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Abstract

Background: Large RNA molecules are often composed of multiple functional domains whose spatial arrangement
strongly influences their function. Pre-mRNA splicing, for instance, relies on the spatial proximity of the splice
junctions that can be separated by very long introns. Similar effects appear in the processing of RNA virus genomes.
Albeit a crude measure, the distribution of spatial distances in thermodynamic equilibrium harbors useful information
on the shape of the molecule that in turn can give insights into the interplay of its functional domains.

Result: Spatial distance can be approximated by the graph-distance in RNA secondary structure. We show here that
the equilibrium distribution of graph-distances between a fixed pair of nucleotides can be computed in polynomial
time by means of dynamic programming. While a naïve implementation would yield recursions with a very high time
complexity of O(n6D5) for sequence length n and D distinct distance values, it is possible to reduce this to O(n4) for
practical applications in which predominantly small distances are of of interest. Further reductions, however, seem to
be difficult. Therefore, we introduced sampling approaches that are much easier to implement. They are also
theoretically favorable for several real-life applications, in particular since these primarily concern long-range
interactions in very large RNA molecules.

Conclusions: The graph-distance distribution can be computed using a dynamic programming approach. Although
a crude approximation of reality, our initial results indicate that the graph-distance can be related to the smFRET data.
The additional file and the software of our paper are available from http://www.rna.uni-jena.de/RNAgraphdist.html.
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Background
The distance distribution within an RNA molecule is of
interest in various contexts. Most directly, the question
arises whether panhandle-like structures (in which 3’ and
5’ ends of long RNA molecules are placed in close prox-
imity) are the rule or an exception. Panhandles have been
reported in particular for many RNA virus genomes. Sev-
eral studies [1-4] agree based on different models that
the two ends of single-stranded RNA molecules are typi-
cally not far apart. On a more technical level, the problem
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to compute the partition function over RNA secondary
structures with given end-to-end distance d, usually mea-
sured as the number of external bases (plus possibly the
number of structural domains) arises for instance when
predicting nucleic acid secondary structure in the pres-
ence of single-stranded binding proteins [5] or in models
of RNA subjected to pulling forces (e.g. in atom force
microscopy or export through a small pore) [6-8]. It also
plays a role for the effect of loop energy parameters [9].

In contrast to the end-to-end distance, the graph-
distance between two arbitrarily prescribed nucleotides
in a larger RNA structure does not seem to have been
studied in any detail. However, this is of particular interest
in the analysis of single-molecule fluorescence resonance
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energy transfer (smFRET) experiments [10]. This tech-
nique allows to monitor the distance between two dye-
labeled nucleotides and can reveal details of the kinetics
of RNA folding in real time. It measures the non-radiative
energy transfer between the dye-labeled donor and accep-
tor positions. The efficiency of this energy transfer, Efret ,
strongly depends on the spatial distance R according to
Efret = R6

0/(R
6
0 + R6). The Förster radius R0 sets the

length scale, e.g. R0 ≈ 54 Å for the Cy3-Cy5 dye pair.
A major obstacle is that, at present, there is no gen-
eral and efficient way to link smFRET measurements to
interpretations in terms of explicit molecular structures.
To solve this problem, a natural first step is to compute
the distribution of spatial distances for an equilibrium
ensemble of 3D structures. Since this is not feasible in
practice despite major progress in the field of RNA 3D
structure prediction [11], we can only resort to con-
sidering the graph-distances on the ensemble of RNA
secondary structures instead. From a computer science
point of view, furthermore, we show here that the distance
distribution can be computed exactly using a dynamic
programming approach. Although a crude approxima-
tion of reality, our initial results indicate that the graph-
distance can be related to the smFRET data such as
those reported by [12] and help to explain effects of RNA
structures in pre-mRNA splicing and viral subgenomic
RNA species.

Theory
RNA secondary structures
An RNA secondary structure is a vertex labeled out-
erplanar graph G(V , x, E), where V = {1, 2, . . . , n} is
a finite ordered set (of nucleotide positions) and x :
{1, 2, . . . , n} → {A, U, G, C}, i �→ xi assigns to each ver-
tex at position i (along the RNA sequence from 5’ to 3’)
the corresponding nucleotide xi. We write x = x1 . . . xn
for the sequence underlying secondary structure and use
x[i . . . j] = xi . . . xj to denote the subsequence from i to j.
The edge set E is subdivided into backbone edges of the
form {i, i + 1} for 1 ≤ i < n and a set B of base pairs
satisfying the following conditions:

(i) If {i, j} ∈ B then xixk ∈ {GC, CG, AU, UA, GU, UG};
(ii) If {i, j} ∈ B then |j − i| > 3;

(iii) If {i, j}, {i, k} ∈ B then j = k;
(iv) If {i, j}, {k, l} ∈ B and i < k < j then i < l < j.

The first condition allows base pairs only for Watson-
Crick and GU base pairs. The second condition imple-
ments the minimal steric requirement for an RNA to
bend back on itself. The third condition enforces that B

forms a matching in the secondary structure. The last
condition (nesting condition) forbids crossing base pairs,
i.e. pseudoknots.

The nesting condition results in a natural partial order
in the set of base pairs B defined as {i, j} ≺ {k, l} if
k < i < j < l. In particular, given an arbitrary ver-
tex k, the set Bk = {{i, j} ∈ B|i ≤ k ≤ j} of base pairs
enclosing k is totally ordered. Note that k is explicitly
allowed to be incident to its enclosing base pairs. A ver-
tex k is external if Bk = ∅. A base pair {k, l} is external if
Bk = Bl = {{k, l}}.

Consider a fixed secondary structure G, for a given base
pair {i, j} ∈ B, we say a vertex k is accessible from {i, j}
if i < k < j and there is no other pair {i′, j′} ∈ B such
that i < i′ < k < j′ < j. The unique subgraph Li,j
induced by i, j, and all the vertices accessible from {i, j} is
known as the loop of {i, j}. The type of a loop Li,j is unique
determined depending on whether {i, j} is external or not,
and the numbers of unpaired vertices and base pairs. For
details, see [13]. Each secondary structure G has a unique
set of loops {Li,j|{i, j} ∈ B}, which is called the loop decom-
position of G. The free energy f (G) of a given secondary
structure, according to the standard energy model [14], is
defined as the sum of the energies of all loops in its unique
loop decomposition.

The relative location of two vertices v and w in G is
determined by the base pairs Bv and Bw that enclose them.
If Bv ∩ Bw �= ∅, there is a unique ≺-minimal base pair
{iv,w, jv,w} that encloses both vertices and thus a uniquely
defined loop L{iv,w ,jv,w} in the loop associated with v and w.
If Bv \ Bw = ∅ or Bw \ Bv = ∅ then v or w is unpaired and
part of L{iv,w,jv,w}. Otherwise, i.e. Bv ∩ Bw = ∅, there are
uniquely defined ≺-maximal base pairs {kv, lv} ∈ Bv \ Bw
and {kw, lw} ∈ Bw \ Bv that enclose v and w, respec-
tively. We note that Bv \ Bw (Bw \ Bv) may be empty, in
which case {kv, lv} ({kw, lw}) is also empty. This simple par-
tition holds the key to computing distance distinguished
partition functions below.

In the following, we assign the weights a for backbone
edges and b for base pairs, respectively. Given a path
p, we define the weight of the path d(p) as the sum of
the weights of edges in the path. The (weighted) graph-
distance dG

v,w in G is defined as the weight of the path
p connecting v and w with d(p) being minimal. For the
weights, we require the following condition:

(W) If i and j are connected by an edge, then {i, j} ∈ E
is the unique shortest path between i and j.

This condition ensures that single edges cannot be
replaced by detours of shorter weight. Condition (W) and
property (ii) of the secondary structure graphs implies
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b < 3a because the closing base pair must be shorter
than a hairpin loop. Furthermore, considering a stacked
pair we need b < b + 2a, i.e. a > 0. We allow the
degenerate case b = 0 that neglects the traversals of
base pairs.

Before we continue with the calculations of the partition
function, let us first consider the problem formulation in
more detail. For the FRET application, it is well-known
that FRET efficiency is correlated with spatial distance.
Furthermore, only a limited range of distance changes
(e.g. 20 Å-100 Å for Cy3-Cy5) can be reported by the
FRET experiments. Thus a more useful formulation of our
problem is not to use the full expected quantity for all
positions. Instead, we are interested in the average for all
distance-values within some threshold θd. As the space
and time complexity will depend on the number of dis-
tances we consider, we will parametrise our complexity
by the number of nucleotides n and the number of dis-
tances considered D = θd + 1, as well. In the worst
case, there is D = O(n). However, given that in practice
only a limited range of distance changes are considered,
we rather view D = O(1) as a small constant in our
contribution.

Boltzmann distribution of graph-distances
For a fixed structure G, dG

v,w is easy to compute. Here,
we are interested in the distribution Pr[dG

v,w|x] and its
expected value dv,w = E[dG

v,w|x] over the ensemble of all
possible structures G for a given sequence x. Both quan-
tities can be calculated from the Boltzmann distribution
Pr[G|x] = e−f (G)/RT/Q where Q = ∑

G e−f (G)/RT denotes
the partition function of the ensemble of structures. As
first shown in [15], Q and related quantities can be com-
puted in quartic time. A reduction to a cubic algorithm
may be obtained if the free energy of long interior loops
may be regarded as prohibitive. This restriction has been
widely used for long sequences [16]. Cubic runtime can
also be achieved for some but not all parametrizations of
interior loop energies [17].

A crucial quantity for our task is the restricted partition
function

Zv,w[d] =
∑

G with dG
v,w=d

e−f (G)/RT

for a given pair v, w of positions in a given RNA sequence
x. A simple computation (Appendix A in Additional
file 1) verifies that the Pr[dG

v,w = d|x] = Zv,w[d] /Q and
dv,w = E[dG

v,w|x] = ∑
d(Zv,w[d] /Q)d. Hence it suffices to

compute Zv,w[ d] for any 1 ≤ d ≤ n. In the following
sections we show that this can be achieved by a variant of
McCaskill’s approach [15].

For the ease of presentation we describe in the fol-
lowing only the recursion for the simplified energy
model for the “circular maximum matching”, in which
energy contributions are associated with individual
base pairs rather than loops. Our approach can be
easily extended to the full model by using separat-
ing the partition functions into distinct cases for the
loop types.

We use the letters Z and Y to denote partition functions
with distance constraints, while Q is used for quantities
that appear in McCaskill’s algorithm and are considered as
pre-computed here. For instance, let QB

i,j denote the par-
tition function over all secondary structures on x[i..j] that
are enclosed by the base pair {i, j}. We will later also need
the partition function Qi,j over the sub-sequence x[i..j],
regardless of whether {i, j} is paired or not. In Additional
file 1: Appendix C, we summarize the notations frequently
used in our contribution.

Recursions of Zv,w[d]: The case when v and w are external
An important special case assumes that both v and w are
external. This is the case e.g. when v and w are binded by
proteins. In particular, the problem of computing end-to-
end distances, i.e., v = 1 and w = n, is of this type.

Assuming (W), the shortest path between two exter-
nal vertices v, w consists of the external vertices and their
backbone connections together with the external base
pairs. We call this path the inside path of i, j since it does
not involve any vertices “outside” the subsequence x[i..j].

For efficiently calculating the internal distance between
any two vertices v, w, we denote by ZI

i,j[d] the parti-
tion function over all secondary structures on x[i..j] with
distance exactly d.

Now note that any structure on x[i..j] starts either with
an unpaired base or with a base pair connecting i to some
position k satisfying i < k ≤ j. In the first case, we
have dG

i,j = dG
i,i+1 + dG

i+1,j where dG
i,i+1 = a. In the sec-

ond case, there exists dG
i,j = dG

i,k + dG
k,k+1 + dG

k+1,j with
dG

i,k = b and dG
k,k+1 = a. Thus, ZI

i,j[d] can be split as
follows,

This gives the recursion

ZI
i,j[d] = ZI

i+1,j[d − a] +
∑

i<k≤j
QB

i,kZI
k+1,j[ d − b − a] (1)

with the initialization ZI
ii[0] = 1 and ZI

ii[d] = 0 for d >

0. For consecutive vertices, we have ZI
i,i+1[a] = 1 and

ZI
i,i+1[d] = 0 for d �= a. These recursions have been
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derived in several different contexts, e.g. force induced
RNA denaturations [6], the investigate of loop entropy
dependence [9], the analysis of FRET signals in the pres-
ence of single-stranded binding proteins [5], as well as in
mathematical studies of RNA panhandle-like structures
[3,4].

In the following, it will be convenient to define also a
special term for the empty structure. Setting ZI

i,i−1[−a] =
1 and ZI

i,i−1[d] = 0 for d �= −a allows us to formally write
an individual backbone edge as two edges flanking the
empty structure and hence to avoid the explicit treatment
of special cases. This definition of ZI also includes the case
that i and j are base paired in the recursion (1). This is cov-
ered by the case k = j, where we evaluate ZI

j+1,j[d −b−a].
Since d = b is the only admissible value here, this refers to
ZI

j+1,j[−a], which has the correct value of 1 due to our def-
inition. Later on, we will also need ZI under the additional
condition that the path starts and ends with a backbone
edge. We therefore introduce ZI′ defined as by

ZI′
i,j[d] = ZI

i+1,j−1[d − 2a] (2)

Note that if ZI′
i,j[d] is called with j = i + 1, then we

call ZI
i+1,i[d − 2a]. The only admissible value again is the

correct value d = a. In sum, we have the following

+1 -1

This recursion requires O(n3D) time and O(n2D) space.
It is possible to reduce the complexity of computing the
expected distance in this special case by a linear fac-
tor. The trick is to use conditional probabilities for arcs
starting at i or the conditional probability for i to be
single-stranded, which can be determined from the par-
tition function for RNA folding [3], see Additional file 1:
Appendix B.

Recursions of Zv,w[d]: the general case
The distance between two positions v and w that are cov-
ered by an arc can be realized by both inside paths and
outside paths. Here, “outside” emphasizes that the short-
est path between two positions v and w contains vertex
does not belongs to x[v, w]. This case complicates the
algorithmic approach, since both types of paths must be
controlled simultaneously. Consider Figure 1, the shortest
path between the green and blue regions includes some
vertices outside the interval between these two regions.
The basic idea is to generalize Equation (1) to comput-
ing the partition function Zv,w[d]. The main question now
becomes how to recurse over decompositions of both the
inside and the outside paths.

Figure 1 shows that the outside paths are important for
the green region, i.e., the region that is covered by an arc.
Hence, we have to consider the different cases that the two
positions v and w are covered by arcs. The set � of all sec-
ondary structures on x can be divided into two disjoint
subclasses that have to be treated differently:

�0 : v and w are not enclosed in a common base pair, i.e.,
Bv ∩ Bw = ∅.

�1 : there is a base pair enclosing both v and w, i.e.,
Bv ∩ Bw �= ∅.

Note that this bipartition explicitly depends on v and w.
In the following, we will first introduce the recursions that
are required in �0 structures to compute Zv,w[d].

Contribution of �0 structures to Zv,w[d]: Zv,w
0 [d]

One example of this case is given in Figure 1 with the red
and blue region, where v (vertex in green region) is cov-
ered by an arc, and w (vertex in blue region) is external.
Denote the ≺-maximal base pair enclosing v by {i, j}. Since
at most one of v and w is covered by an arc, we know that
j < w. Hence, every path p from v to w, and hence also the
shortest paths (not necessarily unique) must run through
the right end j of the arc {i, j}. More precisely, there must
sub-paths p1 and p2 with d(p) = d(p1) + d(p2) + a such
that v p� w → v p1� j − (j + 1)

p2� w, where i p� j denotes
that p is a shortest path from i to j and − denotes a single
backbone edge. For the shortest path from v to j, it con-

sists either of a shortest path v p′
� i and the arc {i, j}, or it

goes directly to j without using the arc {i, j}.
How does this distinction translate to the partition func-

tion approach? If we want to calculate the contribution of
this case to the partition function Zv,w[d], we have to split
both the sequence x[i, w] and distance d as follows

a.)

where ZI′
j,w[d2] is the partition function starting and end-

ing with a single-stranded base as defined in Equation (2),
and ZB,v

i,j [d�, dr] is the partition function consisting of all
structures of x[i, j] containing the base pair {i, j} with the
property that the shortest path from v to i has length d�

and the shortest path from v to j has length dr . In addition,
d, dr and d2 must satisfy d = dr + d2.

The remaining cases for the contribution of the class
�0 to Zv,w[d] are given by all other possible combinations
of v and w being single-stranded or being covered by an
arc, i.e.,
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To simplify, we extend the definition of ZB,v
i,j [d�, dr] by

setting ZB,v
v,v [0, 0] = 1 and ZB,v

v,v [d�, dr] = 0 for d� + dr > 0.
This allows us to conveniently model all cases where either
v or w are external, i.e., a.), b.), and d.), as special cases of
c.).

In case c.), we have to split the distance d into
five sub-distances dl, dr , d′

l, d′
r , dI , in which dI can be

retrieved from the first four distances. Furthermore, we
would require four splitting positions for the sequence
for all possible combinations of i, j, k, l. A naïve imple-
mentation of this idea would result in an algorithm
with time complexity O(n6D5) and space complexity
O(n2D2).

A careful inspection shows, however, that the split of the
distances for the arcs into d� and dr is unnecessary. Since
we want to know only distance to the left/right end, we
can simply introduce two matrices ZB,v,�

i,j [d] and ZB,v,r
i,j [d]

that store these values. These matrices can be generated
from ZB,v

i,j [d�, dr] as follows:

ZB,v,�
i,j [d] =

∑
dr

dr+b≥d

ZB,v
i,j [d, dr] +

∑
d�

d�>d

ZB,v
i,j [d�, d − b]

Analogously, we compute ZB,v,r
i,j [d]. In this way, we split

the distance d into three contributions and we require
four splitting positions for the sequence for all possible
combinations of i, j, k, �.

Therefore, the contribution to Zv,w[d] for structures in
�0 is given by

Zv,w
0 [d] =

∑
d1,d2

d1+d2≤d

∑
i,j,k,l

i≤v≤j<k≤w≤l

⎛
⎜⎝

Q1,i−1 · ZB,v,r
i,j [d1]

· ZI′
j,k[d − (d1 + d2)]

· ZB,w,�
k,l [d2] ·Ql+1,n

⎞
⎟⎠ (3)

Figure 1 Inside and outside paths. The shortest path (violet arrows) from v (green) to w (blue) is not an inside path: inside emphasizes that, in
contrast to the shortest path (cyan arrows) between the red region and w, it is not contained in the interval determined by its end points.
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Note that for splitting the distance, we reuse the same indices (e.g., the j in ZB,v,r
i,j [d1] ·ZI′

j,k[d − (d1 + d2)], where as for
the remaining partition function, we use successive indices (e.g.,the i in Q1,i−1 · ZB,v,r

i,j [d1]). This difference comes from
the fact that splitting a sequence into subsequences is done naturally between two successive indices, whereas splitting a
distance is naturally done by splitting at an individual position. We have only to guarantee that the substructures which
participate in the split do agree on the structural context of the split position. This is guaranteed by requiring that ZI′

starts and ends with a backbone edge. We note that the incorporation of the full dangling end parameters makes is more
tedious to handle the splitting positions.

This results in a complexity of O(n6D3) time and O(n2D) space. However, we do not need to split in i, j, k, l
simultaneously. Instead, we could split case (c) at position j and introduce for all v ≤ j and k ≤ w the auxiliary variables

ZB,v,r
1,j [d1] =

∑
i≤v

Q1,i−1 · ZB,v,r
i,j [d1]

ZB,w,�
k,n [d2] =

∑
w≤l

ZB,w,�
k,l [d2] ·Ql+1,n

ZIB,w,�
j,n [d′] =

∑
k>j

∑
d2≤d′

ZI′
j,k[d′ − d2] ·ZB,w,�

k,n [d2] .

Finally, we can replace recursion (3) by

Zv,w
0 [d] =

∑
v≤ j

∑
d1≤d

ZB,v,r
1,j [d1] ·ZIB,w,�

j,n [d − d1] (4)

We thus arrive at O(n3D2) time and O(n2D) space complexity for the contribution of �0 structures to Zv,w[d], excluding
the complexity of computing ZB,v

i,j [d�, dr].

Contribution of �1 structures to Zv,w[d]
�1 contains all cases where v and w are covered by a base pair. In the following, let {p, q} be the ≺-minimal base pair
covering v and w. In principle, this case looks similar to the case for �0. However, we have to take into considerations
the paths between v and w over the base pair {p, q}. Thus, we need to store the partition function for all inside and
outside for each ≺-minimal arc {p, q} that covers v and w, which we will call Zv,w

p,q [dO, dI ]. In principle, a similar recursion
as defined for Zv,w

0 in equation (3) can be derived, with the additional complication since we have to take care of the
additional outside distance due to the arc {p, q}. Thus, we obtain the following splitting:

Again we can avoid the complexity of simultaneously splitting at {i, j} and {k, l} by doing a major split after j. Thus, we
get the following picture,

which leads to the following equivalent recursions:
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Y B,v,r
p,j [d, dr] =

∑
p<i≤v

∑
d′

O≤d

ZI′
p,i[d′

O] ·ZB,v
i,j [d − d′

O, dr] (5)

Y B,w,�
k,q [d′

�, d′] =
∑

w≤l<q

∑
d′′

O≤d′
ZB,w

k,l [d′
�, d′ − d′′

O] ·ZI′
l,q[d′′

O] (6)

Y IB,w,�
j,q [dI�, d′] =

∑
j<k<q

∑
d′

�≤dI�

ZI′
j,k[dI� − d′

�] ·Y B,w,�
k,q [d′

�, d′] (7)

Overall, we get the following recursion:

Zv,w
p,q [dO, dI ] =

∑
v≤ j

∑
dr≤dI
d≤dO

Y B,v,r
p,j [d, dr] ·Y IB,w,�

j,q [dI − dr , dO − d] (8)

We can now define Zv,w[d] by

Zv,w[d] = Zv,w
0 [d] +Q̂b

p,q·

⎧⎪⎪⎨
⎪⎪⎩

∑
{p,q}�={v,w}

dI≥d+b

Zv,w
p,q [d, dI ] +

∑
{p,q}�={v,w}

d<dO+b

Zv,w
p,q [dO, d]

⎫⎪⎪⎬
⎪⎪⎭ (9)

where Q̂b
p,q is the external partition function over all structures on the union of the intervals x[1..p] ∪x[q..n] so that {p, q}

is a base pair. Since the base pair probability can be written as Pr({p, q}) = Q̂b
p,qQb

p,q
Q , this quantity can be calculated as

Q̂b
p,q = Pr({p,q})Q

Qb
p,q

. The base pair probability Pr({p, q}), and the partition functions Q and Qb
p,q are computed by means of

McCaskill’s algorithm.
This part now has a complexity of O(n2D2) space and O(n3D4) time. For practical applications, however, we do not

need to consider all possible {p, q}. Instead, there are only few base pairs that are likely to form and that cover v, w,
especially for v, w where the internal distance of v, w is large enough such that an outside path has to be considered at
all. If we assume a constant number of such long-range base-pairs, then the complexity is reduced by an n2-factor. For
the complexity in terms of distance, recall that D is typically small.

Recursions for ZB,v
i,j [ d�, dr]

So far, we have used ZB,v
i,j [d�, dr] as a black box. In order to compute these terms, we distinguish the limiting cases a.)

v = i, b.) v = j, c.) is external from the generic case d.):

Starting from the limiting cases, we initialize ZB,v
v,j [0, dr] as follows:

ZB,v
v,j [0, dr] =

⎧⎪⎨
⎪⎩

ZI′
v,j[dr] for a ≤ dr < b∑

d′≥b ZI′
v,j[d′] for dr = b

0 otherwise

and analogously for ZB,v
i,v [d�, 0]. Furthermore, ZB,v

i,j [0, 0] = 0 for i �= v �= j. These conventions allow us to model all cases
as special cases of d). Our key observation here is that the dependency between d� and dr can be used to reduce the
time complexity. Instead of using the variables d� and dr in ZB,v

i,j [d�, dr], we use the pair d�, dadd in ZB,v
i,j [d�, d� + dadd].

Similarly, we use d′
�, d′

add instead of d′
�, d′

r for the inner base pair, which then determines completely the splitting the
distances. This results in an recursion for ZB,v

i,j [d�, d� + dadd] with complexity O(n4D2c2
b) time and O(n2Dcb) space. To

be precise, there are three sub-cases as follows.



Qin et al. Algorithms for Molecular Biology 2014, 9:19 Page 8 of 14
http://www.almob.org/content/9/1/19

The values that are chosen to split d� and dadd are indicated in green and blue. When the arc {i, j} is colored violet,
then there is a shortest path that does not use the distance marked in red but uses the other direction together with
the arc {i, j}. If −b < dadd < +b, then we know that neither a shortest path v p� i nor v p� j uses the arc {i, j}.
The left distance is thus given by d� − d′

�. Using the shortcuts dr = d� + dadd and d′
r = d′

� + d′
add, then the distance

between l and j must be dr − d′
r = (d� + dadd) − (

d′
� + d′

add
)
. If, on the other hand, dadd = +b, then we know that

there is at least one shortest path that can be composed by using a shortest path v � i, followed by the arc {i, j}. This

of course implies that the shortest path v p� j is has exactly the length d� + b, or is larger. For a sub-path l + 1 p′
� j this

implies that the length is greater or equal d = dr − d′
r = (d� + b) − (

d′
� + d′

add
)
. Thus, we just have to add all partition

functions ZI′
k,j[d

′] with d′ > d. This can be done efficiently by using a precalculated matrix ZI′≥
i,j [d], which is defined as∑

d′≥d ZI′
i,j[d′]. Note that ZI′≥

i,j [d] can also be defined if we restrict in all recursion the distance d to a threshold θd, since
ZI′≥

i,j [d] = ∑
d′≥d ZI′

i,j[d′] = Q′
i,j −

∑
d′<d ZI′

i,j[d′]. In which, where Q′
i,j is Qi+1,j−1 if j > i + 1, 1 if j = i + 1 and 0 otherwise.

Note, furthermore, that all ZI′
i,j[d′] for d′ < d ≤ θd are calculated when we restrict the distance to θd .

Finally, if dadd = −b, then the shortest path l p� j has distance (d� − b) − (
d′

� + d′
add

)
. For the shortest path k p� i,

we know that it has length d� − d′
� or greater, which can be resolved by again using ZI′≥

i,k−1[d� − d′
�]. Thus, we get the

following optimized recursion for ZB,v
i,j [d�, d� + dadd] with d� �= 0 and d� + dadd �= 0:

ZB,v
i,j [dl, dl + dadd] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k �=l

i<k≤v
v≤l<j

∑
d′

l≤dl

∑
d′

add
−b≤d′

add≤b

⎛
⎝ ZI′

i,k
[
dl − d′

l
] · ZB,v

k,l
[
d′

l, d′
l + d′

add
]

· ZI′
l,j

[
(dl + dadd) − (

d′
l + d′

add
)]

⎞
⎠ if − b < dadd < b

∑
k �=l

i<k≤v
v≤l<j

∑
d′

l≤dl

∑
d′

add
−b≤d′

add≤b

⎛
⎝ ZI′

i,k
[
dl − d′

l
] · ZB,v

k,l
[
d′

l, d′
l + d′

add
]

· ZI′
l,j ≥ [

(dl − b) − (
d′

l + d′
add

)]
⎞
⎠ if dadd = b

∑
k �=l

i<k≤v
v≤l<j

∑
d′

l≤dl

∑
d′

add
−b≤d′

add≤b

⎛
⎝ ZI′

i,k
[
dl − d′

l
] · ZB,v

k,l
[
d′

l, d′
l + d′

add
]

· ZI′
l,j

[
(dl − b) − (

d′
l + d′

add
)]

⎞
⎠ if dadd = −b

(10)
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Discussion and applications
The theoretical analysis of the distance distribution prob-
lem shows that, while polynomial-time algorithms exist,
they probably cannot be improved to space and time
complexities that make them widely applicable to large
RNA molecules. Due to the unfavorable time complex-
ity of the current algorithm and the associated exact
implementation in C, a rather simple and efficient sam-
pling algorithm has been implemented. We resort to
sampling Boltzmann-weighted secondary structures with
RNAsubopt -p [16], which uses the same stochastic
backtracing approach as sfold [18]. As the graph-
distance for a pair of nucleotides in a given secondary
structure can be computed in O(n log n) time by Dijkstra’s
algorithm with Fibonacci heap [19], even large samples
can be evaluated efficiently.

As we pointed out in the introduction, the graph-
distance measure introduced in this paper can serve as a
first step towards a structural interpretation of smFRET
data. As an example, we consider the graph distance distri-
bution of a Diels-Alderase (DAse) ribozyme (Figure 2A).
Histograms of smFRET efficiency (Efret) for this 49 nt long
catalytic RNA are reported in [12] for a large number
of surface-immobilized ribozyme molecules as a func-
tion of the Mg2+ concentration in the buffer solution.
A sketch of their histograms is displayed in Figure 2B.
The dyes are attached to sequence positions 6 (Cy3) and
42 (Cy5) and hence do not simply reflect the end-to-
end distance, Figure 2A(c). In this example, we observe
the expected correspondence small graph-distances with
a strong smFRET signal. This is a particular interesting
example, since the minimal free energy (mfe) structure
(Figure 2A(a)) predicted with RNAfold is not identified
with the real secondary structure (Figure 2A(c)). In fact,
the ground state secondary structure is ranked as the 3rd
best sub-optimal structure derived via RNAsubopt -e.
The free energy difference between these two structures
is only 0.1 kcal/mol. However, their graph-distances show
a relatively larger difference. The 2nd best sub-optimal
structure (Figure 2A(b)) looks rather similar with the
3rd structure, in particular, they share the same graph-
distance value.

The smFRET data of [12] indicates the presence of
three sub-populations, corresponding to three different
structural states: folded molecules (state F), intermediate
conformation (state I) and unfolded molecules (state U).
In the absence of Mg2+, the I state dominates, and only
small fractions are found in states U and F. Unfortunately,
the salt dependence of RNA folding is complex [21,22]
and currently is not properly modeled in the available
folding programs. We can, however, make use of the quali-
tative correspondence of low salt concentrations with high
temperature. In Figure 2C we therefore re-compute the
graph-distance distribution in the ensemble at an elevated

temperature of 50°C. Here, the real structure becomes the
second best structure with free energy −10.82 kcal/mol
and we observe a much larger fraction of (nearly) unfolded
structures with longer distances between the two beacon
positions. Qualitatively, this matches the smFRET data
showed in Figure 2B.

Furthermore, for a given pair v, w of positions in a given
RNA sequence x, the importance Iv,w(e) of a backbone
edge or base pair e in calculating the graph-distance dis-
tribution is evaluated by Iv,w(e) = ∑

e∈�e Pr[G|x], where
the set �e comprises the secondary structures G with
(at least) one shortest path between v and w that runs
through e. Figure 3 compares dot plots of Iv,w(e) with the
base-pair probabilities in the RNA structure ensemble of
the DAse ribozyme at temperatures 37°C and 50°C. Since
RNAgraphdist computes only one of possible many
shortest paths for each G, hence we obtain only a lower
bound on Iv,w(e).

We observe for DAse that the contributions from the
backbone edges are larger than the base pairs at both tem-
peratures. For T = 37°C, there are in total 14 edges with
I6,42(e) > 0.4. Only two of them, 5(C)–18(G) and 2(G)–
21(C) are base pairs. For T = 50°C, there is only the pair
5(C)–18(G) is heavily used (I6,42(5, 18) = 0.636). Com-
bining the analysis of data illustrated in Figure 2, it may
indicate that the existences of two base pairs, 2(G)–21(C)
and 28(G)–39(C) can affect the graph-distance distribu-
tion of RNA secondary structure ensemble and conse-
quently affect smFRET measurements. Such constraints
may become an interesting source of constraints for RNA
structure prediction.

In addition, we compute the distribution of paths which
pass through positions outside sequence interval x[6 −
h, 42 + h] of DAse ribozyme. As illustrated in Figure 4,
this “outside-path” distribution, as expected, drops fast to
0 with respect to h.

Long-range interactions play an important role in
pre-mRNA splicing and in the regulation of alterna-
tive splicing [23-25], bringing splice donor, acceptor,
branching site into close spatial proximity. Figure 5A
shows for D. melanogaster pre-mRNAs that the distri-
bution of graph-distances between donor and acceptor
sites shifted towards smaller values compared to ran-
domly selected pairs of positions with the same distance.
Due to the insufficiency of the spacial-distance informa-
tion of structural elements in the secondary structures,
we artificially choose a = b = 1 in our experi-
ments. Although the effect is small, it shows a clear
difference between the real RNA sequences and artifi-
cial sequences that were randomized by di-nucleotide
shuffling. Furthermore, Table 1 displays for a specific
intron CG16979-RA_intron_0_0_chr3L_15569803 from
Drosophila melanogaster (dm3), the most probable sec-
ondary structures in the sub-ensembles of secondary
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Figure 2 Relation between graph-distance distribution and smFRET data. (A) The graph-distance distribution of a Diels-Alderase (DAse)
ribozyme at temperature 37°C. Structures (a), (b) and (c) are the top three secondary structures considering their free energy: the minimum free
energy structure is shown in (a), (c) is the experimentally determined secondary structure, which is ranked as the 3rd best sub-optimal structure with
RNAsubopt -e. The graphic representations of these structures are produced with VARNA [20]. (B) The corresponding smFRET efficiency (Efret)
histograms are reported in [12]. From these data, three separate states of the DAse ribozyme can be distinguished, the unfolded (U), intermediate (I)
and folded (F) states. (C) The graph-distance distribution in the ensemble which is approximated with RNAsubopt -p at temperature 50°C.
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Figure 3 Comparison between the base-pair probabilities and the distance importance I6,42(e). The base-pair probabilities (upper-right-
triangle) and the distance importances I6,42(e) (lower-left-triangle) of backbone edges and base pairs between 6(U) and 42(U) of DAse ribozyme
(Figure 2) are computed at temperatures 37°C and 50°C, repectively. The size of the squares is proportional to the probability/value. The region
covered by the between 6(U) and 42(U) is annotated by a red rectangle. For ease of comparison, backbone edges are added to the base-pair
probability matrix.
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Figure 4 “Outside-path” distribution of DAse ribozyme. The
distribution of paths which pass through positions outside the
sequence interval x[ 6 − h, 42 + h] of DAse ribozyme (Figure 2). As
expected, this probability drops fast to 0 with respect to h.

structures such that their graph-distances are 7, 6, and 14,
respectively.

The Drosophila melanogaster Down syndrome cell
adhesion molecules (DSCAM) encodes for 38.016 dif-
ferent mRNAs by alternative splicing. Among the 24
exons, exon 4 alone has 12 variants [26]. In Figure 6 we

display the graph-distance from donor (exon 3) to any
downstream position until acceptor (exon 5). Comparing
the graph-distances of all twelve acceptors of exon 4, we
see clearly local peaks. This suggests the acceptor being
part of hairpin loops, three dimensionally poking out of
the long transcript to interact easily with the spliceosome
and donor. Four of the twelve acceptor sites show no local
peak, however seem to be accessible as internal loops of
longer hairpins.

The spatial organization of the genomic and sub-
genomic RNAs is important for the processing and func-
tioning of many RNA viruses. This goes far beyond
the well-known panhandle structures. In Coronavirus
the interactions of the 5’ TRS-L cis-acting element with
body TRS elements has been proposed as an important
determinant for the correct assembly of the Coronavirus
genes in the host [27]. The mechanisms of interaction
is unknown, and a small three-dimensional distance is
suspected. The matrix of expected graph-distances in
Figure 5B shows that TRS-L and TRS-B are indeed placed
close to each other. In Table 2, we show the most stable
structures within the sub-ensembles of secondary struc-
tures such that their graph-distances are 14, 5, and 35,
respectively. All these RNA secondary structures brings
the leader transcription regulation site (L-TRS) in close
spatial proximity with the body transcription regulation
site (B-TRS).

These examples indicate that the systematic analysis of
the graph-distance distribution both for individual RNAs

Figure 5 Graph-distance distribution of the Drosophila melanogaster and the genomic RNA of human Coronavirus 229E. (A): Distribution of
graph-distances (a = b = 1) in Drosophila melanogaster pre-mRNAs between the first and last intron position. To save computational resources,
pre-mRNAs were truncated to 100 nt flanking sequence of introns. The black curve shows the graph-distance distribution computed for the
corresponding pairs of positions on sequences that were randomized by di-nucleotide shuffling. (B): Graph-distances (a = b = 1) within and
between the 5’ and 3’ regions of the genomic RNA of human Coronavirus 229E computed from a concatenation of position 1–576 (5’ UTR) and
25188–25688 (upstream of gene N). Secondary structures bring the 5’ TRS-L (63–76) and 3’ TRS-B (-23– -10) elements into close proximity.
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Table 1 Graph-distance of intron CG16979-RA_intron_0_0_chr3L_15569803 from Drosophila melanogaster (dm3)

1st 6th 10th

Distance = 7 Distance = 6 Distance = 14

a b c

The intron is extended at the 5’ and 3’ end with 100 bases. The graph-distance is computed between i=101(G) and j=159(G) (annotated in the figure). The
corresponding shortest paths are highlighted in yellow. The structures (a), (b) and (c) are the most stable structures considering the sub-ensembles which are the sets
of structures of graph-distance 7, 6 and 14, respectively. The graph distances 7, 6 and 14 are the 1st, 6th and 10th most favourable graph-distances considering
Boltzmann facor.

and their aggregation over ensembles of structures can
provide useful insights into structural influences on RNA
function. These may not be obvious directly from the
structures due to the inherent difficulties of predicting
long-range base pairs with sufficient accuracy and the
many issues inherent in comparing RNA structures of
very disparate lengths.

Due the complexity of algorithm we have refrained
from attempting a direct implementation in an impera-
tive programming language. Instead, we are aiming at an
implementation in Haskell that allows us to make use of
the framework of algebraic dynamic programming [28].

The graph-distance measure and the associated algorithm
can be extended in principle to of RNA secondary struc-
tures with additional tertiary structural elements such
as pseudoknots [29] and G-quadruples [30]. RNA-RNA
interaction structures [31] also form a promising area
for future extensions. We note finally, that the Fourier
transition method introduced in [32] could be employed
to achieve a further speedup.

Conclusion
The distribution of spatial distances in the equilib-
rium structure ensemble of an RNA molecule carries

Figure 6 Graph-distance distribution of DSCAM. Graph-distance distribution of DSCAM from last nucleotide of exon 3 (Chr.2, Pos. 3255892) to
any position until exon 5 (Chr.2, Pos. 3249372), including all 12 variations of alternative exon 4. For secondary structure prediction 100 nt flanking
region were used.
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Table 2 Graph-distance of the genomic RNA of human Coronavirus 229E computed from a concatenation of position
1-576 and 25188-25688

1st 6th 8th

Distance = 14 Distance = 5 Distance = 35

a b c

The graph-distance is measured from the most 5’ end to the most 3’ end of the sequence. The RNA secondary structure brings the leader transcription regulation site
(L-TRS) in close spatial proximity with the body transcription regulation site (B-TRS). The structures (a), (b) and (c) are the most stable structures considering the
sub-ensembles which are the sets of structures of graph-distance 14, 5 and 35, respectively. These are the 1st, 6th and 8th most favoured graph-distances in the
Boltzmann ensemble.

information about the overall structure of the molecule.
These distance can be approximated by the graph-
distance in RNA secondary structure. We introduced a
polynomial time algorithm to compute the equilibrium
distribution of graph-distances between a fixed pair of
nucleotides. For practical applications, small distances are
of main interest. Here, the time complexity of the pro-
posed algorithm is O(n4), compared to a naïve implemen-
tation with time complexity of O(n11) for sequence length
n and distances that can cover the whole sequence length.
Since further reductions, however, seem to be difficult,
we also introduced sampling approaches that are much
easier to implement. They are also theoretically favorable
for several real-life applications, in particular since these
primarily concern long-range interactions in very large
RNA molecules.
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