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1 RNA sequence structure alignment

Alignments of RNA sequences

Global RNA alignments reflect the evolutionary relationship between RNA se-
quences via point mutations, insertions and deletions. Whereas RNA sequences
are strings composed of the nucleotide symbols A,C,G, and U, an alignment
of the two RNAs consists of two alignment strings over A,C,G,U, and the gap
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symbol ’-’, such that both strings have the same length and each alignment
string contains all the nucleotides of the respective sequence in the sequence or-
der. The gap symbols indicate insertions and deletions of the nucleotide in the
opposite sequence. RNA alignment algorithms, like LocARNA, typically com-
pute the best alignment of two RNAs according to an alignment score, which
combines a sequence and a structure component. In this additive composition,
the influence of the structure component is controlled by a factor, here called
the structure weight. A local alignment compares subsequences of two input
sequences. Thus, local alignment algorithms (like LocARNA in local alignment
mode) compute the best local alignment of two RNAs, which is defined as the
best global alignment of some subsequences of the input RNAs, according to
the alignment score.

Sankoff

Sankoff is an algorithm proposed in 1985, which does sequence- and structure
alignment simultaneously [5]. The basic idea was to combine the classical dy-
namic programming sequence alignment with the structure prediction proposed
by Zuker. The objective function given in Equation 1 shows that the minimum
free energy for the structure Pa of sequence a, (minimum) free energy (FE) for
the structure Pb of sequence b and the edit distance of the alignment A are
optimized together. Therefore the objective function is optimized by finding
the best combination of the equivalent structures and a constrained alignment.
Following the concept of aligning shapes and not the whole sequence and by
allowing 2-loops to be aligned either to another 2-loops or to gaps makes the
Sankoff algorithm more flexible in respect to structure prediction.

FE(a, Pa) + FE(b, Pb) + EditDistance(A) (1)

Sankoff-like algorithms

To achieve an optimal alignment, several algorithms were proposed providing
faster approaches. One successfully applied heuristic of Sankoff is using pre-
computed base pair probabilities, calculated by McCaskill, instead of comput-
ing energies using the Zuker method. Using precomputed McCaskill base pair
probability matrices enables a faster scoring of the consensus structure for the
alignment A than it was done before.

For a pairwise sequence alignment of sequences a and b the base pair prob-
abilities will be stored in a two-dimensional matrices. Algorithms that use this
kind of technical progress are call PMcomp like algorithms. LocARNA is one
of the PMcomp successors.

Comparison of Sankoff and LocARNA

Before comparing the two scoring functions it is important to note that the
Sankoff algorithm computes a global alignment using energies and distances.
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To compute a local alignment the distances would need to be transferred into
similarities. Also the negative energies would need to be converted so that they
can maximize the objective function. LocARNA uses base pair probabilities to
compute the structure score component, which already fits to the local alignment
scheme of a objective function. A possibility on how to use the Zuker algorithm
for local alignment is given in the Foldalign tool, where the energy model is
multiplied by −10mol/kcal. This score transformations enables alignment score
maximization [3]. Notice that the sequence score component of LocARNA
could be negative, however using the base pair cutoff probability parameter in
practice, this will not happen. Therefore a structure contribution to the score
will be always positive.

Sankoff et al. already discussed that there is a trade-off between the free
energy (structure contribution) and the alignment cost. This trade-off should be
balanced using weights. However Sankoff’s algorithm used an unweighted ob-
jective function, since alignment cost is in terms of arbitrary units x and y. But
it was also stated that in practice the units should be calibrated using known
secondary structures. LocARNA already weights the structural alignment by
the structure weight parameter ω. LocARNA is more strict in including struc-
ture components into the alignment, because every base pair (i, j) in sequence a
needs to be aligned to a base pair (k, l) in sequence b. In the Sankoff’s algorithm
not every base pair needs to be aligned to another one.

LocARNA recursions

LocARNA uses a modified dynamic programming scheme which takes advantage
of the fact that the base pair probability matrices Pra and Prb are commonly
sparse. The calculation of the alignment is based on the recursion function M .
The first case of the recursion scores a (mis-)match, the second and third case
penalizes an insertion or deletion and the last case evaluates if there are further
structural elements and tries to find the maximum by calculating D(j′j; l′ l) for
each base pair combination. The evaluation is only done for Praj′ j ≥ p∗ and

Prbl′ l ≥ p∗ which makes the calculation computationally less expensive. The

maximum similarity score of A for subsequences A[i...j] and B[k...l] and the
consensus secondary structure of (ij; kl) is obtained from the scoring function
D(ij; kl) (equation: 4). The function only includes significant base pairs be-
cause of the structural pre-computation. To avoid redundant computation i
and k are fixed while j and l are varying which gets denoted as Di∗;k∗. In the
end the recursion can be evaluated in O(n2) memory and O(n4) time, with the
optimal global alignment score found at position M0|A|;0|B|.
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Mii−1;kk−1 = 0 (2)

Mij;kl = max


Mij−1;kl−1 + σ(j, l)

Mij−1;kl + γ

Mij;kl−1 + γ

maxj′l′Mij′−1;kl′−1 +Dj′j;l′l

(3)

Dij;kl = Mi+1j+1;k−1l−1 + ω(ΨA
ij + ΨB

kl) + τσ′(ij; kl) (4)

Local alignment: LocARNA uses the same tricks as in the Smith-Waterman
algorithm by adding an additional zero entry to the recursion function M which
restricts to all prefixes of the sequence e.g. (M0j;0l). This way the optimal local
alignment score is located in maxjl(M0j;0l) and the secondary structure can be
obtained by a traceback in O(n2) time.

M0j;0l = max



0

M0j−1;0l−1 + σ(j, l)

M0j−1;0l + γ

M0j;0l−1 + γ

maxj′l′M0j′−1;0l′−1 +Dj′j;l′l

(5)

Dij;kl = Mi+1j+1;k−1l−1 + ω(ΨA
ij + ΨB

kl) + τσ′(ij; kl) (6)

Extending the LocARNA score by a position-wise penalty

The novel proposed position-wise penalty (λ) is an alignment length depended
score penalization. For every position in the local alignment the position-wise
penalty value will be subtracted form the score, which leads to a penalization
of the length of the alignment.

∑
(ij;kl)∈S

(
ω(Ψa

ij + Ψb
kl) + τσ′(i, j, k, l)− 4λ

)
+

∑
(i,k)∈As

(σ(i, k)− 2λ)−Ngap(γ + λ)−No
gapβ

(7)

Function 7 displays the extended objective function of LocARNA with the
position-wise penalty λ. For each structure edge four positions i,j,k and l are
scored. Therefore 4 times the λ value need to be reduced. For each sequence
alignment edge, i.e. pairs (i,j) within As, 2λ value is subtracted for matches
and mismatches and λ is reduced in the case of insertion or deletion.
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2 Alignment quality measures

In the following subsections alignment quality measurements for pairwise align-
ments applied in this work are described in more detail.

For a pairwise local alignment of two random sequences we define the align-
ment length or expected length as the sum of the two aligned subsequences.

Sum-of-Pairs Score (SPS)

The Sum-of-Pairs Score (SPS) is a global sequence alignment quality mea-
surement for multiple sequence alignments [7]. The alignment quality can be
measured by comparing to a reference alignment, which is considered as ground
truth. In this study we restrict our benchmark to pairwise sequence alignments.
For the purpose of assessing pairwise alignments, the SPS computes the frac-
tion of the reference alignment columns that are as well present in the evaluated
alignment (i.e. the correctly predicted columns).

SPS =
# correctly predicted columns

|reference|
(8)

Consequently, a perfect prediction has a SPS of one, whereas a SPS of zero is
assigned to a completely mispredicted alignment.

Local alignment quality maxSPS

The SPS score can not thoroughly evaluate the quality of local alignments,
because it only validates how many alignment edges (equivalent to alignment
columns) are correctly predicted. A comprehensive local alignment metric needs
to consider the undesired extension of the alignment into the context surround-
ing the local motif. To make the score applicable for local alignments we changed
the divisor. The extension of the alignment into the context is not preferred and
therefore is penalized by having a greater divisor. If the length of the predicted
alignment is longer than the reference alignment the divisor will be the length
of the predicted alignment.

The maxSPS, which measures the local alignment quality of a local alignment
’prediction’ compared to a ’reference’, is defined as

maxSPS =
# correctly predicted edges

max(|reference|, |prediction|)
, (9)

where |reference| and |prediction| denote the respective lengths of the reference
and the predicted local alignment. Note that the alignment quality will be again
between 0 and 1. The maxSPS can be as good as the SPS would be for a local
alignment, or the value will be lower. For the same alignment the maxSPS will
never be higher than the SPS value.
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CAGGAACCAAG
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Supplementary Figure S1: maxSPS example. First a reference alignment is
given. The two predicted alignment are based on different parameter settings.
True alignment edges, edges within the reference, are highlighted in green. Edges
that are predicted but not part of the reference alignment are highlighted in red.
The refSPS divides the correctly predicted edges by the number of alignment
edges of the reference alignment (6). The divisor of the maxSPS will be the
maximum of either all alignment edges of the reference or of the predicted
alignment.
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Matthews correlation coefficient(MCC) for computing struc-
ture prediction quality

Matthews correlation coefficient(MCC) evaluates the correctness of the align-
ment structure prediction. The MCC compares each base pair of the predicted
structure alignment Ppred with the structure of the reference alignment Pref .
If the length of the sequence is of size N , at most N/2 base pairs can exists.
A base pair of the predicted alignment is denoted by (i, j) ∈ Ppred and of the
reference alignment by (i0, j0) ∈ Pref . For the entire structure the numbers of
true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN) can be calculated as following [1]:

• TP = the number of times (i, j) ∈ Ppred and (i0, j0) ∈ Pref

• TN = the number of times (i, j) /∈ Ppred and (i0, j0) /∈ Pref

• FN = the number of times (i, j) /∈ Ppred and (i0, j0) ∈ Pref

• FP = the number of times (i, j) ∈ Ppred and (i0, j0) /∈ Pref

The correlation coefficient is always between −1 and +1. A value of +1 indi-
cates a total agreement of the data, meaning all the structural elements of the
prediction and reference are the same. In contrast to this a value of -1 would
indicate total disagreement (no base pair of Ppred was predicted correctly). If
the MCC is close to 0 the predicted alignment by the tool is not better than a
random alignment.

C(D,M) =
TP ∗ TN− FP ∗ FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
,

The correlation coefficient uses all four values (TP, TN, FP, FN) and there-
fore provides a better combined evaluation than just the sensitivity or specificity.

Quality of alignment boundaries

Validating the alignment quality can be based on measuring how many nu-
cleotides of the local motif are predicted and how many nucleotides of the con-
text are not part of the predicted alignment. This allows us to introduce sensi-
tivity, to measure how well the structured RNA motif is found, and specificity,
which assesses how well the alignment avoids extensions into the context.

True positive TP or true negative TN values are all nucleotides that are
part or not part of the predicted and the reference alignment. False positive FP
values are all nucleotides that are part of the predicted but not of the reference
alignment and false negative FN values are all nucleotides which are not part
of the predicted but part of the reference alignment.

Thus, we compute the sensitivity by dividing the amount of correctly pre-
dicted nucleotides (TP) by the length of the local motif (TP + FN). This will
now measure how much of the local motif (or ncRNA) area is covered by the
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aguagugcugcaugggauuuguguuagcuucggcaucuaucuuucgggccauaaaagaua 

aguagugcugcaugggauuuguguuagcuucggcaucuaucuuucgggccauaaaagaua 

sequence within alignment
context (not aligned sequence)

TPFNTN FP

aligned reference sequence

aligned predicted sequence
TN

Supplementary Figure S2: Example of predictive and actual classes. Each
sequence input to a local alignment can be considered as two parts: the context
(light violet) and the sequence local motif or predicted alignment (dark violet).
Shown here is a sequence with its alignment information of a reference align-
ment and of the predicted alignment. The statistical measurements needed for
computation of the sensitivity and specificity are calculated by combining the
position information within the two rows. Therefore all nucleotides which are
not aligned in the reference and predicted alignment are counted as true nega-
tives (TN). The nucleotides which are part of the reference alignment but not
of the predicted alignment are counted as false negatives (FN). All nucleotides
aligned in the predicted and reference alignments are counted as true positives
(TP). And all nucleotides not part of the reference but part of the predicted
alignment of counted as false positives (FP).

alignment. A sensitivity of one would mean that the complete motif is covered
by the alignment prediction. The sensitivity is a therefore a appropriate measure
for how good the local motif (or ncRNA) motif is predicted by an algorithm.

sensitivity =
TP

TP + FN

To evaluate the specificity, we divide the number of nucleotides that are
correctly not aligned (TN) by the size of the complete context (TN + FP)

specificity =
TN

TN + FP

The specificity is therefore a appropriate measure to detect undesired alignment
extension.

The F1 measure combines the sensitivity and precision and is therefore a
combination on how well the reference alignment is found and how accurate the
predicted area is.

F1 = TN/(1/sensitivity + 1/precision)

3 SMAC

Optimization of parameters is a long-standing research area in machine learning
(ML). Simple approaches rely on grid-search, however, more recent ML-based
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approaches use the program as a blackbox and iteratively run the program on
different parameter settings. Sequential model-based optimization (SMBO) [6]
uses the data from these runs as a training-set and try to learn the parameter-
score relationship.

To optimize four crucial parameter of LocARNAs objective function Se-
quential Model-based Algorithm Configuration (SMAC)[4], a blackbox SMBO
method, is used. This method can be applied to any algorithm, where a param-
eter configuration space, a set of instances and a cost metric or score can be
defined.

SMAC, like most SMBO methods, is divided into 3 parts. (1) The fit model
function, where already computed data is used to build a model. In our case
the model is a random forest. (2) The select configuration function where the
model is used to traverse the parameter configuration space and propose a new
parameter settings for further investigation and validation. (3) At the intensify
function the proposed or new parameter configurations are applied to the ob-
jective function of the algorithm (LocARNA) and its performance is compared
against the best parameter configuration seen so far. This computations are
used in the next round to build a more precise model. This iteration is repeated
until a stop criterion is reached.

In the intensify phase the actual cost-function is computed, meaning here is
the connection between the black-box learner and the algorithm, whose param-
eter should be optimized. The cost-function, to which LocARNA parameters
are optimized in the global alignment setting is the geometric mean of SPS
and MCC. Since we can give only one score to optimize the parameters of our
alignment approach, we cannot use sensitivity and specificity to score the lo-
cal alignments of our benchmark set. An optimization of the sensitivity and
specificity would help to tweak the parameters to find the correct alignment
boundary edges.

Instead, we used the maxSPS-value, a novel local alignment quality score,
to score an resulting alignment. The maxSPS value implicitly scores with the
correct alignment edges also the sensitivity and specificity of the found regions
for local alignment. The maxSPS value implicitly scores the correct alignment
edges, and is therefore similarly to the sensitivity and specificity information of
their found regions for local alignment.

4 Calling LocARNA and reproducing results

In this publication we use LocARNA v2.0.0RC6 which can be found here:
https://github.com/s-will/LocARNA/releases/tag/v2.0.0RC6. Since the param-
eter optimization was performed with LocARNA v1.9., we set the default param-
eter of LocARNA v2.0.0RC6 to the one of LocARNA v1.9. For runtime purposes
we set the following parameters: --max-diff-am -1 --min-prob 0.0005. Fur-
ther more to get a more comprehensive output from LocARNA the following
parameters were set for each call: --moreverbose -v

We performed several parameter optimizations which resulted in different

9

https://github.com/s-will/LocARNA/releases/tag/v2.0.0RC6


parameter sets. They are summarized in Table 1 of the main text. We describe
the resulting parameter sets as follows:

• Default parameters of LocARNA version 1.9. (Default values). Can be
found in line 1 of Table 1.

• Optimized parameters of the LocARNAs global alignment using position-
wise penalty of 0 (Global optimized). Can be found in line 2 of Table
1.

• Optimized parameters of LocARNAs local alignment using position-wise
penalty of 0 (Local optimized with no penalty (λ = 0))Can be found in
line 3 of Table 1.

• Optimized parameters of LocARNAs local alignment using position-wise
penalty of 15 (Local optimized with penalty (λ = 15)) Can be found in
line 3 of Table 1.

The two local alignment optimized parameter sets are not used in any analy-
sis displayed in the figures of the main text. However, they proved that the
position-wise penalty can compensate the structure contribution of the score
and enable the use of the same parameter setting in local and global mode. In
the following we will described different LocARNA calls used in this publication:

global mode LocARNA call using Default values

mlocarna --max-diff-am -1 --min-prob 0.0005

--indel -350 --indel-opening -500 --struct-weight 200 --tau 0

--write-structure 200 --pw-aligner-options "--pos-output

--penalized=15 --sequ-local=off" input.fa --moreverbose -v

local mode LocARNA call using Default values

mlocarna --max-diff-am -1 --min-prob 0.0005

--indel -350 --indel-opening -500 --struct-weight 200 --tau 0

--pw-aligner-options "--sequ-local on --penalize 0

--pos-output" --local-progressive input.fa --moreverbose -v

globel mode LocARNA call using Global optimized parameters

mlocarna --max-diff-am -1 --min-prob 0.0005

--indel -68 --indel-opening -807 --struct-weight 200 --tau 72

--write-structure 200 --pw-aligner-options "--pos-output

--penalized=0 --sequ-local=off" input.fa --moreverbose -v

local mode LocARNA call using Local optimized with no penalty
(λ = 0) parameters

mlocarna --max-diff-am -1 --min-prob 0.0005

--indel -136 --indel-opening -975 --struct-weight 115 --tau 38
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--pw-aligner-options "--sequ-local on --penalize 0

--pos-output" --local-progressive input.fa --moreverbose -v

local mode LocARNA call using Global optimized parameters and
position-wise penalty 15

mlocarna --max-diff-am -1 --min-prob 0.0005

--indel -68 --indel-opening -807 --struct-weight 200 --tau 72

--pw-aligner-options "--sequ-local on --penalize 15

--pos-output" --local-progressive input.fa --moreverbose -v

5 Supplementary Figures

5.1 Parameter optimization results
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Global parameter 
optimization

Local parameter 
optimization

Supplementary Figure S3: Global and local optimization results. Param-
eter distribution for 15 different optimization runs. The optimized parameters
are indel or gap-scoring, indel opening or gap opening, structure weight and
the tau factor. The reported training quality for the global alignment is base
on the square root of SPS times MCC and for the local alignment the quality
function is based on the maxSPS. Since the parameters are interacting the effect
of there changes can vary. However, compared to the default parameters the
optimized parameter show clear trends how parameters should be set to reach
more accurate results.
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5.2 Score and alignment length results
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Supplementary Figure S4: Normalized alignment growth of artificial
data. Normalized alignment growth with increasing structure weight. Using a
artificially generated data set (box) indicates that compared to a sequence only
score (dashed line) the normalized alignment score increases with increasing
structure weight.
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Supplementary Figure S5: Expected alignment length of random ncR-
NAs. The expected length of shuffled ncRNAs (box) for Sequence-structure and
sequence-only alignments (dashed line). The shuffled BRAliBase data set also
indicates that with increasing structure weight the expected alignment length
grows.

14



5.3 Artificial data set distributions
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Supplementary Figure S6: GC-content of artificial data set. The GC-
content distribution of the artificially generated data set (methods). Over the
complete artificial data set the GC-content is equally distributed.
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Supplementary Figure S7: APSI of artificial data set. The APSI distribution
of the artificially generated data set (methods). The APSI is calculated using
Alistat. The average APSI distribution is around 40%. Since the data set is
artificially curated, it is expected to have a rather low APSI.
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5.4 BRAliBase length distributions
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Supplementary Figure S8: BRAliBase length distribution. The average se-
quence length distribution of the two ncRNAs input sequences of all BRAliBase-
K2 instances. Length normalization is done by dividing the summed up length
by two. Most of the sequences are not longer then 100. There are just a view
sequences that are longer than 250 nt.
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5.5 Position-wise penalty F1 comparison
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Supplementary Figure S9: F1 measure comparison. Alignment quality mea-
sured by the F1 value for different penalties and structure weights 100 and 200.
The LocalBRAliBase is filtered once for alignments with a APSI lower than 70
and second for alignments with a SCI higher then 100 (methods). k2 Local-
BRAliBase: comparing results of structure weight (SW) 100 to a combination
of SW 200 and position-wise penalty 10 to 15 achieves similar results. Filtered
APSI smaller 70: a low position-wise penalty helps. In contrast high penalties
make the results worse. Filtered SCI higher 100: for highly structured sequences
the combination of SW 200 and position-wise penalty helps.
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5.6 Default and optimized maxSPS
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Supplementary Figure S10: Alignment quality and upper maxSPS
boundary. Alignment quality comparison for different LocARNA settings: (A)
local alignment calculations using the default parameters; (B) local alignment
calculations using the optimized parameters; (D) global alignment calculations
using the optimized parameters. The optimized parameters are displayed in
table 1 of the main text. The setting used to generate (D) displays an upper
bound for the alignment score that could be reached once the correct alignment
boundaries are found. (C) Foldalign (version 2.1.0) [2] results. Foldalign is a
another Sankoff-like alignment method applying mechanisms to improve the lo-
cal alignment. The comparison between the two methods shows that Foldalign
(C) performs better than LocARNA with default parameters (A), but it still
faces the addressed issues of local Sankoff-like alignment. Therefore, LocARNA
using the suggested parameter setting (B) has an improved alignment quality
over Foldalign.

5.7 Minimum Free Energy (MFE) results
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Supplementary Figure S11: MFE difference of ncRNAs vs. random se-
quences. The Minimum Free Energy (MFE) distribution of ncRNAs in BRAl-
iBase data set versus the di-nucleotide shuffled sequences. ncRNAs have lower
MFEs than the shuffled sequences.
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Supplementary Figure S12: Normalized score vs. MFE correlation. The
distribution of LocARNA normalized pairwise alignment scores versus the av-
erage Minimum Free Energy (MFE) of the two input sequences. (Left: ncRNA
sequences from BRAliBase, Right: the shuffled sequences)
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5.8 ncRNA family alignment quality
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Supplementary Figure S13: ncRNA family alignment quality. The dis-
tribution of LocARNA alignment quality (average of maxSPS values) of sixth
ncRNA families for different position-wise penalties. From the LocalBRAliBase
k2 ncRNA family are selected by the number of instances within the LocalBRAl-
iBase. The displayed families are the once with the most instances: Cobalamin
(188 instances); HIV FE (704 instances); HIV GSL3 (754 instances); TAR (276
instances); THI (318 instances); tRNA (1573 instances). For the maxSPS cal-
culation the global optimized parameters including structure weight 200 where
used. The full LocalBRAliBase k2 analysis is shown in figure 5 of the main
text.
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5.9 Comparison of default and suggested parameter set-
tings by an example

 
 

UUUUUUAGGGAAAAUCUGGCCUUCCCACAAGGGAAGGCCAGGGAAUUUCCUACAUGGGAUUUCCAGAGGGCACAGCAAGUGACGGCCCAAAAGGCUUAGUAAGAAAGCUAAGAGUCAACCCCCCUCAAGAGACAUACACCCAGGGGCCUCUUCACGGGCUCU
 
 

AUGAACCAGAGGRGACAGGUGGAAAAGAAAUGCAAUUACUGAGAAUUUUUUAGGGAARAUCUGGCCUUCCCACAAGGGRAGGCCAGGGAAUUUUCUUCUUCCCCCCUCCUUAGAACAGGGCAUCUCAAUGGGRGGGRAGCUUCAGAGAGGGAGGUCCUUUUG
 

 
 

UUUUUUAGGGAAAAUCUGGCCUUCCCACAAGGGAAGGCCAGGGAAUUUCCUACAUGGGAUUUCCAGAGGGCACAGCAAGUGACGGCCCAAAAGGCUUAGUAAGAAAGCUAAGAGUCAACCCCCCUCAAGAGACAUACACCCAGGGGCCUCUUCACGGGCUCU...
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ncRNA motif

alignment's predicted boundaries

optimized parameters

default parameters

Supplementary Figure S14: Example of the local alignment performance
for detecting structure motif boundaries This is shown for one instance of
our benchmark set LocalBRAliBase from HIV FE of sequence AJ405950.1 1-52
and AY519071.1 1-252, where the ncRNAs (red boxes) are embedded in their
genomic context. We show the local alignment using our optimized parameters
(upper alignment) in comparison to the local alignment with the non-optimized
default parameters (lower alignment). Using the default parameters, the identi-
fied regions in the local alignment extend to the end of the input sequence. Only
the optimized parameters allow to identify the regions of the RNAs. Note that
for visualization purposes, we don’t show the complete benchmark sequences.
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