas for the non-expert reader since they require a high level of 67

background knowledge. 68

We approach the aforementioned problems in two ways. First, we have stripped the 69

model-specific energy details from the state-of-the-art methods for RNA structure 70

prediction and RNA-RNA interaction prediction and present their underlying (or basic) 71

algorithmic ideas. For that purpose, we use the most simple energy model available. 72

State-of-the-art energy models take the structural context of base pairs into account. To 73

this end, RNA structures are decomposed into loops (i.e., a region that is enclosed by 74

one or more base-pairs) to calculate their overall energy. However, the algorithmic 75

principles are essentially the same when using an energy model that considers 76

bases-pairs without their structural context as basic units. Since all methods are 77

presented using the same mathematical nomenclature, relationships and differences are 78

easy to understand. Second, we provide a web-interface that provides interactive 79

implementations of all algorithms discussed with extensive visualizations. This interface 80

(i) helps to understand and follow the algorithms, (ii) eases the generation of interesting 81

examples for different aspects to teach, and (iii) provides master solutions for 82

comparison with your own calculations or implementations. Each section closes with a 83

list of advanced questions that exemplify what can be studied and answered using the 84

provided web interfaces available at: 85

http://rna.informatik.uni-freiburg.de/Teaching/. 86

RNA structure prediction topics covered within this manuscript are the 87

formalization of RNA secondary structures and simplified energy models, computation 88

of the number of structures with regards to the given model [19,20], identification of the 89

minimum free energy structure [21,22], computation of partition functions [23], 90

probability calculation for single base pairs and unpaired regions [23,24], and 91

identification of the maximum expected accuracy structure [25,26]. 92

RNA-RNA interaction prediction approaches are grouped according to their 93

algorithmic idea as in [27] into hybrid-only interaction prediction [28–30], 94

concatenation-based/co-folding interaction prediction [31,32], and accessibility-based 95

interaction prediction [24,33,34]. 96

Results and Discussion 97

In the following, we will briefly introduce the available algorithms and their respective 98

application to life science. Most algorithms are dynamic programming approaches. 99

Thus, we also provide the corresponding recursions for the simplified RNA structure 100

model, which we introduce first. 101

RNA 102

Ribonucleic acid (RNA) is a linear molecule built from nucleotides. The ribose sugars of 103

the nucleotides are bound via interlinking phosphate groups. Furthermore, each sugar is 104

connected to a nitrogenous base, typically one of adenine (A), guanine (G), cytosine (C) 105

or uracil (U). The bases can form hydrogen bonds between two (non-consecutive) 106

nucleotides, which is then called a base pair. Although other forms are possible, the 107
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typically considered base pairs are G− C, A− U, and G− U in both orientations. Pairing 108

between nucleotides of the same molecule (intramolecular) defines its three-dimensional 109

structure. In order to fulfill a certain regulatory function, typically a stable structure is 110

needed. Thermodynamic analyses have identified base (pair) stacking as the major 111

stabilizing force within RNA structures [35] and according energy estimates have been 112

identified experimentally, e.g. refer to [36]. The functional structure of an RNA can 113

regulate e.g. other RNA molecules by direct (intermolecular) base pairing, i.e. forming 114

base pairs between two RNAs, called RNA-RNA interactions. While the probability of 115

an initial contact is dependent on many factors such as concentration or location, the 116

subsequent formation of a stable RNA-RNA interaction is assumed to follow the same 117

thermodynamic principles as single structure formation. Thus, most ideas and 118

parameters from RNA structure prediction are transfered to RNA-RNA interaction 119

prediction approaches. It is important to note that thermodynamics-based approaches 120

are again models that do not consider all factors that influence structure/interaction 121

formation, as e.g., already bound molecules, specific solution conditions, kinetics of 122

structure formation. Nevertheless, they typically allow for accurate predictions for the 123

majority of RNA molecules [37]. 124

RNA secondary structures 125

In the following, we provide the mathematical framework needed to define and solve 126

RNA related problems. The primary structure of an RNA molecule can be described by 127

its sequence of bases. That is, an RNA molecule of length n is defined by its sequence 128

S ∈ {A, C, G, U}n of respective IUPAC single letter codes [38]. 129

The secondary structure P of an RNA S is defined as a set of (ordered) base pairs, 130

i.e. P ⊂ [1, n]× [1, n] with (i, j) ∈ P → i < j. Typically it is assumed that each 131

nucleotide can pair with at most one other nucleotide, i.e. 132

∀(i, j) 6= (p, q) ∈ P : {i, j} ∩ {p, q} = ∅, and that only the introduced Watson-Crick or 133

G− U base pairs are allowed, i.e. ∀(i, j) ∈ P : {Si, Sj} ∈ {{A, U}, {C, G}, {G, U}} 134

extraneous to order. Such base pairs are said to be complementary. Furthermore, to 135

restrict computational complexity of prediction algorithms, structures are constrained 136

to be non-crossing (nested), i.e. @(i, j), (p, q) ∈ P : i < p < j < q. Using non-crossing 137

structures generally allow a good estimate of the overall structure stability. However, it 138

is important to note that crossing base pairs do exist, albeit not as abundant as 139

non-crossing base pairs, and contribute to the final stability of the three dimensional 140

shape. It is typically assumed that first non-crossing structural elements are formed 141

that subsequently are linked via few crossing base pairs [39]. Thus, the majority of the 142

structure can be modeled/predicted via nested base pairing, which strongly reduces the 143

computational complexity. Finally, it is commonly enforced that pairing bases have a 144

minimal sequence distance of l, also called minimal loop length, to incorporate steric 145

constraints of structure formation. In the following, we will denote with P the set of all 146

possible structures (also referred to as structural ensemble or structure space) that can 147

be formed by a given sequence S. It has been shown that the size of the structure space 148

P grows exponentially with sequence length n. For a minimal loop length l of 3, the 149

growth is about 2.3n [40]. 150

Nested secondary structures can be visualized as outerplanar graphs where 151

nucleotides are represented by nodes and edges represent base pairs or sequential 152

backbone connections. Furthermore, dot-bracket strings can be used that encode for 153

each position i whether it is unpaired ’.’, it is the smaller index (opening) of a base pair 154

’(’, or the larger (closing) index ’)’. 155

As motivated by Ruth Nussinov and co-workers [21], we relate the stability of an 156

RNA structure directly with its number of base pairs. Since some algorithms require 157

explicit energy contributions of individual base pairs (e.g. McCaskill’s algorithm to 158
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compute base pair probabilities), we set the energy of any base pair Ebp to -1 for 159

simplification purposes. Thus, the energy of a structure is given by E(P ) = |P | · Ebp. 160

Note, this is in stark contrast to state-of-the-art RNA structure prediction approaches 161

(e.g. using Zuker’s algorithm [22]), which typically apply a Nearest Neighbor energy 162

model [41,42] and experimentally derived energy contributions [36]. Furthermore, all 163

algorithms for RNA-RNA interaction prediction ignore concentration-dependence and 164

other factors influencing the duplex formation, which is typically modeled within the 165

Nearest Neighbor model by an ’initiation’ energy term [24,33,34]. Nevertheless, the use 166

of the simplified base-pair-focused model enables a much clearer presentation of the 167

algorithms, which is better suited (and sufficient) to understanding their ideas and 168

mechanisms. The transfer from the simple base pair maximization to the advanced 169

energy models, as done by Michael Zuker and Patrick Stiegler [22], is generic and can be 170

applied to all problems discussed within this manuscript. References to extended 171

versions and implementations are provided for each approach. 172

Counting structures via Dynamic Programming 173

A first task that introduces the general structure of dynamic programming approaches 174

used for RNA structure prediction is to compute the number of structures a sequence S 175

can form, i.e. |P|. Since the structure space P grows exponentially, explicit enumeration 176

is inefficient. In order to apply dynamic programming, we first have to have a strategy 177

of how to decompose such a problem into independent subproblems. Let us consider the 178

subsequence Si..Sj . We can easily split the problem into two independent problems by 179

introducing a case distinction for its last position Sj : case (1) Sj is not involved in any 180

base pairing and case (2) Sj is paired with some position Sk (i ≤ k < j). Both cases are 181

depicted in Fig. 1. The first case can be easily reduced to a smaller problem, namely to 182

Si..Sj−1, since the unpaired position Sj does not allow any structural alternatives. 183

Thus, the reduced problem directly provides a count for case 1. On the contrary, each 184

possible base pairing of Sj in the second case decomposes the problem into two smaller 185

independent problems (one to the left of and one enclosed by the base pair (k, j)), since 186

no base pair is allowed to cross (k, j) (nestedness condition, see above). Since any 187

structural alternative of the left subproblem can be combined with any of the enclosed 188

one, we have to multiply the numbers from these smaller subproblems to get the overall 189

count for case 2. 190

i

no pairing of Sj

k ji jj-1i j

or

base pair of Sk and Sj

Fig 1. Secondary structure decomposition by Waterman & Smith (1978). The figure
illustrates for a given subsequence Si..j a unique nested secondary structure
decomposition based on the distinction of all possible pairing states of the last nucleotide
Sj . Note, this scheme applies to all RNA structure related algorithms presented here.

Michael S. Waterman and Temple S. Smith applied this idea to solve the counting 191

problem using a table C [19, 20]. An entry Ci,j provides the number of structures for a 192

subsequence Si..Sj . Thus, we initialize Ci,i = 1 for all positions i, since any subsequence 193

of length one is confined to the unpaired structure. The recursion for longer 194

subsequences is given by 195

Ci,j = Ci,j−1 +
∑

i≤k<(j−l)
Sk,Sj compl.

Ci,k−1 · Ck+1,j−1 (1)

which combines the two discussed cases to consider all possible ’states’ of nucleotide Sj 196
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in valid structures. The first (Ci,j−1) covers all cases where Sj is unpaired, and the 197

second counts all cases where Sj is paired with an Sk within the subsequence (second 198

case). Note, the base pair (k, j) has to respect the minimal loop length l. The overall 199

number of structures is accessed by |P| = C1,n. Given l and an RNA sequence, our user 200

interface computes and depicts the filled matrix C. 201

Example Questions: 202

� The decomposition and counting of RNA structures was introduced for a case 203

distinction on Sj . Rewrite Eq. 1 using a case distinction on Si. 204

� Compute the numbers of nested structures that can be formed by random RNA 205

sequences of different lengths. Compare the exponential growth of the structure 206

space with the approximation 2.3n mentioned earlier. 207

Optimal structure prediction 208

Ruth Nussinov and co-workers introduced in 1978 [21] a first algorithm that efficiently 209

predicts a nested structure with the maximal number of base pairs for a given RNA 210

sequence S, i.e. arg maxP∈P(|P |). The corresponding recursion 211

Ni,j = max

Ni,j−1 Sj unpaired

max
i≤k<(j−l)

Sk,Sj compl.

(Ni,k−1 +Nk+1,j−1 + 1) Sk, Sj pair (2)

is strongly related to the counting approach from Eq. 1. Here, an entry Ni,j stores the 212

maximal number of base pairs that can be formed by the subsequence Si..Sj . Thus, 213

summation in Eq. 1 is replaced by maximization and multiplication with summation 214

while the second case considers the formed base pair with ’+1’. N is initialized with 0 215

and can be filled in O(n3) time while using O(n2) memory. A depiction of the recursion 216

is given in Fig. 2. 217

i

all Sj pairings
with compl. Sk

max
i

max

no pairing of Sj

k j

i jj-1

≤ <

+1

i jNij

k j

Fig 2. Recursion by Nussinov and coworkers (1978). The figure illustrates the
recursion to compute the maximal number of base pairs that can be formed by a given
sequence by distinction of all possible pairing states of the last nucleotide Sj .

The maximal number of base pairs formed by any structure can be found in N1,n 218

and a respective optimal structure P can be identified via traceback starting in N1,n. 219

Thus, for a given cell Ni,j , the traceback discovers how the value of Ni,j was obtained. 220

To this end, the case distinctions of the (filling) forward recursion (e.g. from Eq. 2) are 221

considered. If it holds Ni,j = Ni,j−1 (first case), position j is found to be unpaired and 222

the traceback proceeds with cell Ni,j−1. Otherwise, position j has to form a base pair 223

with some position i ≤ k < j, which is identified in accordance to the second case of 224

Eq. 2. The base pair (k, j) is stored as part of the final structure P and the traceback 225

proceeds for both subintervals represented by Ni,k−1 and Nk+1,j−1. 226

For the identification of functional structures or the study of structural alternatives, 227

the enumeration of suboptimal structures is of interest. A generic approach was 228

introduced by Stefan Wuchty and coworkers [43] that enables the enumeration of all 229
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structures that are in a certain range of the minimal energy. An implementation is also 230

available in our web interface. 231

Our interactive user interface enables the computation of both optimal and 232

suboptimal structures. For a user defined sequence as well as recursion and traceback 233

parameters, the dynamic programming table is provided along with a list of 234

(sub)optimal structures. On selection, the according traceback is highlighted within the 235

matrix. This is complemented with a graphical representation of the structure using 236

Forna [44]. 237

Different recursions can be chosen to examine the effects of ambiguous recursions 238

versus the original one. In the following, such an ambiguous variant from [17] is 239

presented. 240

Ni,j = max


Ni+1,j Si unpaired

Ni,j−1 Sj unpaired

Ni+1,j−1 + 1 if Si, Sj compl. and i+ l < j

max
i<k<(j−1)

Ni,k +Nk+1,j decomposition

(3)

While this recursion also computes the same entries of N and thus maximal number 241

of possible base pairs (N1,n), it is not using a unique decomposition of the structure, i.e. 242

the same structural variant is considered by different recursion cases. 243

This causes duplicated enumeration of (sub)optimal structures when using Wuchty’s 244

traceback algorithm, which can be studied in our web server for different recursions. 245

Furthermore, it is not possible to use variants of ambiguous recursions like Eq. 3 to 246

count structures (consider relation of Eq. 2 and 1) or to compute the partition function 247

of the structural ensemble (as discussed next), since both requires a unique 248

consideration of each structure. 249

In 1981, Michael Zuker and Patrick Stiegler introduced a dynamic programming 250

approach that efficiently computes minimum free energy structures using a Nearest 251

Neighbor energy model [22]. Using further restriction, the same time and space 252

complexity compared to Nussinov’s algorithm is kept. The approach with according 253

decomposition depictions and how it relates to Nussinov’s algorithm is introduced in 254

detailed e.g. in [45]. Implementations like UNAFold [46] (former mfold [47]) or 255

RNAfold [31, 37] are the current state-of-the-art tools for RNA secondary structure 256

prediction. 257

Example Questions: 258

� Find RNA sequences that fold uniquely into i) a single hairpin, ii) two hairpins, 259

and iii) three hairpins. What guided your design? 260

� Find an RNA sequence that shows the ambiguity of Eq. 3. What are the 261

differences to Eq. 2 that cause this ambiguity? 262

� Define formally what is represented by the entry N1,n when using an energy 263

minimizing variant of Eq. 2 that uses Ebp instead of ’+1’. Provide a recursion to 264

compute this value. 265

Partition function and probabilities 266

To estimate the probability of a given structure P within the structural ensemble P, 267

statistical mechanics typically dictates a Boltzmann distribution when using minimal 268
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assumptions [48]. Thus, the probability of a structure P is directly related to its energy 269

E(P ) by 270

Pr(P ) =
exp(−E(P )/kBT )∑

P ′∈P exp(−E(P ′)/kBT )
(4)

given the Boltzmann factor kB and the system’s temperature T . Note, when using an 271

energy model with units ’per mole’, which is typically the case when using a Nearest 272

Neighbor model with measured energy contributions, one has to replace kB with the gas 273

constant R. Note further, the structure with minimal free energy, e.g. predicted with 274

algorithms discussed above, will always have maximal probability according to Eq. 4. 275

Thus, the most stable structure is automatically the most likely structure. 276

The nominator of Eq. 4 is called Boltzmann weight (of structure P ). The 277

denominator is called canonical partition function Z, which is the sum of the Boltzmann 278

weights of all structures in P. Since P grows exponentially, its exhaustive enumeration 279

to compute Z is impracticable. 280

Nevertheless, it is possible to compute Z efficiently using a variant of the counting 281

algorithm. This approach was first introduced for the Nearest Neighbor energy model 282

by John S. McCaskill (1990) [23] and we rephrase a variant for the simplified base pair 283

model. First, we have to note that the Boltzmann weight of a structure P can be 284

computed based on the energy of its base pairs Ebp as follows 285

exp(−E(P )/kBT ) = exp

− ∑
(i,j)∈P

Ebp/kBT

 =
∏

(i,j)∈P

exp(−Ebp/kBT ). (5)

That is the structure’s weight is computed by the product of individual base pair 286

weights. To simplify notation in the following, we refer with qbp = exp(−Ebp/kBT ) to 287

the Boltzmann weight of a single base pair. Given this, we can alter the counting 288

recursion from Eq. 1 to 289

Qi,j = Qi,j−1 +
∑

i≤k<(j−l)
Sk,Sj pair

Qi,k−1 ·Qk+1,j−1 · qbp. (6)

This directly provides the partition function Z = Q1,n in O(n3) time. 290

For some approaches and research questions, probabilities of individual base pairs 291

Prbp(i, j) are of interest. This is the probability that a base pair (i, j) is formed by 292

some structure, which can be calculated by summing up the probabilities of all 293

structures containing (i, j), i.e., 294

Prbp(i, j) =

∑
P∈P

(i,j)∈P
exp(−E(P )/kBT )

Z
. (7)

As for counting, the base pair (i, j) decomposes all structures into the enclosed and 295

outer subsequence that are independent concerning base pairing. Thus, the partition 296

functions of the according subsequences can be used to compute Prbp(i, j) efficiently. 297

To do so, we need an auxiliary matrix Qbp. Each entry Qbp
i,j holds the partition function 298

for the subsequence Si..Sj with the side constraint that i and j form the base pair (i, j). 299

If this is not possible due to non-complementarity or the minimal loop constraint, the 300

entry is 0. Given this, we can rewrite Eq. 6 as follows 301

Qi,j = Qi,j−1 +
∑

i≤k<(j−l)

Qi,k−1 ·Qbp
k,j (8)

Qbp
i,j =

{
Qi+1,j−1 · qbp if Si, Sj complementary

0 otherwise
(9)
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and compute the base pair probability using 302

Prbp(i, j) =
Q1,i−1 ·Qbp

i,j ·Qj+1,n

Q1,n

+
∑

p<i,j<q

Prbp(p, q) ·
qbp ·Qp+1,i−1 ·Qbp

i,j ·Qj+1,q−1

Qbp
p,q

. (10)

The first term in Eq. 10 covers structures where (i, j) is an external base pair, i.e. not 303

enclosed by any other base pair. The second term considers all structures where (i, j) is 304

directly enclosed by a base pair (p, q) and corrects the respective base pair probability 305

Prbp(p, q) by the probability of the structure subensemble that contains both base pairs 306

and no ’in-between spanning’ base pair (k, l) with p < k < i < j < l < q. The latter 307

probability is defined by the fraction within the second term.. Note (again) that by 308

using a simple energy model, we omit all the complex case distinctions, which allows 309

one to concentrate on the main cases of algorithmic importance. In the full model, the 310

first case would have been the same, whereas the second one would have been split to 311

consider specifically each structural context a base pair can have. 312

In analogy to base pair probabilities, it is also possible to define and compute the 313

unpaired probability Prss(i, j) of a subsequence Si..Sj (Eq. 11), i.e. the probability of all 314

structures that show no base pairing in the single stranded subsequence. 315

Prss(i, j) =

∑
P∈Pss

i..j
exp(−E(P )/kBT )

Z
(11)

with Pss
i..j =

{
P | @(k,l)∈P : k ∈ [i, j] ∨ l ∈ [i, j]

}
⊆ P (12)

The unpaired probability is also sometimes termed ’accessibility’ as an unpaired region 316

in an RNA is accessible for pairing to another RNA. For the computation of Prss(i, j), 317

we only have to replace Qbp
i,j with 1 in Eq. 10, since only the unpaired structure with 318

energy zero has to be considered for Si..Sj , which has a Boltzmann weight of 1. 319

Stephan H. Bernhart and coworkers provide in [49] details for the extension of the 320

introduced recursions to the Nearest-Neighbor model, which is also nicely detailed 321

in [45]. Implementations are for instance available in the Vienna RNA package [37]. 322

The authors also show how to reduce the time complexity of the probability 323

computation from O(n4) to O(n3). To this end, they introduce another auxiliary matrix 324

Q̂bp that provides the ’outer’ partition function, which reflects only base pairs not 325

enclosed by respective subsequences. 326

Our web implementation enables the computation of both base-pair probabilities as 327

well as unpaired probabilities. To provide insights into how the temperature and energy 328

model influence structure and base-pair probabilities, the user can alter the used 329

temperature as well as Ebp. Beside a visualization of the partition function tables Q 330

and Qbp, the user is provided with a visualization of the base pair and unpaired 331

probabilities using the established dot plot format (e.g. used also by 332

UNAfold/mfold [46, 47] or RNAfold [37, 50]). Within this matrix-like illustration, 333

each base-pair probability is represented by a dot of proportional size; i.e. the higher 334

the probability, the larger the dot and small probabilities are not visible. With a bit of 335

visual practise, dot plots enable an easy identification of highly probable substructures 336

and the study of structural alternatives. 337

Example Questions: 338

� Find an RNA sequence that folds uniquely into a single hairpin but shows an 339

alternative hairpin with high base pair probabilities. What are the difficulties for 340

such a design? 341
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� What changes are observed for the partition functions when increasing the 342

system’s temperature? What is expected for limT →∞? 343

� Where are subsequences with high unpaired probability typically located? 344

Maximum expected accuracy 345

So far, individual structures were evaluated based on their number of base pairs or 346

energy. This focus on single structures might hide that some substructures (base pairs 347

or unpaired positions) are very common among highly-probable structures but not 348

found e.g. in the most-probable structure and thus are lost from the prediction. To face 349

this problem, the expected accuracy can be used for structure evaluation [25,26,51]. 350

Here, we follow Chuong B. Do and coworkers [25] and define the expected accuracy of a 351

structure P by 352

acc(P ) =
∑

(i,j)∈P

γ · 2 · Prbp(i, j) +
∑

k : (i,k),(k,j)6∈P

Pru(k). (13)

It is basically the weighted sum of all base pair probabilities of the respective structure 353

together with unpaired probability estimates for all its positions k not involved in any 354

base pair, i.e. features of the whole structural ensemble are mapped to individual 355

structures. The position-wise unpaired probability is computed by 356

Pru(k) = 1−
∑
i<k

Prbp(i, k)−
∑
k<j

Prbp(k, j) (14)

from base-pair probabilities, which is equivalent to Prss(k, k) from Eq. 11. Base pair 357

probabilities in Eq. 13 are weighted by a factor of two to reflect that two sequence 358

positions are covered. Furthermore, a weighting factor γ is introduced, which scales the 359

importance of unpaired vs. base pair probabilities. 360

Given this measure, we can compute the maximum expected accuracy (MEA) 361

structure, i.e. a structure formed by the most accurate/likely base pairs rather than 362

simply maximizing their number (or minimizing the overall energy). To calculate the 363

MEA and an according structure, a variant of the Nussinov algorithm (Eq. 2) can be 364

applied, i.e. 365

Mi,j = max


Mi,j−1 + Pu

j Sj unpaired

max
i≤k<(j−l)

Sk,Sj compl.

(
Mi,k−1 +Mk+1,j−1 + 2γPrbp(k, j)

)
Sk, Sj pair, (15)

where unpaired positions are weighted by Pru (case 1) and base pairs with 2γPrbpi,j (case 366

2). M is initialized with 0. The MEA is found in M1,n while a corresponding structure 367

can be identified via traceback. A recursion variant adapting Eq. 3 can be found in [25]. 368

Our MEA web interface computes base pair and unpaired probabilities using the 369

recursions introduced above for the simplified energy model. Thus, the effects of 370

temperature or base-pair energy Ebp on MEA computations can be directly studied. As 371

for the Nussinov algorithm, structure and traceback visualization is enabled as well as 372

suboptimal MEA enumeration using our generic implementation of Wuchty’s 373

algorithm [43]. An alteration of the γ weighting factor for base pair probabilities 374

provides insights into its importance for accurate structure prediction. 375

Example Questions: 376

PLOS 10/20



P
R

E
P

R
IN

T
� Compare the prediction results for MEA and base pair maximization (energy 377

minimization). What do you observe and how could you explain your 378

observations? 379

� What happens when altering the base-pair probability weight γ? 380

Hybridization-only interaction prediction 381

The fastest class of RNA-RNA interaction prediction approaches focuses only on the 382

identification of the interaction site, i.e. only on the intermolecular base pairs, without 383

considering the intramolecular structures of the interacting RNAs. To this end, the 384

prefix-based decomposition scheme of global sequence alignment [52] can be adapted. 385

Given two RNA sequences S1 and S2 of lengths n and m, resp., we denote with
←−
S 2

j 386

the reversely indexed S2 to simplify the index notation, since RNA molecules interact in 387

antiparallel orientation. The latter applies to both intra- and intermolecular base 388

pairing. When considering S1 and
←−
S 2

j , we can design a dynamic programming approach 389

for the simplified energy model using a two-dimensional matrix H. An entry Hi,j will 390

provide the maximal number of intermolecular base pairs for the prefixes S1
1..i and 391

←−
S 2

1..j . The decomposition scheme for the recursion of Eq. 16 to compute Hi,j is 392

visualized in Fig. 3. 393

Hi,j = max


Hi−1,j−1 + 1 if S1

i ,
←−
S 2

j are complementary

Hi−1,j

Hi,j−1

. (16)

As already mentioned, Eq. 16 is a variant of the global sequence alignment approach 394

introduced by Saul B. Needleman and Christian D. Wunsch [52] using an adapted 395

scoring scheme (base pair instead of match/mismatch scoring for Si,
←−
S j and no gap 396

cost). Thus, initializing all Hi,0/H0,j with 0, the entry Hn,m provides the maximal 397

number of intermolecular base pairs that can be formed and a traceback starting at 398

Hn,m yields the respective interaction details. This approach enables very low runtimes 399

(O(nm)), as observed by Brian Tjaden and coworkers who presented in [30] a variant of 400

Eq. 16. When computing hybridization-only interactions via minimizing a more 401

sophisticated energy model, the strategy has to be altered to follow a scheme similar to 402

local sequence alignment as defined by Temple Smith and Michael S. Waterman [53], 403

which is detailed in [30]. 404

max

pairing of Si and Sj
i

j

Hi,j

i

j

i

j

i

j

or Si or Sj unpaired

+1
if complementary

Fig 3. Recursion scheme to maximize intermolecular base pairs between two RNAs S1

and S2 represented in orange/blue, respectively. The optimal number for the interaction
of S1

1..i and S2
j..n is identified based on a distinction whether or not the right ends S1

i

and S2
j might form a base pair or not.

The web interface of our implementation identifies and reports all optimal 405

interaction sites. For each, an ASCII visualization of the intermolecular base pairs is 406

provided. Note, to reduce code redundancy, we do not use an implementation of Eq. 16 407

but a base-pair-maximization variant of Eq. 19, which is discussed in the next section. 408
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Adaptations of this approach to the Nearest Neighbor model have been discussed 409

in [28] and e.g. implemented in the tools TargetRNA [30], RNAhybrid [29] or 410

RNAplex [54]. While such methods have been successfully applied for target site 411

identification of very short RNAs, they often overestimate the length of target sites 412

since intramolecular base pairing is ignored [33,54]. These problems are tackled by 413

concatenation- and accessibility-based approaches discussed next. 414

Example Questions: 415

� Provide a variant of Eq. 16 that uses the original sequence S2 and according 416

indexing, i.e. entry Hi,j provides the maximal number of intermolecular base pairs 417

for S1
1..i and S1

1..j . Think about the computation order of entries for this matrix. 418

� Develop a dynamic-programming recursion for hybridization-only RNA-RNA 419

interaction prediction (base-pair maximization) that restricts the lengths of 420

unpaired subsequences enclosed by interacting base pairs. What is the runtime 421

complexity of your recursion? 422

Concatenation-based RNA-RNA interaction prediction 423

Among the first approaches to predict the interacting base pairs for two RNA molecules 424

are concatenation-based or co-folding approaches [31,32]. Here, two or more RNA 425

sequences are concatenated into a single sequence with special interspacing linker 426

sequences. The resulting hybrid sequence is used within an adaptation of a standard 427

structure prediction that takes special care of the linker sequences. The linked 428

sequences are forbidden to form base pairs and the structural elements containing linker 429

sequences are treated energetically as external as e.g., discussed by Ivo L. Hofacker and 430

colleagues [31]. 431

The extension of standard structure-prediction approaches to RNA-RNA interaction 432

prediction directly yields the possibility to compute according probabilities of interaction 433

sites or intermolecular base pairs [55]. A first implementation of concatenation-based 434

prediction using the Nearest-Neighbor energy model was reported for mfold [47] and 435

later implemented in e.g. the tools MultiRNAFold [56] and RNAcofold [55]. 436

Our implementation extends the Nussinov recursion from Eq. 2 with a special 437

handling for linker-sequence characters ’X’. Base pairs (case 2) are not allowed to involve 438

a linker position. No special energy treatment is necessary for the simplified energy 439

model since we treat intra- and intermolecular base pairs equally and without 440

considering their context. The input is restricted to two RNA sequences that are 441

concatenated by a linker of length l + 1 (where l is the minimal loop size), to ensure the 442

presence of a linker and that the concatenated sequence ends can form a base pair. 443

Our interactive co-folding web interface lists (sub)optimal hybridization structures 444

using our generic suboptimal traceback implementation. Within the reported 445

dot-bracket strings, intramolecular base pairs are encoded using parentheses ’()’, 446

intermolecular base pairs (spanning the linker) are represented by brackets ’[]’, and the 447

linker itself is depicted by linker characters ’X’. For each hybridization structure, a 448

traceback is visualized on selection along with a FORNA 2D structure graph 449

visualization. Furthermore, an ASCII visualization of only the intermolecular base pairs 450

is provided. 451

Concatentation-based approaches do incorporate the competition of intra- and 452

intermolecular base pairing, which is a central weakness of hybridization-only prediction 453

algorithms. Still, not all important interaction patterns can be predicted using 454

co-folding approaches since the hybrid structure has to be nested. For instance, 455

common kissing stem-loop or kissing hairpin interactions cannot be predicted because 456
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they form a crossing structure in the concatenated model (see Fig. 4). To predict such 457

patterns, accessibility-based approaches, discussed next, can be applied. 458

a) b) c)

Fig 4. RNA-RNA interaction examples. (a) an interaction pattern that can be
predicted by co-folding algorithms but not using standard accessibility-based methods,
and a (b) kissing stem-loop or (c) kissing hairpin interaction pattern, both cannot be
predicted by co-folding but using accessibility-based approaches. The RNA molecules
are depicted in orange and blue while the linker is indicated in dotted green. Base pairs
are illustrated in black.

Example Questions: 459

� Find RNA sequence pairs that show (i) only or (ii) no intermolecular base pairs 460

within optimal structures. Study the suboptimals of the latter. Is it possible to 461

find sequence pairs that do not prefer (among optimals) but still enable 462

intermolecular base pairs (within suboptimals) using this model? 463

� Find example sequences for the interaction patterns from Fig. 4. For Figure 4b, 464

find a sequence that can theoretically form all base pairs of the given pattern but 465

no suboptimal prediction contains all pairs at the same time. Think of other 466

patterns that cannot be predicted by concatenation-based approaches and try to 467

find corresponding sequences. 468

� Find an RNA sequence pair that shows more intermolecular base pairs within 469

optimal hybrid structures using a hybrid-only approach compared to a 470

concatenation-based prediction. What is key to finding such sequences? 471

Accessibility-based interaction prediction 472

The previously introduced concatenation-based approaches directly reflect the 473

competition of intra- and intermolecular base pairing by optimizing both at the same 474

time. Nevertheless, they are neglecting that the intramolecular structure is established 475

before an intermolecular interaction is formed. That is, intramolecular base pairs 476

(might) have to be opened/broken such that intermolecular base pairs can form a stable 477

interaction. To be favorable, the interaction energy must outweigh the energy needed to 478

make the subsequences accessible. This two-step process is modeled by 479

accessibility-based interaction prediction approaches. 480

The following formula, depicted in Fig. 5, is used to compute the final interaction 481

energy values Ii,kj,l that incorporate both the hybridization/duplex energy D as well as 482

the penalties ∆E1,∆E2 for inaccessible sites of the RNAs S1, S2, respectively. 483

Ii,kj,l = Di,k
j,l + ∆E1

i..k + ∆E2
j..l. (17)

Note, ∆E2
j..l is computed for the reversely indexed sequence

←−
S 2 to ease the notation. 484

This reversal has to be taken into account for hybridization energy computations, since 485

e.g. Nearest-Neighbor models have to incorporate the chemical 5’- to 3’-end orientation 486

of RNAs. The entry of I with minimal energy is used to traceback the interaction 487
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details of the optimal interaction. Only entries in I with an energy lower than zero 488

mark favorable interactions, since here the duplex energy D outweighs the ∆E penalties 489

to make the respective subsequences accessible. 490

E1

E2

D
i

j

k

l
I
i,k

j,l =

Fig 5. Depiction how accessibility-based approaches score an interaction of two RNAs
S1 and S2 in orange and blue, respectively. The final interaction energy Ii,kj,l is only
defined for subsequence combinations enclosed by two intermolecular base pairs
(i, j), (k, l) marked in black. It is composed of the duplex contribution Di,k

j,l (via
intermolecular base pairs) shown in grey and the energy needed to break the
intramolecular base pairing of each subsequence, i.e. ∆E1 + ∆E2, depicted in red.

The energy penalties ∆Ei..j resemble the free energy needed to make the interaction 491

site Si..Sj accessible, i.e. to unfold the site’s intramolecular base pairs [24,33]. To 492

reflect the structural flexibility of RNAs, the terms are based on the structure 493

ensembles that can be formed rather than individual structures. The penalties can be 494

computed from the energy difference of the structure ensemble with accessible site that 495

is single stranded, Ess
i..j , versus the whole structure ensemble, Eens. Both energies can 496

be computed from the respective partition functions Zss
i..j (for Pss

i..j from Eq. 12) and Z 497

using the inverse Boltzmann weight. In the following, we show the relation of ∆E and 498

the unpaired probability Prss. 499

∆Ei..j = Ess
i..j − Eens

= −
(
RT · log(Zss

i..j)−RT · log(Z)
)

= −RT · log(Zss
i..j/Z)

= −RT · log(Prss(i, j)). (18)

Note, since Prss(i, j) is ≤ 1, all ∆Ei..j penalties are ≥ 0. 500

To add such site-specific terms to duplex energies, we cannot simply use the 501

prefix-based recursion from Eq. 16, since Hi,j only provides the optimal value for all 502

interaction sites with right ends S1
i and

←−
S 2

j and not for individual sites. Thus, for exact 503

results, we have to relate to a subsequence-based computation that explicitly stores 504

values for all subsequence combinations. To further simplify the recursions, we use 505

dedicated calculations (and matrices) for the duplex energy (matrix D, Eq. 19) and the 506

overall interaction energy including inaccessibility penalties (matrix I, Eq. 17). Both 507

matrices are four-dimensional, where an entry Di,k
j,l provides the duplex energy of the 508

interacting sites S1
i..k and

←−
S 2

j..l under the assumption that the boundaries form the 509

intermolecular base pairs (i, j) and (k, l); otherwise the entry is set to ∞. 510

Di,k
j,l = min


Ebp S1

i ,
←−
S 2

j compl., i = k, j = l

min
i<p≤k
j<q≤l

(
Ebp +Dp,k

q,l

)
S1
i ,
←−
S 2

j compl., i < k, j < l

+∞ otherwise

. (19)

The first case represents the initiation of a new interaction that covers only the 511

intermolecular base pair (i, j) with according energy Ebp. The second case extends an 512

already computed interaction of S1
p..k,
←−
S 2

q..l with a new base pair (i, j), while the third 513
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case is applied if the base pair (i, j) can not be formed or the indices violate order 514

constraints. Note, the given recursion has an O(n6) time complexity due to arbitrarily 515

large gaps in the second case. Given the typically applied thermodynamic model and 516

statistics from known interactions, the sequential distance between neighbored 517

intermolecular base pairs is normally restricted to a small constant < 30 [24], which 518

reduces the time complexity to O(n4). The space complexity can be reduced to O(n2), 519

as shown in [33], by interactively computing parts of D for a fixed right boundary base 520

pair (k, l). 521

Our implementation provides the list of all optimal interactions and visualizes the 522

selected interaction details using an ASCII chart. Due to the four-dimensionality of the 523

matrices D and I, only the value Ii,kj,l for the current selection as well as the penalty 524

tables ∆E1 + ∆E2 used for computation are shown. 525

The interactive web interface enables a straightforward comparison of the effects and 526

restrictions of the three different interaction-prediction approaches introduced. For 527

instance, using the simple example sequences S1 = CCC and S2 = CCCGGGGGG, the 528

hybridization-only optimization reports (as expected) any interaction patterns of S1
529

with G nucleotides of S2. In contrast, intermolecular base pairs predicted by the 530

co-folding approach are restricted to the 3’-end of S2 since the central G nucleotides are 531

blocked by an intramolecular hairpin structure (similar to Fig. 4a). Both approaches 532

neglect that RNA S2 will first (most probably) fold into a hairpin structure (with 533

unpaired/accessible nucleotides in the center) before both interact. Thus it is most 534

likely this central unpaired region of S2 where interaction formation with S1 will start. 535

The growing interaction would have to break the already formed intramolecular base 536

pairs for larger interaction patterns, which is not necessarily favorable. This scenario is 537

modeled by accessibility-based approaches, which predict interactions to be restricted to 538

the loop region only. The resulting interaction resembles a kissing stem-loop pattern 539

(see Fig. 4b). Note, while accessibility-based approaches are well suited to predict 540

interaction patterns like stem-loop or kissing-hairpin interactions, they are still not able 541

to model arbitrary interaction patterns. For instance, double kissing-hairpin 542

interactions can not be modeled correctly [57]. 543

The first accessibility-based approach RNAup for the Nearest-Neighbor model was 544

introduced by Ulrike Mückstein an colleagues [24]. While it is still among the 545

state-of-the-art prediction tools [27], its vast runtime requirements of O(n4) render it 546

inapplicable for large scale data analyses as e.g. genome wide target screens. This 547

problem was tackled by Anke Busch and coworkers with IntaRNA [33, 34], which 548

implements a heuristic version of an accessibility-based approach that extends fast 549

hybridization-only recursions with ∆E penalties. IntaRNA results in a much lower 550

O(n2) time complexity [33] when using precomputed or approximate ∆E terms as 551

introduced in [58]. A detailed introduction is also given in [45]. A similar heuristic 552

extension was recently reported for TargetRNA2 [59]. Current versions of the initially 553

hybridization-only approach RNAplex [54] and its webserver RNApredator [60] 554

incorporate an approximate, position-specific accessibility model to increase prediction 555

quality [61]. 556

Example Questions: 557

� Rewrite Eq. 19 to directly compute the final interaction energy values from Eq. 17. 558

� Why can interaction patterns enclosing intramolecular base pairs (see Fig. 4) not 559

be predicted by the introduced basic accessibility-based approaches? 560
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Implementation 561

All discussed algorithms and visualizations have been implemented in JavaScript. This 562

enables client-side computation (no backend server hardware needed) as well as local 563

download and application (from github repository) for offline usage. Since all 564

algorithms are dynamic-programming approaches, a generic inheritance hierarchy was 565

implemented to reduce code redundancy and to simplify maintenance and extensibility. 566

We use knockoutjs as the controller to bind input/output elements from within the 567

HTML pages with the JavaScript data structures and computations. 568

Conclusion 569

The understanding of RNA structure and RNA-RNA interaction prediction approaches 570

is central to ensure correct result interpretation and an awareness of their limitations, 571

both essential to avoid wrong conclusions. Furthermore, it ensures proper embedding in 572

RNA-related analysis pipelines or their extension to new fields of applications. 573

To gain this level of understanding the original literature is often of limited didactic 574

value since scientific articles are typically not meant for educational use. Thus, 575

approaches are either represented on a very detailed expert level or sketched briefly 576

since the manuscript focuses on the biological results rather than algorithmic details. 577

Here, we provide a compact summary of the relevant theoretical background for the 578

most common algorithmic approaches and their state-of-the-art instances currently used. 579

Algorithms are stripped from complicating energy-model details to enable an easy 580

understanding of the underlying concepts and the resulting limitations. Furthermore, 581

we provide web-based implementations and visualizations of all presented approaches for 582

their ad hoc use. The latter is of importance, since example-driven (self-)study is known 583

to significantly foster learning and understanding. To further support such self-learning 584

efforts based on our manuscript and web-service, we provide small exemplary tasks for 585

each algorithm group that can be tackled using our web-implementations. 586

The web-service [62] is being continually extended with the implementation and 587

visualization of additional methods. Planned implementations cover pseudoknotted 588

(crossing) structure prediction approaches as well as comparative approaches for RNA 589

structure and RNA-RNA interaction prediction, e.g. discussed in [57]. 590

Eventually, we provide both a comprehensive review of current RNA 591

thermodynamic-focused prediction approaches to spark ideas for new approaches and 592

interactive teaching material, which will help that available tools are correctly applied 593

and interpreted. 594
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