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Abstract: Today, RNA is well known to perform important regulatory acatalytic
function due to its distinguished structure. Consequesthte-of-the-art RNA mul-
tiple alignment algorithms consider structure as well agisace information. How-
ever, existing tools neglect the important aspect of Iogahlotably, locality in RNA
occurs as similarity of subsequences as well as similafignty substructures. We
present a novel approach for multiple alignment of RNAs tiestls with both kinds
of locality. The approach extends LocARNA by structuraldlity for computing all-
against-all pairwise, structural local alignments. Thalfgonstruction of the multiple
alignments from the pairwise ones is delegated to T-Coffée. paper systematically
investigates structural locality in known RNA families. i&marking multiple align-
ment tools on structural local families shows the need fgo@dhmic support of this
locality. The improvement in accuracy in special casesligexed while staying com-
petitive with state-of-the-art alignment tools acrosswhmle Bralibase. LocARNA
and its T-Coffee extended variant LocARNATE are freely llae at

http: /7 ww. bi ol nf. uni-freiburg. de/ Sof t war e/ LoOCARNA/|.

1 Introduction

The recent discovery of the ubiquity and vast importancegiitatory and catalytic RNA
in biological systems has radically changed our view on REAU02, Bar04, FWU5].
This motivated a series of algorithmic developments in ttea af multiple RNA align-
ment. RNA comparisons are challenging since both stru@ndesequence information
have to be taken into account in order to successfully aliyA&with low sequence iden-
tities; pure sequence alignment is failing below of aboGiquence identity. Spear-
heading this development are tools based on simultanedrsraednt and folding like
FoldAlignM [THGO4], LARA [BKRO/], and LocARNA [WRH"07]. However, these
approaches neglect an important aspect of locality.

For RNA, one distinguishes two kinds of locality. First, demity of RNAs can occur
restricted to only corresponding subsequences; this félocality is well known for se-
guence alignment. Even this locality is rarely supportethiojtiple alignment algorithms,
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Figure 1: Two similar local substructures. Both hammerhélaozymesA.J005300 andY 14700
differ globally. Nevertheless, they share a common fumetionotif (highlighted), which is structural
local.

which thereby assume that the input sequences are acguzatéded from their genomic
context.

This assumption however does not suffice in face of the sekimadof locality. Namely,
RNA shows structural locality in the case where only sulzstmes of several RNAs are
similar, cf. Figurddl. Such corresponding local substmestican consist of several sub-
sequences that are unconnected to each other at the sedgviceThen, these subse-
guences are connected only via the structure of the RNAs. natogous view is that
a local substructure consists of a subsequence, wheréncsutasequences are excluded
(therefore called exclusions in the paper). For the simpdesie of RNA alignment with
fixed input structures, the algorithmic challenge posedhi/Kind of locality is solved in
O(n®) [BWOA4].

Contribution In the paper, we show that structural locality plays an ingarrole for
RNA similarity and occurs in a number of known RNA familieso dur knowledge this
feature is for the first time analyzed across the Rfam, a databf known RNA family
alignments[GJMN05].

Responding to this observation, we present the tool LocARE|Avhich handles struc-
tural and sequence locality in the computation of multigigranents of RNAs. To our
knowledge it is the first multiple alignment approach thapsurts structural locality
of RNAs. The paper describes the extension of the pairwigmmlent algorithm of

LocARNA[WRH™Q4] by structural locality without increasing its theooeti complex-

ity. This serves as a basis for the construction of multiimanents, which is done here
using T-Coffee[NHHOD]. T-Coffee is chosen since it can dooasistency extension of
the information from pairwise LocARNA alignments. Compdite a purely pogressive
alignment strategy it is thereby able to avoid many of thecgipmistakes. At the same
time it respects the high-quality pairwise relation of tegences derived by LocARNA.

Our theoretical results are supported 1.) by benchmarkeisglected RNA sequences
from the Rfam that show distinguished structural localigyveell as 2.) by non-biased

Bralibase 2.1 benchmarks. The Bralibase 2.1 is a compilatiorue, hand-curated align-

ments for the purpose of assessing the accuracy of RNA aéghtools. [WMS05]



2 Preéiminaries

An (RNA) sequence S is a word ofY = {A,C,G,U}. We denote byA; the ith symbol

in A, by A;_; the subsequence from positioto j, and by| 4| the length ofd. An (RNA)
structure P for S is a set ofbase pairs (or arcs) (i,5) € {1...n} x {1...n}, i < j.

A structureP is calledcrossing iff 3(i,4'), (j,5') € P : i < j < ' < j'. Otherwise it

is callednon-crossing or nested. In the paper, we assume that RNA structures are non-
crossing. We define a partial orderirgon pairs of natural numbers [y, i') < (4, /) iff

j <1 <14 < j'. Obviously,< orders the base pairs of a structu?eaccording to their
nesting.

A pairwise alignment A of two sequences A and B is a subset ofl..|A|Ju{—} x [1..| B|]U
{1}, where for all pairgi, j), (¢/,j') € Aholds 1.)i < = j < j 2)i=i # — =
j=4j,and3)j =j # — = i = . We define the projections; A = {i # — | Jj :
(1,7) € A} andme A = {j # — | Ji: (4,j) € A}. An alignmentA of A andB is called
global, iff m1(A) = [1..|]A]] andms.A = [1..| B]. A sequence local motif of a sequence A
is a rangdi..j] for somel < 4,j < |A|. An alignmentA4 of A and B is calledsequence
local iff 1A is a sequence local motif fot andm,.A is a sequence local motif fds.

A consensus structure P for an alignment .4 of A and B is a pair(P4, Pg) of a structure
P, for A and a structuré’s for B, such that 1.) for all, j), (¢/,5’) € A holds(i, ') €
P, iff (j,7') € Pg, 2.) P4 contains only positions ifr;.A, and 3.) P contains only
positions inms A.

3 Locality

Structural Locality in Pairwise Alignments We distinguish sequence and structural
locality. Adopting a graph theoretic view, sequence localifa of a sequencd are sets of
connected vertices in a grapheq= (V, E), whereV = [1..|A|] andE = {(i,i+1)|]1 <

i < |A|}. For a structure? of A, we define astructural local motif for A and P as a set
of connected vertices in tharucture graph Ggruet = (V, E U P) of A and P. By this
definition, structural local motifs correspond to “substures”, where the connection of
bases can be either due to the backbone or due to bonds bdiasepairs.

An alignmentA of two RNA sequenced andB is structural local for consensusstructure
(P4, Pp) iff 1A is a structural local motif ford and P4 as well asr,.A is a structural
local motif for B and Pg.

To emphasize the orthogonality of sequence locality andtstral locality, we require a
(purely, i.e. sequence global) structural local motif foto contain 1 andA|, otherwise
we may speak of aequence and structural local motif. This extends to alignments.

For the later algorithmic treatment an alternative view tofictural locality is required.
Obviously, a structural local moti¥/ for A and P (i.e. actually any motif\/ C [1..|A[])

is of the formM = [i1..i}]U- - - U[i..i}], i.e. it corresponds to a series of subsequences of
A. The rangesi;, + 1..i,+1 — 1] (1 < p < k) are callecexclusions of M, since we gef\/



by excluding them from the ranga ..i}.]. For an exclusioff..2’] of a motif M C [1..| Al]
there is a base pafi,i’) € P, {i,i'} € M where(x,2’) < (i,4'). Denote the according
to < minimal such(s, i') asbridge of (x,2’). The following lemma gives an alternative
characterization of structural locality, which will be asiey our algorithm. An analogous
statement is proven i [BW0A4].

Lemmal A motif M C [1..|A|] is structural local for A and P iff there is a bridge for
each exclusion of M and each base pair in P isthe bridge of at most one exclusionin M.

Structural Locality in Multiple Alignments In contrast to our pairwise alignment def-
inition, a multiple alignment, e.g. from Rfam, is usuallygn as a sequence of alignment
columns. Thus it does not make explicit, which bases ardljoabgned and which parts
of the alignment are excluded from the structural localrafignt due to their dissimilarity.
However, structural locality can still be observed in sulitprenents.

For this purpose, multiple alignments are decomposed @ pairwise subalignments.
Then, we assess structural locality by the presence of typeylpe Il exclusions in the
pairwise alignments, which are defined as follows.

In a pairwise alignment, atype| exclusion of length [ and error rate e is a subalignment
(i.e. a continuous window) dfcolumns where 1.) in one sequence all columns contain a
gap with the exception of at mokt e columns and 2.) no base in theolumns forms a
base pair to any other base in the alignment.

A typell exclusion in A of length [ and error rate e is a continuous window df columns
where 1.) more thah - e columns in one of the two sequences form a base pair with
another base inside the window and 2.) for the other sequemcbhases inside of the
window contribute to base pairs. Hence, type Il exclusiarsespond to the exclusion of
substructures.

4 Structural Local Alignment

Based on the previous definitions, we will provide evideraretlie ubiquity of structural
locality in the results section. Here, we develop a stradtliocal multiple alignment
approach. The general workflow of the method is depicteddnife2.

Pairwise RNA Alignment We start our description by reviewing global and sequence-
local pairwise alignment. [WRHO7] We compute an alignmept and a consensus struc-
ture P = (P4, Pg) of the given RNA sequence4 and B that together maximize the
score

score(A, P)= Y. 1l kD+ > (A, Bj) — Neagy,
(i,k)EPa,(j,l)EPB (i,j)€As
(1,5)€A, (k) €A



whereNgap denotes the number of gapsihandr (i, 4, k, 1) is the score contribution for
matching the arc$i, k) and (j,1). In LocARNA, 7(i, j, k,l) depends on the ensemble
probabilities of the two arcs, as computed by McCaskillgoaithm [McC90], which is
implemented in the Vienna RNA Package [HFERBI]. This kind of scoring by base pair
probabilities was introduced for the tool PMcomp/PMmIHBS04] as a much simplified
scoring for Sankoff-style simultaneous alignment andif@ldSan85]. In LocARNA, very
improbable arcs (below a given threshold) are forbiddeR,imvhich significantly reduces
the algorithmic complexity, making the approach applieabl practice. For details see
[WRHT07].

The score is efficiently maximized by a dynamic programmilggathm. First define a
helper function

M(k—1,1—1)+0(4A;, B)
Mk—-1,0)+~
M(k,1-1)+~
Iil%/XM(k/—l,l/—1)+Dijk/l/.

h(M, k,1) = max

The DP algorithm is now specified by the recursion

Mij(k,l) zh(Mij,k,l)
Dijpr=M;j(k—1,1—1)+7(i,4,k,1).

Initialisation is simply byM; ;(k,i) = M, ;(4, k) = kv. As given, the recursion computes
the global alignment score. For the case of sequence lagaha¢ént, where we search the
best alignment of subsequences, we modify the recursionsfob and;j = 0 by

Moo(k, l) = maX(O, h(M()Q, /ﬂ, Z))

with initialization My (k,0) = Myo(0, k) = 0.

Pairwise Structural Local RNA Alignment Due to Lemmdll, certain exclusions are
allowed in structural local alignments. Algorithmicaltijs distinguishes structural local
alignments from sequence local or global alignments. Theess extended by adding one
exclusion cost per exclusion. According to Lemrith 1 (raised from motifs tgrahents in

a straightforward way), each exclusion in a local alignniext a bridge in the consensus
structure and no two exclusions share the same bridge. Jlisforced by counting the
number of exclusions below each arc match in both sequenges.this purpose, we
distinguish eight states, corresponding to eight differeatrices. State NN means there
is no exclusion for the arc match starting at (i,j). State XWams there is exactly one
exclusion for this arc match in the first sequence, state Nahelogous for the second
sequence, and state XX means there is exactly one exclus@ach of the sequences. In
addition we introduce states for alignments that have skohs immediately at the right



end of the first or the second sequence, which can therefaxtbaded. At the same time
we keep track of the number of exclusions in the other sequembis results in states
ON,NO,OX,X0O. The recursions are now given as follows. For0 or j > 0,

MEN (k1) = h(MEN K, 1)

MNX (k1) = max(h(MY* k. 1), MON (k= 11) + ¢)

Mfgx(kl) _ max(h(Mi)gx, k1), MinN(k —11) +e, Mi]\;O(’fl —1)+e)
MinN(kl) = maX(MﬁN(/ﬂ —110), Mz]\J]N(kl))

MinX(kl) = maX(MinX(/f —110), ng(kl))

M;\J/O(k )= max(Mi]\jz-O(kl -1, ]VIZ‘]\JZN(k 1))

MO (k1) = max(MXO (k1 — 1), MEN (k1))

Now, the scores for alignments enclosed by arc matches agleofeéhese matrices as

Diski = Mk =11 =1)+7(i, 5, k, 1),
I SG{NN7g1)§(i7}_(XN’Xx} 13( )+T(7, J )

Finally, the complete alignment score is obtained by theeseaaursion as for the global
or purely sequence local case by evaluatidgy(k,l) = h(Myo, k,1) or Myo(k,1) =
max (0, h(Myo, k, 1)), respectively.

Note that the time complexity @(| A|?| B|?) and the space complexity 6f(| A|| B|), both
complexities given under the assumption of a fixed prohigiihireshold, is not increased
by supporting structural locality. In a practical implerntegion, the space for storing thé
matrices can be limited to grow by a factor of odlysince for the states NO,ON,OX,XO
it is sufficient to store only matrix lines (ON,OX) or even gia values (NO,XO) for
evaluating the recursion.

The actual alignment is produced from the alignment marimetraceback. In order to
maintain the good space complexity, thé-matrices are recomputed on demand during
the traceback phase; notably this does not increase tHetoigplexity.

Finally note that, although the recursions are given fagdingap cost only, the extension
to affine gap cost can be done in the way of Gotoh without irgingethe complexity. The
needed additional space is only linear in the lesser seguength.

Multiple Alignment Using T-Coffee  For constructing a (structural local) multiple align-
ment of sequencedV, ..., A(™) we compute all pairwise (structural local) alignments
as described above. From the pairwise alignments, we ceraplibrary of alignment
edges Ly )i<k,i<m- L cONtains an edge, j) with an alignment score dependent weight
(between 1000 and 2000) iff in the pairwise alignmenti6f) and A®, A% is aligned

to A;l). All other edges get a weight of zero. This library is fed asnary library to T-
Coffee. From this, T-Coffee computes an extended librarinbseasing the edge weights
of pairwise edges that transitively fit to alignment edgethia sequences. The multiple



alignment is finally computed in a progressive fashion miidy CLUSTALW, however
using the extended library for scoring base similarity.
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Figure 2: General workflow of the multiple alignment algbnit of LocARNATE

Local Motif of a Multiple Alignment  Once a multiple alignment is constructed out of
the (structural local) pairwise alignments, we can deteenthe structural local columns
of this multiple alignment. This is done by assigning to eaglumn a sum-of-pairs score
over its pairwise alignment edges. There, each edge catdshvith a weight of 1 if it got

a non-zero weight in T-Coffee’s primary library. As resulhe gets a profile that reports
a degree of locality for each column. Applying a fixed thrddhone finally extracts the
local motif (subset of local columns) described by the atignt.

5 Results

Structural Locality in RNA Families In order to assess the demand for structural lo-
cality aware alignment, we analyze the occurrence of strattocality in the Rfam. We
identify two reasons for structural locality. In alignmsmif two RNAS, type | exclusions
of lengthl are subsequences of alignment columns where one of aligratnienys consists
of almost only gaps (with an error rate &f Type Il exclusions are subsequences, where



only one of the RNAs forms structure (again with error rate@)r statistic of the Rfam
seed sequences is shown in Fiddre 3.
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Figure 3: Locality in the Rfam. We show the percentage of tygred type Il exclusions for all pairs
and for single families. Colors indicate frequency varyivith exclusion size and allowed error rate.

LocARNATE: A Tool for Local Multiple Alignment Our structural locality aware
multiple alignment approach for RNA, which combines an edgl version of LOcCARNA
with T-Coffee for constructing consistency based aligntseis implemented using C++
and Perl. Itis available as the tdobcar nat e in the LocARNA software package.

Case Study Figurd3 gives an example for the identification of a localifiiota multiple
local alignment.

Alignment Accuracy ontheBralibase The alignmentaccuracy of our approach is com-
pared to two other programs Lara and FoldAlignM using thdiBage benchmark. The



S1_AJ295015.1/58-1 ACAGAGUCUGACAAA-—— ICACUGAAGACGUUCAA.C- GAACAGAAACUCUGC

S2_AF170503.1/280-333 .GAAAGGUCUGUGCUU- CACACUGACGA.GUUCCUG —GAAC.GAAACCUUUU
S3_M83545.1/56-3 .CAUAAGUCUGGGCUA——— CACUGAUGA.GUCGCUGAA GAC.GAAACUUAUG
S4_D00685.1/1-46 ........GCCAGACGU-G-GAC . GAAA-————— SAAACAGUA.
S8_J02439.1/42-95 . . J 5GAC.GAAACGGAUG
S5_M17439.1/1-48 . C o GAAACAGGAC
S6_AJ536620.1/206-152 . ! AA ~GGGC.GAAACGGUAC
S7_Y12833.1/339-285 . s AAA ~GAAC.GAAAUAGUUA
S$10_Y14700.1/133-53 . CACACAAGCC.GAAACUGGA.

S9_AJ247113.1/134-53 .. CGCACAAGCC.GAAACUGGA.

#=GC SS_cons L <LK LLLRK,L,.. B335, IINERRRL

#=GC conservation ... k.

Figure 4: Example of a LocARNATE alignment of hammerheadzimes in stockholm-format.
The line#=GC conservation marks conserved columns with a conservation rate of at &ashy

* (also highlighted in light gray) and excluded columns-kiglarkgray). Note that the conserved
columns correspond to the functional motive in Fiddre 1.

Bralibase consists of a collection of hand-curated m@tRNA alignments of 2 to 15 se-
guences each. We restrict the comparison to the most ititegesibset of the Bralibase,
namely alignments with less than 50% sequence identitythHedsenchmark, one re-aligns
the sequences of each such alignment with the candidatevaigt tool and compares the
result with the true alignment. The comparison is donebgpal i gnp, as suggested for
the Bralibase 2.1 benchmafk[WMSO06]. The resulting COMRAMNIscore measures how
accurately the generated alignment reproduces the givenalignment - a score of 1.0 is
optimal. This benchmark was done in the same way by Bauer[BK&RO/], where Lara
and FoldAlignM passed as the most successful sequenadtslalignment programs.
The result of this test is reported in Figlile 5.

An immediate, striking observation is that the tools LocARME and Lara seem to im-
prove their accuracy with increasing number of sequendes sime effect is not seen for
FoldAlignM, which is the only tool in this comparison thatefonot enjoy the consistency
extension of T-Coffee. For 15 sequences, the comparablgevpairwise alignment of
Lara is even outweighed by this effect and Lara is again omjtarLocARNATE.
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Figure 5: Benchmark on the Bralibase-fragment witl?SI < 50% for alignments with 2,5,7,
and 15 sequences (from left to right). The curves show therligncy between sequence identity
(APSI) and alignment accuracy (COMPALIGN) for each of therfbenchmarked algorithms.



Alignment Accuracy on Selected Rfam Alignments We select multiple subalignments
of 7 sequences per alignment from the Rfam seed alignments. éhbeark set El of 20
alignments with type | exclusions and a benchmark set Eh A type Il exclusions is
chosen. The sets El (Ell) are produced by each time selefdingpairwise alignments
that have type | (type Il) exclusions with length> 20 (I > 10) and error rate < 0.25

(e < 0.6), respectively. Of the eight sequences, we drop one at mndte, according
to the Rfam, true alignment is obtained by projecting theasponding Rfam family’s
seed alignment to the select@dsequences (deleting all only-gap columns). For each
benchmark alignment, we align by LocARNATE with and withsupport of structural
locality, Lara, and FoldAlignM. For each computed alignmere obtain a COMPALIGN
score by comparison with the true alignment. The resultslaogn in Figur&lp.
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Figure 6: Benchmark on the alignment sets El(left) and Ejif). Both sets consist of multiple
alignments, each of seven sequences. El contains type ustont, Ell type Il exclusions. The
accuracy (COMPALIGN) is plotted for each single alignmemd &or each of the algorithms.

6 Conclusion

As we show by analysis of the whole Rfam database, strudnrality is a wide spread
feature of known RNA families. Structural locality is forfir@d by connectivity in the
structure graph and via the notion of exclusions. Some fasghow strong structural
locality, which motivates the development of special aiponic support of this kind of
locality. While current state-of-the art tools are not asvaf this locality, we show that
structural locality can be integrated into the tool LocARMAthout increasing its com-
plexity. By supporting this locality, the alignment acocydor certain RNA families is
increased significantly. We show by extensive benchmarikguke critical fragment of
Bralibase 2.1 that the accuracy for families without obsgiatructural locality is not af-
fected.
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