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Abstract

Motivation: Elucidating the functions of non-coding RNAs by homology has been strongly limited due
to fundamental computational and modeling issues. While existing simultaneous alignment and folding
(SA&F) algorithms successfully align homologous RNAs with precisely known boundaries (global SA&F),
the more pressing problem of identifying new classes of homologous RNAs in the genome (local SA&F)
is intrinsically more difficult and much less understood. Typically, the length of local alignments is strongly
overestimated and alignment boundaries are dramatically mispredicted. We hypothesize that local SA&F
approaches are compromised this way due to a score bias, which is caused by the contribution of RNA
structure similarity to their overall alignment score.

Results: In the light of this hypothesis, we study pairwise local SA&F for the first time systematically—
based on a novel local RNA alignment benchmark set and quality measure. First, we vary the relative
influence of structure similarity compared to sequence similarity. Putting more emphasis on the structure
component leads to overestimating the length of local alignments. This clearly shows the bias of current
scores and strongly hints at the structure component as its origin. Second, we study the interplay of several
important scoring parameters by learning parameters for local and global SA&F. The divergence of these
optimized parameter sets underlines the fundamental obstacles for local SA&F. Thirdly, by introducing a
position-wise correction term in local SA&F, we constructively solve its principal issues.

Contact: backofen@informatik.uni-freiburg.de

1 Introduction and Eddy, 2013). This could explain, potentially many, cases of ncRNAs

High-throughput sequencing experiments made blatantly evident that the without any known homologues, not even in closely related species. Thus

majority of the eukaryotic genome is transcribed. Hundreds of thousands
of non-coding RNAs (ncRNAs) and untranslated regions were reported.

with some plausibility, the observed absence of homologs could often be
a pure artifact, caused by insufficiencies of the commonly used tools.

To overcome such limitations, sequence-structure-based alignment
methods like Dynalign, Foldalign and LocARNA (Mathews and Turner,
2002; Torarinsson et al., 2007; Will et al., 2007) have been used
routinely to align non-coding RNAs. Most of these tools are derived in

Revealing the subset of functional RNAs, and their specific functions,
remains a major challenge. One important means to contribute to this
taks is to identify classes of homologous genes or at least conserved
domains. However, aligning homologous RNAs to determine conservation
is a notoriously hard problem if the function of these RNAs is carried out
by their emergent structure. Such ’structural’ RNAs often do not show

one way or the other from Sankoff’s approach (Sankoff, 1985), which
simultaneously aligns and folds sequence and structure. Sankoff-based

clear sequence conservation, but have the potential to fold into conserved alignment approaches can be characterized by a scoring system that adds

homologous structures. For this reason, sequence alignment tools fail to
align RNAs once the sequence identity is below 60% (Gardner et al.,

a dominantly positive structure contribution to a sequence alignment. It
has been repeatedly shown that they produce high quality alignments for
2005), which is the case for many homologous functional RNAs (Nawrocki RNAs that share a common conserved structure (Gardner et al., 2005;
Puton et al., 2013). Moreover, they outperform pure sequence-based

approaches, especially when aligning regions with lower sequence identity.
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Fig. 1. A schematic overview of the trouble with locality for SA&F methods. The left side highlights the general issues of global and local alignments using default parameters. Without

optimal parameters, global aligners (Box (a)) will partial misalign structure (red bars). When predicting local alignments (Box (b)), correctly aligning structured motifs gets even more

difficult. Additionally, often local alignments are either extended over the motif’s boundaries or random structures are aligned. These issues can be improved only partially by using optimized

alignment parameters for the global and local predictions (right of the figure). Box (c) demonstrates that the optimized parameter set for the global alignment improves the alignment quality,

whereas simply training parameters is insufficient to produce accurate local alignments (Box (d)). Only after introducing a position-wise penalty (Box (e)), global optimized parameters

improve the accuracy of the local alignment predictions.

Furthermore, it has been shown that the existing methods perform well
for “globally” aligning two or several RNAs that are already known to
be homologous. However, the more important application of sequence-
structure alignment is to reveal so far unknown ncRNA homologues.
Since the exact genetic loci are generally unknown in this scenario global
alignment is of little use. One must rather apply (some form of) local
alignment. We emphasize that the existing benchmarks don’t assess the
performance of the existing tools in this second scenario. As well note
that clustering-based ncRNA annotation approaches (Miladi et al., 2019,
2017) implicitly detect ncRNAs homologues and could directly profit from
improved local alignment.

There exists anecdotal evidence in the RNA community that the
current pairwise sequence-structure alignment tools have difficulties to
characterize homologous RNAs based on purely pairwise comparisons.
For example, one study claimed that BLAST (Altschul ez al., 1990)
still works better for this task than sequence-structure alignment (Menzel
et al., 2009). Another piece of evidence was provided by Heyer (2000),
who showed that the Erdos-Rény law of a logarithmic growth of (local)
alignment length (resp. score) for random sequences holds for many
sequence analysis problems, except for sequence-structure alignment
with a high structural scoring contribution. However, to the best of
our knowledge, as of yet the relation of global Sankoff-like alignment
to local Sankoff-like alignment has never been studied systematically.
Consequently, it is insufficiently understood, how to ensure both correct
alignments and a sub-linear growth with sequence length at the same time.

Here, we approach this open question utilizing the popular sequence-
alignment tool LocARNA (Will et al., 2007). LocARNA inherits the
scoring system of PMcomp (Hofacker et al., 2004), which strongly reduces
the computational load compared to the Sankoff’s original algorithm
for simultaneous alignment and folding. Due to several algorithmic
advancements, LocARNA moreover drastically reduces the run time
over PMcomp (even reducing the theoretical complexity by a quadratic

factor in sequence length over the original Sankoff algorithm). PMcomp’s
scoring system itself turned out to be a highly successful advancement
in RNA alignment, it is implemented e.g. in LocARNA, Sparse (Will
et al.,2015), and FoldalignM (Torarinsson et al., 2007). LocARNA’s high
performance and popularity makes it well suited to serve as representative
of simultaneous folding and alignment algorithms in this work.

Recall that, as we explained before the existing benchmarks are
insufficient to study the different aspects of the local alignment problem.
Therefore, as a prerequisite we design a novel local alignment benchmark.
On this basis, we examine the effect of modifications to the LocARNA
algorithm on local pairwise alignment. First, we simply tweak the balance
factor (structure weight) between the sequence and the structure similarity
component of LocARNA’s alignment evaluation (‘alignment score’). Here
we are interested in the effect on the quality of the local alignment,
the correct detection of motif boundaries and the length of the reported
alignments for random sequences.

In a second step, we investigated the interplay of different other
parameters of LocARNA’s score. Performing parameter optimization, we
showed that the optimal scoring parameters for local alignment drastically
differ from the optimal parameters for global alignment. This is the effect of
optimization attempting to compensate for the local alignment detrimental
effects of the structure contribution bias. In this way, the strongly deviating
trained parameter sets indicate deficiencies of the scoring scheme. As well,
note that using different parameter sets for local and global alignment is not
suitable to resolve the existing problems with local RNA alignment. Using
different schemes would moreover be highly inconvenient: tools used in
post-processing would have to be adapted to the different scoring schemes
(often enough it is unclear how to achieve this). A popular example for
such a tool is RNAz (Gruber et al., 2010) (resp. RNAcode (Washietl
et al., 2011)), which determines a conserved structure (resp. a conserved
non-coding RNA) from calculated alignments.
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Finally, we go beyond studying different parametrizations of
LocARNA by introducing a new position-wise penalty. This additional
score component is designed to counteract the negative properties of a
high structure score and allows for using the same scoring parameters. A
graphical summary of our investigations and its results is given in Fig. 1.

Our results underline that the original scoring system rewards matching
structures on top of the sequence score without being able to properly
balance the two components. This compromises the ability to properly
align RNAs locally. We show that the proposed position-wise penalty can
alleviate these problems, which strongly supports our hypothesis. While
we performed our deep analysis for one specific PMcomp-like system,
the results indicate issues of any system for scoring RNA alignments that
is composed from a sequence and structure component. This includes
Sankoff’s original simultaneous folding and alignment algorithm.

2 MATERIALS AND METHODS
Local alignment scores and growth of random alignments

The prerequisite for local alignment, as e.g. stated in the seminal work
of Karlin & Altschul (Karlin and Altschul, 1990) about the statistical
significance of local sequence alignment, is that the expected global
score for random sequences is negative. Otherwise, “the maximal segment
would tend to be the whole sequence” (see Karlin & Altschul (Karlin and
Altschul, 1990), page 2265). Log-odds scores, which are commonly used
for sequence alignments, automatically satisfy this property. The reason is
simply that the expected scores for independent sequences is the negative
Kullbach-Leibler (KL) divergence between distribution for alignment
edges in the case of homologous sequences versus the distribution of
alignment edges for independent sequences (Altschul, 1991). In more
detail, the expected global score for independent sequences E is given
by

Pab daqp
Erandom = Y _ Qa b log(ﬁ) == qam 10g(ﬁ) (€]

a,b a,b

where pgp is the probability for seeing an alignment edge a,b in
homologous sequences, and g, (resp. gp) is the background probability of
a (resp. b). This is equivalent to the negative KL divergence between
the two distributions (pap)a,» and (qaqs)a,b- As the KL divergence
is positive, the expected score should be negative. The side effect is
that for homologous sequences, the expected global score is Feyol =
Ea’ b Pab log( q’; “;b ). Eeyol is the KL divergence between (gagp)q,» and
(pab)a,b and therefore positive.

The relation between negative expected global score for random
sequences and the length of maximal matched segments has not been
assessed for the two-dimensional case of alignment, not to speak of

sequence structure alignment. However, for the one-dimensional case of
maximal segments in a single sequence, it was shown (Karlin et al., 1990)
that the local scores for a single sequence (i.e., where a segment is defined
by consecutive hits in a single sequence) grows with the logarithm of the
sequence length n if the expected global score is negative, and with \/n
if the expected score is 0.

To profit from established thermodynamic energy models, e.g. with
empiricial or independently trained parameterization, common Sankoff-
like sequence-structure scores consist of two components, namely a
sequence alignment score and a structure contribution, which is positive for
matched structures (see next section). In consequence, their score cannot
be directly written as log-odds score as there is no background distribution
for the structural which is used to weight this contribution. Heyer (2000)
showed by experimental analysis that having y/n as a normalization factor,
which would indicate a global expected score of 0, is probably too low for a
scoring with a high structural contribution, and too high for a low structural

contribution. This would indicate a logarithmic growth trend only for a low
structure scoring. However, the effect on the actual alignments has not been
investigated yet. Thus, we consider in the paper the actual global score for
random sequences, the effect on the alignment quality as well as the effect
on the detection of alignment boundaries (i.e., the correct detection of the
actual motif).

Details of the LocARNA alignment score

Sankoff-style alignment scores. Sankoff-style alignment algorithms
optimize a score consisting of a sequence and structure score. The
structure score depends on the structures of the RNAs, which are predicted
simultaneously with the sequence alignment such that the combined score
becomes optimal. In this way, Sankoff-style algorithms find and align
the RNAs at the same time; the task is therefore called simultaneous
alignment and folding (SA&F). In Sankoff’s original algorithm, the
score is composed of an edit distance and the energies of the predicted
structures; for computing optimal alignments, the combined score is
minimized (see Supplementary section 1). Since computing optimal
local alignments typically requires similarity scores, which are able to
distinguish similar subsequences from dissimilar ones, reformulations
based on a similarity score have been suggested. For example, Foldalign
introduced a similarity score based on sequence energies and negated
energies; PMcomp suggested to compute the structure similarity from log
odds of base pair probabilities.
Alignment and scoring by LocARNA. Following the idea of PMcomp,
LocARNA scores structure based on precomputed base pair probability
matrices. This allows LocARNA to compute alignments with a lot less
overhead compared to the original Sankoff algorithm, while maintaining
good accuracy. Moreover, by exploiting the sparsity of the structure
space, LocARNA compute pairwise RNA alignment in only O(n?)
time—compared to the O(n®) time complexity of the Sankoff algorithm.
To determine an optimal pairwise alignment, it optimizes an RNA
alignment score by dynamic programming. This score is the sum of two
components (Eqgs. 2 and 4). The sequence score component evaluates the
similarity at all sequence positions A that are not involved in matching
base pairs:
Z U(ivk) 77N9‘1P 7ﬁN;;ap @
(i,k)EAS

Here, o (i, k) denotes RIBOSUM base match similarity of a; and by, and
Ngap and Ngap respectively count gap openings and gap extensions—
each respectively penalized by 3 or .

For the second component, LocARNA scores each base pairs (i, j) of

sequence x in the predicted consensus structure, by

U?; = log(pij/po)/ log(1/po), 3)

i.e. essentially by a log-odd score of the base pair’s probability p;; against
abackground probability pg in z. The complete structure score component
is a sum of contributions for each match (¢7; kl) of base pairs (¢, 7) and
(K, 1) in the consensus structure S:

ST w(W 4+ W) + 707 (i, 4, K, 1), )
(ij;kl)GS

where o’ yields RIBOSUM base pair similarities. Observe how the
parameter structure weight w controls the contribution of the structure
score component \Ifgj + \Ill,; ; to the remaining sequence score component
of the LocARNA score; the parameter 7 , called fau factor, controls the
contribution of sequence similarity at the ends of predicted base pairs; as
rationale of this parameter, there are contradicting motivations to penalize
or even favor mutations at the ends of base pairs—compensatory mutations
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provide support for the conservation of the base pair, but discourage
aligning its ends (see Supplementary section 1).

Our extension of a position-wise penalty is achieved by subtracting
a term A for each scored position. Thus, the gap term vNgqp has to be
replaced by — (v + A) Ngap. Each sequence match has now to be scored
by o (i, k) — 2. Finally, for each base pair match, a penalty of —4\ has
to be added, as four positions are scored (Supplementary formula 7).
Sequence only score. For computational efficiency, LocARNA computes
the structure scoring part only if the base pair probability p;; of nucleotide
4 and nucleotide j is over a defined threshold p. By setting the threshold
p to its highest possible value (1), LocARNA’s objective function will
only use its sequence part and not align any base pair for the alignment
prediction.

Alignment quality measures

Comparison to a reference alignment . A standard approach to measure
the alignment quality, given a reference alignment, is the Sum-of-Pairs
Score (SPS) (Thompson et al., 1999), which is defined as: SPS =

# correctly predicted columns
|reference|
an SPS of zero indicates a completely mispredicted alignment. To extend

this measurement for local alignment, we have to take both the length
of the reference alignment as well as the length of the predicted motif

. A perfect prediction has SPS of one, whereas

into account. Thus, we define a new measurement maxSPS as follows:

maxSPS = - comeetly predicted columns 56 houndary for the maxSPS
max (|reference|, |prediction|)

value is the SPS of the same local alignment. Therefore a maxSPS value is

always less than or equal to the correspond SPS value (see Supplementary
section 2 and Fig. S1).

Structure prediction quality. The Matthews correlation coefficient (MCC)
evaluates the quality of the predicted structures from simultaneously
aligned and folded alignments (Gorodkin et al., 2001)(see Supplementary
section 2 for details).

Quality of alignment boundaries. The alignment quality can be measured
by computing how many nucleotides of the local motif are predicted and
how many nucleotides of the context are not part of the predicted alignment.
This allows us to introduce sensitivity as measure how well the structured
RNA motif is found and specificity assesses how well the alignment avoids
extensions into the context. True positive TP or true negative TN values are
all nucleotides that are part or not part of the predicted and the reference
alignment. False positive FP values are all nucleotides that are part of
the predicted but not of the reference alignment and false negative FN
values are all nucleotides which are not part of the predicted but part of
the reference alignment. Sensitivity and specificity are defined as usually
given TP, FP, TN and FN (see Supplementary Fig. S2).

Data

Artificial data set. A data set of random sequences to investigate the
expected alignment score and alignment length of sequence structure
algorithms was generated. We created an alignment input data set of 7000
FASTA files each having two randomly generated RNA sequences. The
random sequences were generated by controlling the features alignment
length (100 nt) and GC-content (average 50%). The average pairwise
sequence identity (APSI) is computed using the ALISTAT tool from
the HMMER package (Version 3.2.1) (Wheeler and Eddy, 2013). The
APSI distribution is on average 40% (see Supplementary Fig. S7). The
python function from random library was used to generate random RNA
sequences. On average the data set has a uniform distribution of the four
bases with an average GC-content of 50% (see Supplementary Fig. S6).

BRAliBase. The BRAliBase 2.1 is a well established alignment benchmark
data set (Wilm et al., 2006). It contains in total 18,990 ncRNAs
alignments from 36 different Rfam families. For each alignment a raw file,

containing the unaligned input sequences and a reference file, providing the
corresponding mostly hand-curated reference alignments, are provided.
Each file is annotated with the (APSI) and the structure conservation
index (SCI) information. We computed pairwise alignments and therefore
only used the pairwise subset k2 of the BRAliBase. In total k2 has 8976
entries from 36 different ncRNA families. For length distribution see
Supplementary Fig. S8. The average SCI of BRAliBase is 0.93. All
alignments below SCI 0.6 were excluded from the data set. Therefore
BRAliBase fits well to our benchmark tasks.

The shuffled ncRNAs data set was produced by applying FASTA-shuffle-
letters from the MEME suite (Bailey et al., 2009) to all k2 sequences, to
calculate the expected normalized scores.

LocalBRAliBase. A novel local alignment benchmark set is generated
by placing all ncRNAs of the BRAliBase into its shuffled genomic
context. The genomic context was derived from the European Nucleotide
Archive (ENA) hosted by the European Molecular Biology Laboratory
(EMBL) (Hussein et al., 2018). Using the accession number, of each
ncRNA, the according nucleotide sequence was downloaded in FASTA
format from ENA. For every ncRNA, the start and end positions inside
the downloaded nucleotide sequence are known. Using this position the
ncRNA and its genomic context can be located. A fixed size (100 nt) of the
genomic context was extracted equally up- and downstream of the ncRNA.
In the case of limited context on one side, the missing nucleotides were
extracted from the other side (context). If a full extraction of the context
failed or the nucleotide sequence could not be found by its accession
number the entry is excluded from the final LocalBRAliBase.

For the context elongation of 200 nt, 2,750 ncRNAs had not enough
context available or could not be found by their accession number in ENA
and therefore were excluded from the final data set. The flanking regions
were dinucleotide shuffled using the tool uShuffle (Jiang et al., 2008).

Optimization setup

SMAC (Sequential Model-based Algorithm Configuration) is a black box
optimization tool that identifies (sub-)optimal parameter combinations for
configuring arbitrary algorithms (Hutter et al., 2011) (see Supplementary
section 3). The relationship between parameters and the desired algorithm
result (alignment) is learned by optimizing a cost-function or quality score
function. A python wrapper is handling the parameter settings and the
input instances and applies them to our cost-function (scoring-function).
The objective function is written in Perl and computes the LocARNA
alignment for a given instance and parameter setting and the quality of this
computed alignment.

The alignment quality measures used for the optimization
of LocARNA parameters in the global mode is the geometric mean of
SPS and MCC. The MCC is in most cases between 0 and 1, but it can
also take a value down to -1. If the MCC was negative its value was set to
zero. For the local alignment mode we used the maxSPS-value metric as
described before. For details please refer to the Supplementary section 2.

The BRAliBase data set was used to infer the global alignment optimal
parameter configuration and LocalBRAliBase, with a shuffled genomic
context of length 200 nucleotides, was used for the local alignment mode.

Both data sets are filtered so that the number of instances per families
are comparable amongst families and the data set is uniformly distributed,
leaving the global data set with 2090 instances and the local data set
with 1370 training instances. To identified the robustness of the parameter
optimization and to exclude potential over fitting a 10-Fold cross validation
was performed (see Supplementary Fig. S3).

The four LocARNA parameters gap extension (), gap opening (53),
structure weight (w) and a tau factor (7) were subject to optimization
within the relevant ranges (i.e., v : [—1000,0],3 : [—1500,0],w :
[0,1000], T : [0,100])
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3 RESULTS AND DISCUSSION

‘We performed several experiments to elucidate our guiding question from
different angles, namely whether there is a general difficulty of using
Sankoff-like scores for the simultaneous local alignment and folding of
RNAs. Since we are interested in shading light on the general phenomenon,
we perform our experiments using the state-of-the-art RNA alignment
tool LocARNA, as a representative of Sankoff-like approaches, or more
specifically their PMcomp-like variety, which turned out particularly
successful over the last decade.

Since we conjectured a potential positive structure scoring bias, which
results from the non-negative structure score contribution, we start by
directly quantifying the dimension of this bias in our first experiment. In
our second experiment, we show the direct effect on the length of local
alignments. While, as our first two studies show, overestimation of the
alignment boundaries can be avoided by reducing the structure weight, we
anticipated a conflicting negative effect on the alignment accuracy. The
counterplay of these effects was investigated in a third study.

Furthermore, we were interested in optimal parameter settings for
local and global alignment. Ideally, one could find a common optimal
set of parameters for local and global alignment. As we discuss in
more detail elsewhere, this has advantages in downstream analysis. Our
final experiment attempts to directly rescue local alignment from the
conjectured bias. A successful rescue could provide most direct evidence
for the conjectured phenomenon; as well, such results could be directly
useful to improve local RNA alignment.

Assessing the quality of local alignment requires a novel,
specifically tailored benchmark

In order to perform these studies, we designed a novel benchmark
LocalBRAliBase and a local alignment quality measurement (maxSPS)
for assessing local RNA alignment methods and their parametrization.

To best of our knowledge, there is not a comparably well established
benchmark set for local alignments evaluation, like BRAliBase for global
alignments. Therefore, we generated a local alignment benchmark set
by taking the ncRNA’s of the BRAliBase as local alignment motifs and
embedded this motifs into their shuffled genomic contexts, also referenced
as flanking regions. The flanking regions were shuffled, because the real
genomic context of an ncRNA can be of high similarity. Specially for
ncRNA inputs having lower sequence identity, it could be biologically
meaningful to align the context. Hence we clear possible similarity of the
context but not its nucleotide frequency.

To get insights on how sequences with lower sequence identity or
high structure conservation behave differently in comparison to the overall
set, we filtered the LocalBRAliBase. The set of sequences with lower
sequence identity was constructed by filtering for sequences APSI smaller
than 70 (APSI < 70). It is a more challenging task to find a local motif of
low sequence identity in its genomic context. On the other hand for local
motifs that are highly structured, accounting for structure should help to
find more exact alignments. To have a set of sequences that are highly
structured we filtered the LocalBRAliBase for sequences with a SCI over
100 (SCI > 100). The LocalBRAliBase construction resulted in 6226
entries for k2. The filtering of this k2 instances resulted in 3019 instances
for APSI smaller 70 and 2165 instances for SCI greater 100.

The LocalBRAliBase data set was used to investigate boundary
detection and the local alignment quality. However, to evaluate the quality
of a local alignment it is still important to validate the correctly predicted
alignment edges. The maxSPS is therefore a novel way of scoring local
alignment by penalizing context extensions but also local alignments which
are to short (methods). It extends the idea of the SPS measure by penalizing
extensions of local alignments into the context (in contrast to the SPS score
of the local alignment). Thus, the measure properly assesses the quality

=3¢= ncRNAs: sequence-structure alignment
<= Shuffled ncRNAs: sequence-structure alignment
= = = Shuffled ncRNAs: sequence-only alignment

125
100
75
50
25

-25

Normalized LocARNA score

-50
0 50 100 150 200 250 300 350 400
Structure weight

Fig. 2. The structure contribution leads to a positive scoring bias. The average normalized
LocARNA scores for increasing structure weights (on the x-axis) for the three date sets:
Sequence-structure alignments of ncRNAs from k2-BRAliBase (green, X), sequence-
structure alignments of the shuffled ncRNA from k2-BRAliBase (blue, box), and
sequence-only alignments of shuffled ncRNA from k2-BRAliBase (blue, dashed line).
Sequence-only alignments were obtained by turning off structure matching in LocARNA’s
algorithm. The vertical bars represent the standard deviations. With increasing structure
weights, the score value gap between sequence-structure and sequence-only alignments of
the shuffled sequences increases; remarkably, even for the structure weight 0, sequence-
structure alignments have a higher average score than the sequence-only alignments.
Comparing alignments scores of true ncRNAs to the alignments scores of shuffled ncRNA
shows that LocARNA is able to distinguish between shuffled and real ncRNAs.

of local alignments, taking into account that good local alignments are
similar to the reference in terms of boundaries and alignment columns.
Note that the latter implicitly penalizes too short predictions. (see methods
and Supplementary Fig. S1)

The expected background alignment score is shifted due to
spurious structure contribution

A general bias on unrelated sequences, as it could be caused by the
structure component of the LocARNA score, should be visible by a shift
of expected LocARNA scores towards positive scores, if one puts more
weight on the structure component. Note that in LocARNA, this works
directly by increasing the parameter "structure weight". We quantified such
effects based on the ncRNAs from BRAliBase. For each pair of ncRNAs,
we shuffled both sequences using dinucleotide shuffling (see Methods).
Then, for a series of different structure weighs (ranging from 0 to 400, in
increments of 50), we aligned the pairs of ncRNAs as well as the pairs of
shuffled ncRNAs with LocARNA. Finally, we compared the distribution
of the scores, normalized to the sum of sequence lengths (Fig. 2). The
normalized score reflects the average score contribution per nucleotide and
allows comparing alignment scores from sequences of different lengths.

We observe that the normalized score achieved when aligning ncRNAs
is always positive and increases with an increased structure weight.
Moreover, for the shuffled ncRNAs, the score increases with increasing
structure weight, although these RNAs cannot contain any conserved
structure. This supports the idea of a general positive shift due to the
structure component even for unrelated RNAs. We also compared the
score to a sequence-only score, which is (by Equation (1)) expected to
be negative. Here, we completely turn off structure alignment (i.e. switch
to pure sequence alignment) by setting LocARNA’s threshold for the base
pair probability to 1; notably there is a subtle difference to setting the
structure weight to zero. Only in the latter case, structure could still have
an effect on the alignment: dissimilar nucleotides at the ends of two base
pairs would rather be scored as structure match than two negative sequence
matches, since the structure match has score zero (due to zero structure
weight).
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are estimated as average lengths of the predicted local LocARNA alignments over different
structure weights (X-axis) using randomly generated RNA sequences of length 100 (see
Methods). The sequence-only scoring predicts a local average alignment of length around
15 nts, regardless of the structure weight. A structure weight of 300 already leads to local

sequence-structure alignments covering about 60% of the input sequences.

Note also that a part of the observed shift for the shuffled ncRNA
sequences could be explained by their higher energy compared to the
unshuffled ncRNAs, since higher energy is correlated with lower scores
(see Supplementary Figs. S11 and S12), which contributes to this gap.
To make sure that not any database biases lead to wrong conclusions we
repeated the experiment with an artificial data set (see Supplementary Fig.
S4). Having no bias like different GC-Content or different sequence length
leads to a even slightly more positive scores.

For structure weight 0, we are more or less back to the sequence score,
except that for base pair the alignment could use the Ribosum score (Klein
and Eddy, 2003) instead of the sequence score for both ends of the base
pair. Nevertheless, even the Ribosum score is negative in expectation since
it is a log odds score as well. While this positive contribution fact of the
structure score was already clear, no one until now investigated the relative
contribution of structure and sequence part of the score.

The main problem here is that one cannot make a simple theoretical
analysis as given for sequence alignment by Equation (1) as the structure
score in LocARNA (and many others) depends on base probabilities
which use information stemming from the whole sequence. This way,
the different alignment edges are not independent anymore.

The local alignment length of random sequences increases
with growing structure weight

The previous experiment (Fig. 2) shows that the score clearly distinguishes
positive data (pairs of ncRNAs) from negative data (pairs for shuffled
ncRNAS); so far, this is in line with previous results that show the good
quality of the LocARNA score for global alignment.

Still, this leaves the questions, whether the observed bias has effects on
the quality of local alignments and how strong such effects are. On the one
hand, the required negative expected scores, to avoid linear growth of local
alignment with its input sequence lengths, seems to be met for commonly
used structure weights, e.g. the default weight 200. On the other hand, this
does not rule out detrimental overestimation of boundaries due to a score
bias.

To quantify this, we first determined the expected length of local
alignments between random RNA pairs; this was determined for
LocARNA in default setting as well as for sequence only setting. This
length indicates the expected overestimation of real ncRNA alignments,
evenif their genomic context is completely unrelated. At the current default

Fig. 4. Using a higher structure weight improves the local alignment quality but also leads
to an extension of the alignment into the context. The local alignment performance metrics
(sensitivity and specificity) are shown for the LocalBRAliBase data set (top) and the subset
filtered for APSI less than 70% (bottom). There is a trade-off between covering the motif
and restricting the alignment to the motif boundaries. A high structure weight helps to
predict the complete local motif (top left), but it also leads to a extension into the context
(top right). For a low structure weight the situation is vice versa. For sequences with lower
APSI, the effect of not finding the complete or just parts of the motif is stronger (bottom left
vs. top left). However, the ability to detect the context for a respective structure weight is
less different comparing lower APSI sequences to the complete k2 LocalBRAliBase (right).

setting (structure weight of 200) almost half of the genomic context could
be added to the aligned local motif.

When we destroy sequence and structure homology in the instances
of LocalBRAliBase by shuffling (methods), we still observe longer
alignments for increasing structure weight (Supplementary Fig. S5). In
this benchmark, the input sequences have relatively large and diverse
lengths of typically about 250-300 nt composed of 200 nt context and
the ncRNA sequence. Thus, instead of directly comparing sequences from
the shuffled benchmark, we generate an artificial data set of RNAs of length
100, having the same nucleotide distribution (Methods). As can be seen
in Fig. 3, sequence-only score does produce (on average) an alignment of
length 10 or roughly 10% of the input. Given a typical length of 50-100
(see length distribution of BRAliBase ncRNAs in Fig. S8) for most of the
ncRNAs, we would expect that the predicted boundaries are extended by
10-20 nts over the real boundaries. For high structure weight, however,
more than 60% of the random sequences are covered by a local alignment,
which implies that we do not have any chance to detect the real boundaries
of ncRNAs even in shuffled genomic context.

Emphasizing structure improves alignment accuracy but
seriously overestimates boundaries of local alignments

Sequence-structure alignment tools were introduced to overcome the
limitations of sequence-based approaches in the detection of conserved
structures (Gardner et al., 2005). Thus, a high structure weight would be
desirable for a correct detection of conserved structures. However, the
length of local alignment of random sequences already suggest that we
usually cannot find the true transcript boundaries using a high structure
weight as it would likely extend a real ncRNA into the genomic context.
While sequence alignment does not share these problems, resorting to
sequence-only alignment (or setting LocARNA’s structure weight very
low; see Fig. 4) does not resolve the dilemma. Not picking up structure
similarity can lead to bad alignment quality or even a complete miss of the
local alignment, specially for sequences with low sequence identity (see
Fig. 4 bottom).
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Fig. 5. Position-wise penalties can improve the average alignment quality of local
alignments (as measured by maxSPS). For the entire k2 LocalBRAliBase (left) and a subset
of low sequence similarity (APSI < 70, right), we plot the average maxSPS for different
position-wise penalties A (x-axis). We show our results for two different structure weights,
the default value of w = 200 and w = 100, which are close to our optimization results
for global and local alignments. The plots demonstrate that the position-wise penalty can
compensate for the bias of using a higher structure weight. A position-wise penalty of about
15 allows using the high structure weight of 200, an optimal value for the global alignment.
Hence, the penalty allows applying a single set of optimal parameters for global and local
alignment—as we argue in the text, this is beneficial on its own.

To investigate this further, we determined the agreement of the
positions covered by the local alignment with the actual transcript
boundaries using the LocalBRAliBase. Note that we do not investigate here
how good the actual alignment is. Finding the correct transcript boundaries,
however, is the necessary step to get a good alignment as we could re-
align the detected transcripts using global alignment in a following step.
For the purpose of measuring the agreement of transcript boundaries and
regions detected by local alignment, we investigated the sensitivity and
specificity of the predicted alignment areas. The sensitivity measures the
fraction of positions that are correctly predicted according to a reference
alignment (with optimal value 1), whereas the specificity measures how
much of the context is not aligned (with optimal value 1). A example can
be found in Fig. S2. Taking sensitivity and specificity into account will
reveal alignments which are extended into the context, but also too short
alignments and is therefore a helpful boundary detection measurement.

As Fig. 4 shows, a high structure weight does detect the full transcript
(sensitivity close to 1) but tend to align into the context (indicated by a
lower specificity). The initial arguments of this section, that a structure
weight is needed to detect the ncRNA is clearly proved by looking at the
sequences with lower sequence identity. With structure weight 100 on
average less than half of the ncRNA is found. Sequence-based scoring or
not adding a positive structure contribution, on the other hand, does fail to
detect the correct transcript. See structure weight 0.

Global and local alignment require fundamentally different
parameter sets

In the previous experiment, we varied only the single parameter weighting
the structure. While we see that this does not allow to simultaneously
meet both objectives, accurate alignment and accurate boundaries in local
alignment, we cannot rule out yet that such reconciliation is possible due
to the complex interplay of the structure weight with the other essential
parameters, which control the affine gap cost (gap opening and extension)
and the importance of sequence similarity at structural matches (tau factor).

For directly studying such potential effects, we apply machine learning
techniques as a tool to illuminate this apparent contradiction from the
perspective of optimal parameter settings. This allows us to simultaneously

optimize these parameters for there suitability to reproduce reference
alignments from a benchmark set. In this way, we determined independent
optimal parameter sets for global alignment as well as for local alignment
(Methods).

While we learn parameters for global alignment directly form the k2
data set of BRAliBase, we employed the derived local benchmark set
from LocalBRAliBase for optimizing the parameters for local alignment
(Methods). The optimized parameter sets are shown in Table 1 together
with LocARNA’s current default values for comparison. Interestingly,
already our optimization results for global alignment on the k2 data
set differ quite substantially from LocARNA’s default values, since
such parameters were never systematically optimized before. While the
structure weight was apparently chosen well for aligning k2 sequences,
the optimal gap opening cost is considerable higher, but compensated by
much lower gap extension costs. We assume that such shift of gap extension
costs to opening costs is also beneficial for aligning most other RNAs with
LocARNA. Moreover, on k2 it turned out advantageous to more strongly
consider sequence similarity at the ends of matched base pairs (higher tau
factor), where originally we had set the influence of sequence to zero to
avoid penalizing compensatory mutations.

More importantly for our study, comparing the optimized parameters
for local and global alignments, we see most striking differences.
Apparently, even allowing variations in the relevant other parameters, a
common ideal parameter set that works equally well for local and global
alignment cannot be found.

As discussed before a high structure contribution in local alignments
leads to alignment extensions into the context and will produce a high
number of wrong alignment edges. The structure weight is nearly halved,
as is the tau-factor. As the tau-factor is another part of the structure scoring,
it is conceivable the tau-factor and structure weight are just correlated.

Furthermore, the gap costs are significantly increased. Higher gap costs
help to avoid aligning similar regions that are spread of a longer region
and therefore most likely do not belong to the same local motif. Therefore,
we hypothesize that the optimized parameters for local alignment limit
the bias due to the structure contribution as to avoid strong overestimation
of boundaries. Note that there is no corresponding pressure for global
alignment. It seems that almost the only resolution is to lower structure
weight (and tau factor). At the same time, as the optimization for global
alignment (and the results from our previous experiment) indicate, this
tends to lower the alignment accuracy of the locally aligned subsequences.

Position-wise penalty as an alternative to reduced
structure weight

Previous results suggest that even the optimized parameters for local
alignment are forced into an unfortunate compromise between sensitivity
and specificity that cannot be satisfyingly resolved. Moreover, the
large deviation between optimized parameters for the local and global
alignments do cause additional problems for tools like RNAz (Gruber et al.,
2010) that rely on statistics over local and global alignments, since for such
tools, different parameterization lead to different statistics distributions.

In this work, we are first of all interested to systematically study the
potential issues of using Sankoff-like scoring in local alignment. However,
we suggest a simple modification of the score, which has the potential to
compensate such issues. This can yield final direct evidence, as well as
suggests more sophisticated solutions to the problem.

We start with hypothesizing that, on average, there is a length-
dependent shift of the score due to the structure contribution.
Already Heyer (2000) observed that local alignment cannot work properly,
if the expected alignment score grows linearly with alignment length.
While the expected length of proper local alignments should grow at most
logarithmically with the input lengths, such a dependency would cause
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Table 1. Optimized parameters differ strongly for global and local LocARNA alignments. However, after introducing a position-wise penalty in LocARNA, optimal
parameters for local alignment (with penalty) turn out to be very close to the trained parameters for global alignment. Compared to LocARNA’s default values,
the paramter optimization makes gap extensions cheaper and gap opening more expensive. To improve local alignments, the structure-weight is strongly decreased
compared to the optimal weight for global alignment (which is nearly the same as the default weight). In the same way, the trained tau-factor for local alignment
is smaller than for global alignment. The other parameters are changed by the training for either local or global alignments in the same way (compared to default

parameters). Using a position-wise penalty X of 15 for the local alignment prediction, the optimized parameters are almost equal to the optimized parameters for
global alignments. All parameter training was performed using the black box optimizer SMAC (see Methods). Example LocARNA calls are given in the supplement.

linear growth. This motivates us to subtract a position-wise penalty from
the score; in order to compensate the hypothesized linear dependency of
score‘s on the input length due to the structure contribution. Concretely,
we penalize each position in the locally aligned subsequences; to require
only a single additional parameter, all positions are penalized equally.

We first tested, using a simple grid search for the penalty, the effect of
penalty on the alignment quality for structure weights 100 and 200. We
have chosen these values as they were roughly the result of the parameter
optimization for local and global alignment, respectively.

Our results in Fig. 6 support the expected effect of the penalty on the
sensitivity and specificity, namely increasing specificity on the cost of
sensitivity. However, as seen in Fig. 5, in both cases the penalty is required
to improve the overall alignment quality. The optimal penalty for structure
weight 100 is 5-10, for 200 it is 15-20. Similar optimal and near-optimal
performance was obtained for penalty 15 in our family-wise analysis of
the six largest RNA families with structure weight 200 that is provided in
Supplementary Fig. S13. To get further insides on how the penalty is acting
we investigated the F1 distribution for the complete k2 LocalBRAliBase
and two filtered sets of the LocalBRAliBase, see Supplementary Fig. S9.
This shows that overall the penalty allows to improve the alignment quality,
even more for higher structure weights (200). Notice that, if the data set is
filtered for a specific subset, e.g. sequences with APSI below 70 or with
a SCI above 100 the optimal position-wise penalty value is shifting. For
sequences with a lower sequence identity a structure weight around 5 seem
to be optimal. However, looking at very structured sequences a penalty of
15 gives again an optimal result. Therefore we came to the conclusion that
a penalty around 15 should be desirable, which is than also used for the
second local parameter optimization (see Table 1 line 4).

This allows the use of identical parameter set for global and local
alignment, which is particularly beneficial for tools that rely on statistics
over global and local alignments (like RNAz; as discussed before).

Finally comparing the current default Loc ARNA parameter setting and
our now improved, combination of global optimized parameters and the
position-wise penalty, shows that we can drastically improve the local
alignment prediction of LocARNA. Comparing the medians of optimized
and default parameter settings (Fig. 7), it is notable that using the default
parameter setting for more than half of the sequences the alignment
prediction failed completely. This is substantially improved when using
the optimized parameter settings with penalty 15. If the alignment
boundaries would be perfectly predicted we could achieve a median of 0.95
(Supplementary Fig. S10), however the current improvement is already
astonishing.

4 CONCLUSION

In this work we systematically studied the comparison of non-coding RNAs
by local simultaneous alignment and folding (local SA&F), which is highly
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Fig. 6. The compensating effect of position-wise penalties. The boundary detection
(sensitivity + specificity) is shown for different position-wise penalties using global
optimized parameters and structure weight 200. For higher penalties almost nothing of
the context will be aligned (right, specificity). On the other hand a high penalty leads partly
to not finding the complete local motif (left, sensitivity). This results can be matched to
the trade-off issue of finding the correct alignment boundaries, shown in Fig. 4. Using high
structure weight for alignment predictions will result in finding the complete motif but it
also leads to an extension into the context. Now, for a high structure weight (200), already
at penalty 15 most local motifs are still fully covered, but most of the predictions are not
extended into the context. This shows how the bias due to the structure contribution can be
compensated by using a position-wise penalty.
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Fig. 7. Improvement in local alignment quality by using the suggested parameter setting
over the LocARNA default parameter settings. The suggested parameter set is the optimized
parameters for global alignment (Table 1) combined with a position-wise penalty of 15.
The structure weight has been rounded to 200. We observe a considerable improvement,
the median maxSPS is increased from 0.11 to 0.60. A example comparing the default and
suggested scoring can be found in Supplementary Fig. S14.

demanded for the important challenge of identifying homologues from the
plethora of identified RNA transcripts with unknown function. Over the
years, several approaches for local SA&F have been proposed and there
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have been attempts to improve local alignment prediction and to counteract
alignment elongation beyond motif boundaries. A prominent example is
Foldalign (Havgaard et al., 2005), which limits the maximum length of
motifs. However, the fundamental issues of local SA&F as discussed
in this work were neither investigated in depth before nor quantified
systematically.

In the first step, we designed a new local alignment benchmark set
(LocalBRAliBase) together with an appropriate novel local alignment
quality measure (maxSPS). This benchmark set is essential for studying
local alignment and constitutes a valuable contribution by itself, since it
enables proper assessment of local RNA alignment method performance
for the first time.

With this benchmark set at hand, we could empirically confirm
our initial hypothesis that the structure prediction component in SA&F
introduces a bias to the total similarity score. The intuitive explanation
for this bias is that the structure contribution of SA&F is purely positive
by definition. The bias was shown to be sufficiently high in current
tools to compromise the prediction of correct alignment boundaries. Even
worse, we showed that current scoring schemes do not allow to properly
balance the overestimation of alignment length (i.e., misprediction of
boundaries) against the sensitivity for detecting structural homology. By
varying only the relative weight of the structure component in the scoring,
we demonstrated this effect clearly: sufficient emphasis on structure is
required to identify local motifs, however this compromises the accuracy
of boundary prediction at the same time. As wrong parameterization of
the scoring could still be the source of the problem, we subsequently used
machine learning to optimize the alignment parameters, finding that the
divergence between accuracy of boundary and structure detection cannot
be resolved by re-parametrization. Surprisingly, we found that a position-
wise penalty could completely resolve the problem, yielding the same set
of parameters for global and local SA&F alignment. This has the further
benefit that downstream tools like RNAz for predicting ncRNAs do not
have to differentiate between local and global scoring.

In summary, we clearly showed that the current SA&F scoring schemes
are not directly applicable to local SA&F. Moreover, we identified the
positive structure contribution to the alignment score as the major bias
source for overestimating the alignment boundaries. Finally, we presented
a constructive solution of the observed issues through applying a position-
wise penalty. By raising awareness in the community, precise identification
of the issues, and pointing out viable solutions, this work constitutes an
important step towards reliable local SA&F approaches in future studies.

Availability

The benchmark data, detailed results and scripts are available at
https://github.com/BackofenLab/local_alignment. The RNA alignment
tool LocARNA, including the modifications proposed in this work, is
available at https://github.com/s-will/LocARNA/releases/tag/v2.0.0RC6.
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