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Abstract. Prediction and alignment of RNA pseudoknot structures are
NP-hard. Nevertheless, several efficient prediction algorithms by dynamic
programming have been proposed for restricted classes of pseudoknots.
We present a general scheme that yields an efficient alignment algorithm
for arbitrary such classes. Moreover, we show that such an alignment
algorithm benefits from the class restriction in the same way as the cor-
responding structure prediction algorithm does. We look at five of these
classes in greater detail. The time and space complexity of the alignment
algorithm is increased by only a linear factor over the respective predic-
tion algorithm. For four of the classes, no efficient alignment algorithms
were known. For the fifth, most general class, we improve the previously
best complexity of O(n5m5) time to O(nm6), where n and m denote
sequence lengths. Finally, we apply our fastest algorithm with O(nm4)
time and O(nm2) space to comparative de-novo pseudoknot prediction.

1 Introduction

In the last years, it has become clear that RNA molecules play very important
roles in a cell, among them regulatory and catalytic ones [1], much beyond acting
only as a messenger. A recent computational screen for structural RNA [2] has
revealed that there are more than 30.000 putative non-coding RNAs (ncRNAs).
For the functional annotation, classification and further investigation of these
RNAs, it is essential to infer the secondary structure of these ncRNA, and to
use this structure information for comparative analysis.

Nearly all major approaches for the computational analysis of ncRNAs have
been restricted to nested secondary structure, neglecting pseudoknots. However,
pseudoknots are far from being a rare event. As stated in [3], the pseudoknot
motif is “among the most prevalent RNA structures”. Using exactly clustered
stochastic simulations, Xayaphoummine et al. [4] have estimated that up to 30%
of the base pairs in G+C-rich sequences are forming pseudoknots. For E.coli, it
was estimated that 15.5%± 6.5% of the base pairs are included in pseudoknots.
? These authors contributed equally.
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There are three major problems concerning the analysis of pseudoknotted
RNAs, which depend on each other. First, there are only few known pseudo-
knots. Second, the prediction of pseudoknots is computationally very expensive.
The full problem is known to be NP-hard [5], efficient algorithms exist only
for restricted classes of pseudoknots. And third, the reliability of the existing
prediction programs is not very good. The main reason for the low quality of
the prediction programs is that there are too few known structures where the
programs can be trained on, an approach that was successfully applied to nested
RNA structures (see e.g. CONTRAfold [6]). Vice versa, the low prediction quality
and the high computational costs hinder the research on pseudoknot structures.

The most promising way out of this dilemma is to use comparative approaches
for predicting pseudoknotted secondary structures. Since the structure is more
conserved than the sequence of RNA, this requires an alignment of both sequence
and structure (called sequence-structure alignment in the following). This has
been a very successful approach for nested secondary structures, where a com-
plete variety of practical tools (e.g. LocARNA [7], MARNA [8], FOLDALIGN [9, 10],
Dynalign [11, 12] to name some) exists. However, there are only few approaches
for sequence-structure alignment for pseudoknotted approaches (lara [13]). The
research on this topic is far behind the computational analysis of pseudoknot
structure prediction, where several approaches in varying complexity for re-
stricted classes have been introduced [5, 14–19]. All these algorithms use the
properties of the restricted class in a dynamic programming approach to effi-
ciently solve the prediction problem.

In this paper, we consider the problem of sequence-structure alignment with
known pseudoknot structures. This is the necessary basis for comparative anal-
ysis of pseudoknots. We introduce a general scheme that generates a pseudo-
knot alignment algorithms for a restricted class of pseudoknots, given the corre-
sponding prediction approach. Our general scheme can be applied to pseudoknot
classes for which a dynamic programming approach exists. Basically, we use the
decomposition strategy of the structure prediction, and apply this strategy to
solve the associated alignment problem for known structures efficiently. The ad-
ditional complexity of the alignment algorithm compared to the corresponding
prediction problem is only linear in the length of the sequence, both in space and
time, which is surprisingly small. For comparison, in the case of the only known
pseudoknot alignment methods for a restricted class of pseudoknots, namely
for the class handled by Rivas&Eddy’s O(n6) algorithm [14], the corresponding
alignment problem was solved by Evans [20] with a time complexity of O(n10)
and space complexity of O(n8). Compared to that, our approach requires only
O(n7) time and O(n5) space on this class, although it supports a more general
scoring scheme. Furthermore, the run time of the algorithms generated by our
general scheme scales with the complexity of the aligned structures. In particu-
lar, the worst case complexity applies only to the actual pseudoknots, whereas
simpler parts of the structures are aligned much faster. A central technical in-
sight of the work is how pseudoknot alignment can benefit from a variety of
structural restrictions in the same way as structure prediction does. We discuss
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five classes of pseudoknot structures in detail, namely [5, 14–19]. For four of these
classes, no exact alignment algorithms existed up to now.

Then, we used the fastest of our introduced alignment approaches that han-
dles the structure class described by Reeder&Giegerich [19]. The resulting algo-
rithm has a time complexity of O(n5), compared to O(n4) for the prediction. We
tested this approach on known pseudoknot classes from the Rfam-databases [21]
and compared it with an implementation of the nested-nested sequence-structure
alignment method of [22] in the tool MARNA [8]. We found that using the known
pseudoknot structures improves the quality of alignments, especially for low
pairwise sequence identity. Furthermore, we set up a first prototype pipeline for
combining alignment and prediction of pseudoknot structures. Such a pipeline
is the basis for automatic pseudoknot annotation of large amounts of candidate
ncRNA as predicted by ncRNA screens (e.g. provided by the RNAz-tool [23]),
where the secondary structure is unknown. We applied our prototype pipeline to
a data set of 50 putative ncRNAs from a current Ciona intestinalis screen [24].
This revealed that using a comparative approach increases the reliability of pseu-
doknot structure annotation. Whereas the Reeder&Giegerich prediction method
pknotsRG would find pseudoknots in all of the 50 examples, only 14 of them
show sufficiently many compensatory base pair mutations after using alignment
in addition to the pseudoknot structure prediction. Such compensatory base pair
mutations enlarges the reliability of the prediction since they give a strong evi-
dence for an evolutionary conservation of the structure. Compensatory base pair
mutations are commonly used as a verification for real biologically relevant struc-
tures. This prototypical pipeline is only an initial step and some work remains
to be done to setup an integrated pipeline. However, the prototype application
shows that such an integrated pipeline is feasible. With the work presented here,
we have done the first but essential step to set up such an approach.

Related work Evans proposed a fixed parameter tractable algorithm that com-
putes the longest arc preserving common subsequence of pseudoknots [25] and
an algorithm to compute the maximum common ordered substructure of two
RNA structures [20]. As mentioned above, the latter guarantees polynomial run
time, but the polynomial is significantly larger than in our approach. In our own
previous work, we developed a fixed parameter tractable algorithm to align arbi-
trary pseudoknots [26]. Despite addressing the same task, this algorithm differs
much from our current approach and the run time depends on other properties
of the input structures. Finally, there exists a heuristic approach based on inte-
ger linear programming that is usually fast in practice, but does not guarantee
optimal solutions [13].

Roadmap After giving basic concepts (Sec. 2), we present a general framework
for decomposing RNA structures that can be instantiated with the methods
used by various pseudoknot prediction algorithms (Sec. 3). Then we describe
a general method to construct a corresponding sequence structure alignment
algorithm for each of these instances (Sec. 4) and have a detailed look at the
different instances (Sec. 5). Finally, we present experimental results obtained
with our implementation (Sec. 6) and give some concluding remarks (Sec. 7).
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2 Preliminaries

Sequences and fragments An arc-annotated sequence is a pair (S, P ), where S
is a string over the set of bases {A,U,C,G} and P is a set of arcs (l, r) with
1 ≤ l < r ≤ |S| representing bonds between bases, such that each base is
adjacent to at most one arc. We denote the i-th symbol of S by S[i]. For an arc
p = (l, r), we denote its left end l and right end r by pL and pR, respectively.
An arc p ∈ P is crossing if there is an arc p′ ∈ P such that pL < p′L < pR < p′R

or p′L < pL < p′R < pR; then p and p′ form a pseudoknot. An arc-annotated
sequence is crossing if it contains crossing arcs, otherwise it is nested.

An alignment A of two arc-annotated sequences (Sa, Pa) and (Sb, Pb) is a set
A1 ∪A2, where A1 ⊆ [1..|Sa|]× [1..|Sb|] is a set of match edges such that for all
(i, j), (i′, j′) ∈ A1 holds 1.) i > i′ implies j > j′ and 2.) i = i′ if and only if j = j′

and A2 is the set of gap edges { (x,−) | x ∈ [1..|Sa|]∧@y.(x, y) ∈ A1 }∪{ (−, y) |
y ∈ [1..|Sb|] ∧ @x.(x, y) ∈ A1 }. A base that is adjacent to a gap edge is called
aligned to a gap. Two bases Sa[i], Sb[j] are matched by A if (i, j) ∈ A and two
arcs pa ∈ Pa, pb ∈ Pb are matched if (pL

a , p
L
b ) ∈ A and (pR

a , p
R
b ) ∈ A. Each

alignment has an associated cost based on an edit distance with two classes of
operations. The operations where first introduced by Jiang et al. [22] and are
illustrated in Fig. 1. Base operations (mismatch and insertion/deletion) work
solely on positions that are not incident to an arc. Base mismatch replaces a
base with another base and has associated cost wm. A base insertion/deletion
removes or adds one base and costs wd. The second class consists of operations
that involve at least one position that is incident to an arc. An arc mismatch
replaces one or both of the bases incident to an arc. It costs wam

2 if one base is
replaced or wam if both are replaced. An arc breaking removes one arc and leaves
the incident bases unchanged. The associated cost is wb. Arc removing deletes
one arc and both incident bases and costs wr. Finally, arc altering removes one
of the two bases that are incident to an arc and costs wa = wb

2 + wr

2 (cf. [22]).
Define for two arc annotated sequences (Sa, Pa) and (Sb, Pb) and k ∈ {a, b}

χ(i, j) := if Sa[i] 6= Sb[j] then 1 else 0

ψk(i) := if ∃p ∈ Pk.p
L = i or pR = i then 1 else 0

gapk(i) := wd + ψk(i)(
wr

2
− wd)

basematch(i, j) := χ(i, j)wm + (ψ1(i) + ψ2(j))
wb

2
.

gapk(i) denotes the cost to align base Sk[i] to a gap, basematch(i, j) the cost to
align Sa[i] to Sb[j] under the assumption that their possibly adjacent arcs are
not matched.

3 Decomposing Sequences

In general, dynamic programming (DP) algorithms for RNA alignment, struc-
ture prediction or similar tasks, rely on a recursive decomposition of the RNA
sequence into subsequences or combinations of subsequences (which we will call
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AAAGAAUAAU−UUACGGGACCCUAUAAA
CGAGA−UAACAUU−CGGG−CCC−AUAAA

arc match

arc breaking

arc altering

arc removing

base deletion

arc mismatch

base mismatch

Fig. 1. Edit operations (cf. [22])

fragments in the following). For example, the standard nested secondary struc-
ture prediction [27, 28] decomposes a subsequence into two consecutive subse-
quences, whereas the Rivas and Eddy algorithm [14] for predicting a restricted
class of pseudoknots uses fragments that consist of two unconnected subse-
quences. Thus, the type of decompositions considered by each algorithm has
major impact on both complexity and the class of structures handled by the
algorithm.

We will develop a general view on decomposition strategies for RNA struc-
tures with pseudoknots. As a first insight, we point out that the central difference
between the various DP based structure prediction algorithms is their choice of
one such strategy. This choice determines the characteristic trade-off between
the class of handled pseudoknots and the resulting complexity of the algorithm.
As our main contribution, we will introduce a general framework for sequence-
structure alignment based on an arbitrary decomposition strategy. Compared
to the structure prediction algorithm for this decomposition strategy, the align-
ment algorithm will have only linear time and space overhead. Thus the scheme
provides the first sequence-structure alignment methods for many pseudoknot
classes and covers the classes of all known DP based pseudoknot prediction al-
gorithms.

A fragment F of an arc annotated sequence (S, P ) is a k-tuple of intervals
([l1, r1], . . . , [lk, rk]) with 1 ≤ l1 ≤ r1+1 ≤ · · · ≤ lk ≤ rk +1 ≤ |S|. Note that this
definition allows empty intervals [i+ 1, i]. The ranges between the intervals, i.e
[r1 + 1, l2− 1], . . . , [rk−1 + 1, lk − 1], are called gaps of F . We call k the degree of
F and l1, r1, . . . , lk, rk its boundaries. The set of positions covered by F (denoted
with F̂ ), is defined as the union of the intervals contained in F . The i-th interval
[li, ri] of F is denoted with F [i] and with F [i]L and F [i]R we denote its left
and right boundary li and ri, respectively. For better readability, we abbreviate
intervals of the form [i, i] as 〈i〉.

F is called arc-complete, iff l ∈ F̂ ⇔ r ∈ F̂ for each (l, r) ∈ P . F is called
atomic if F covers either exactly the two ends of an arc of P or a single position
not adjacent to an arc. As an example, in Fig 2a, the boxed fragments have all
a degree of 2, F 2

a and F 2
b are atomic and Fb as well as F 1

b are not arc-complete.
Let F , F 1 and F 2 be fragments of the same sequence. The pair (F 1, F 2) is

a split of F iff F̂ = F̂ 1 ] F̂ 2.3 We call F 1 and F 2 the children and F the parent

3 For simplicity, we introduce only binary splits. However, the introduced concepts are
raised to n-ary splits straightforwardly.
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a) b)

Fig. 2. a) Alignment with some boxed fragments Fa,Fb that are split into their white
and gray parts F 1

a , F 1
b (white boxes) and F 2

a , F 2
b (gray boxes), respectively. Gap edges

of A are not shown. b) A structure and two ways to visualize a parse tree thereof. Note
that in the parse tree, each leaf is atomic.

of the split. The split is called arc-preserving, if F , F 1 and F 2 are arc complete.
In Fig. 2a, the split (F 1

a , F
2
a ) of Fa is arc-preserving – the split (F 1

b , F
2
b ) of Fb is

not arc-preserving due to the leftmost arc of Pb.
A parse tree of a sequence (S, P ) is a binary tree where each node is an arc-

complete fragment of (S, P ) such that (a) the root is ([1, |S|]), (b) each inner
node is a fragment F and has two children F1 and F2, such that (F1, F2) is an
arc-preserving split of F , (c) each leaf is an atomic fragment. Fig. 2b shows two
ways to visualize a parse tree.

A parse tree represents one fixed recursive decomposition of a sequence. The
basic idea of our alignment algorithm scheme is to handle the sequences asym-
metrically. The algorithm recursion follows a single fixed parse tree for the first
sequence. At each split of the parse tree, it considers all compatible splits of
the second sequence. In contrast to the splits of the parse tree, these compatible
splits don’t have to be arc-preserving. Formally, two splits are compatible, if
they have the same split type which is defined as follows.

The basic type of a split (F 1, F 2) of a fragment F is defined by the following
construction. The interval [min(F̂ ),max(F̂ )] decomposes into the intervals of F 1,
the intervals of F 2 and gaps of F . If we order these from left to right and replace
the intervals of F 1 by 1, the ones of F 2 by 2 and the remaining ones by G (for
gap), we obtain a string T over {1, 2, G} that we call the basic type of the split.
Every split has exactly one basic type.

The type can be further refined by annotating constraints. In particular, we
introduce the size constraint that restricts an interval to have at most size one
in each instance of the type. It is indicated by marking the respective symbols
1 or 2 in the type with ′. Size constraints will be used to describe the common
case of splits that split off an atomic fragment. A type containing constraints is
called a constrained type. Note that each size constraint reduces the number of
splits of this type by one order of magnitude, because it reduces the degrees of
freedom by one.

If (F 1, F 2) is of type T , we call it a T -split. As an example, in Fig. 2a the
splits of Fa and Fb are of basic type 12G21 and of constrained type 12′G2′1.

The complexity of the alignment algorithm depends on the number of children
and parent instances of the considered split types. On the number of parents,
because for a given fragment in one sequence, we consider all fragments in the
other sequence having the same type. On the number of children, because it de-
termines the number of ways an aligned fragment can be split in sub-alignments.
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These numbers depend on the length m of the second sequence and are defined
as the number of children and the number of parents, respectively:

#m
C (T ) = |{ (F 1, F 2) | (F 1, F 2) is a T-split of some F and F̂ ⊆ [1,m] }|

#m
P (T ) = |{F | ∃(F 1, F 2) that is a T-split of F and F̂ ⊆ [1,m] }|

Lemma 1. For some sequence with length m and a split type T , let the degree of
the parent and the two children be kp, k1 and k2, respectively. Furthermore, let c
denote the degrees of freedom that are reduced by the constraints of T and c′ ≤ c
denote the corresponding reduction for the parent instances. Then #m

C (T ) ∈
O(mkp+k1+k2−c) and #m

P (T ) ∈ O(m2kp−c′
).

Due to space limitations, the proofs of all lemmata are available only online at
http://www.bioinf.uni-freiburg.de/Supplements/pkalign-recomb09.

4 The Alignment Algorithm Scheme

4.1 The Variant for Basic Types

The algorithm takes two arc-annotated sequences (Sa, Pa), (Sb, Pb) and a parse
tree for (Sa, Pa) as input4. For each fragment in the parse tree, the algorithm
recursively computes alignments to all fragments of (Sb, Pb) that have the same
basic type. In order to present the precise recursions, we need the following
formal notion for alignments of fragments.

The restriction of an alignment A to fragments Fa, Fb is defined asA|Fa×Fb
:=

{ (i, j) ∈ A | i ∈ F̂a ∪ {−}, j ∈ F̂b ∪ {−} }. A aligns two fragments Fa and Fb of
the same degree k, short alignA(Fa, Fb), if and only if for all (a1, a2) ∈ A and
for all i ∈ 1 . . . k it holds that a1 = − or a2 = − or a1 ∈ Fa[i] ⇔ a2 ∈ Fb[i].
Note that for a given alignment A, a fragment of one sequence can be aligned
to several fragments of the other; consider e.g. Fig. 2a, where A aligns F 1

a to
F 1

b = ([3, 5], [11, 12]) and also to ([3, 4][11, 12]).
The cost of A can be computed recursively as cost(A) with

cost({(i,−)} ]A′) = gapa(i) + cost(A′)
cost({(−, j)} ]A′) = gapb(j) + cost(A′)

cost({(l1, l2), (r1, r2)} ]A′) = (χ(l1, l2) + χ(r1, r2))
wam

2
+ cost(A′)

if (l1, r1) ∈ Pa, (l2, r2) ∈ Pb

cost({(i, j)} ]A′) = basematch(i, j) + cost(A′)
if third case is not applicable.

This computation relies only on the property of the scoring scheme that all costs
except for matching an arc are local to a single base. If A aligns two fragments
4 Such a parse tree can be constructed using standard parsing techniques. Further-

more, the structure prediction algorithms discussed later implicitly construct parse
trees that can also be reused for this purpose.
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Fa and Fb, the cost is computed analogously as CA(Fa, Fb) := cost(A|Fa×Fb
).

The optimal cost to align two fragments is defined as

C
(
Fa, Fb

)
:= min

A with alignA(Fa,Fb)
{CA(Fa, Fb)} .

The optimal cost to align the entire sequences is C
(
Fa, Fb

)
for Fa = ([1, |Sa|])

and Fb = ([1, |Sb|]). It can be computed by recursively applying the next lemma,
where F 1

a and F 2
a are chosen according to the parse tree.

Lemma 2 (Split lemma). Let Fa and Fb be fragments of (Sa, Pa) and (Sb, Pb),
respectively. Let (F 1

a , F
2
a ) be an arc-preserving split of Fa of basic type T . Then

C
(
Fa, Fb

)
= min

T -split (F 1
b ,F 2

b ) of Fb

{
C

(
F 1

a , F
1
b

)
+ C

(
F 2

a , F
2
b

)}
(1)

Note that if the split of Fb is not arc-preserving, the respective arcs are broken
or removed, since there is no arc of Fa that they can be matched to. The cost
for beaking or removing the two ends of the arcs is contained in C

(
F 1

a , F
1
b

)
and C

(
F 2

a , F
2
b

)
, respectively. The evaluation of the recursion is done efficiently

by dynamic programming, i.e. all intermediate values C
(
Fa, Fb

)
are tabulated,

such that each instance is computed only once. The recursive case, shown in
Fig. 3a, is directly given by Eq. (1). At the leafs of the parse tree, the base cases,
shown in Fig. 3b, are applied. The actual alignment can be constructed using
the usual back-trace techniques.

a) Recursive case:

C
`
Fa, Fb

´
= min

T -split (F1
b

,F2
b
) of Fb

˘
C

`
F 1

a , F 1
b

´
+ C

`
F 2

a , F 2
b

´¯
,

where the parse tree splits Fa into (F 1
a , F 2

a ) by a split of basic type T

b) Base cases:

C
`
〈i〉, [l, r]

´
= min

8>>><>>>:
C

`
〈i〉, [l + 1, r]

´
+ gap2(l) if l ≤ r

C
`
〈i〉, [l, r − 1]

´
+ gap2(r) if l ≤ r

basematch(i, l) if l = r

gap1(i) if l > r

C
`
Fa =(〈pL〉, 〈pR〉), ([l1, r1], [l2, r2])

´
=

min

8>>>>>>>><>>>>>>>>:

C
`
〈pL〉, [l1, r1]

´
+ C

`
〈pR〉, [l2, r2]

´
C

`
Fa, ([l1 + 1, r1], [l2, r2])

´
+ gap2(l1) if l1 ≤ r1

C
`
Fa, ([l1, r1 − 1], [l2, r2])

´
+ gap2(r1) if l1 ≤ r1

C
`
Fa, ([l1, r1], [l2 + 1, r2])

´
+ gap2(l2) if l2 ≤ r2

C
`
Fa, ([l1, r1], [l2, r2 − 1])

´
+ gap2(r2) if l2 ≤ r2

(χ(pL, l1) + χ(pR, l2))
wam

2
if (l1, l2) = (r1, r2) ∈ Pb

Fig. 3. a) Recursive case for basic split type and b) base cases of the algorithm.
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Complexity Let n and m be the length of the two sequences, respectively. First
note that the parse tree has only O(n) nodes, since each split introduces at least
one new boundary, of which there exist only O(n) many. Let Tp and Tc be types
of splits in the parse tree, where #m

P (Tp) and #m
C (Tc) are maximal among the

occurring split types, respectively. For a node Fa with split Tp the algorithm
materializes the costs C

(
Fa, Fb

)
for #m

P (Tp) fragments Fb. Assuming the worst
case for each node, this results in a space complexity of O(n · #m

P (Tp)). The
time complexity is dominated by the computation at Tc-splits. There, according
to Lem. 2, the algorithm minimizes over #m

C (Tc) terms; each is computed in
O(1). This results in a worst case time complexity of O(n · #m

C (Tc)). #m
P (Tp)

and #m
C (Tc) are asymptotically bounded due to Lemma 1. For the case of non-

constrained, basic types we instantiate to O(nm2k) space and O(nm3k) time
complexity, where k is the maximal degree among the splits in the parse tree.

4.2 An Optimized Variant for Constrained Types

By the preceding complexity analysis, the time and space complexity directly
depend on #m

P (T ) and #m
C (T ) for the basic types. Lemma 1 shows how con-

straints in types reduce these numbers, and thus bear the potential to reduce
the complexity. However, we cannot simply use constraint types instead of ba-
sic types in the recursion of Fig. 3a. Let’s assume that F 1

a is atomic and T is
constrained correspondingly; furthermore, Tu denotes the unconstrained, basic
split type corresponding to T . In the optimal alignment, F 1

a is not necessarily
aligned to an atomic F 1

b . However, we know (by Lem. 2) that for any Tu-split
(F 1

b , F
2
b ) of Fb, at most one of the bases of F 1

b per interval of F 1
b is matched to

F 1
a and the others are aligned to gaps. Using this observation, we can still split

off a fragment F 1
b of Fb satisfying the constraint type T after ‘eating away’ the

gaped bases, which we do by introducing ‘shrink’-cases.
The following lemma directly leads to the optimized recursion equation as

given in Fig. 4.

Lemma 3 (Split lemma for constrained types). Let Fa and Fb be fragments
of (Sa, Pa) and (Sb, Pb), respectively. Let (F 1

a , F
2
a ) be an arc-preserving T -split

of Fa, where T contains size constraints for at most one of the fragments and
at least one boundary of each interval of the constrained fragment coincides with
a boundary of Fa.5 Let A be an optimal alignment of Fa and Fb. Then there is
a T -split (F 1

b , F
2
b ) of Fb such that either the constrained fragment of the split is

matched to one or two gaps by A and the remaining fragment is aligned to Fa

or there is a T -split (F 1
b , F

2
b ) such that A aligns F 1

a to F 1
b and F 2

a to F 2
b .

In extension of Lem. 2, Lem. 3 allows size constraints in the split type T . Ac-
cording to the lemma, the recursion of the optimized algorithm shown in Fig. 4,
introduces additional shrink cases. These cover the minimization cases where
one cannot split as in Lem. 2 by the (now possibly constrained) split type T .
5 This condition can be generalized to constraints on more than one fragment as long

as no two adjacent symbols are constrained. This is mostly relevant for n-ary splits.
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C
`
Fa, Fb

´
= min

T -split (F1
b

,F2
b
) of Fb

min

8><>:
C

`
F 1

a , F 1
b

´
+ C

`
F 2

a , F 2
b

´
C

`
Fa, F 2

b

´
+ C

`
−, F 1

b

´
if T contains some 1’

C
`
Fa, F 1

b

´
+ C

`
−, F 2

b

´
if T contains some 2’

Fig. 4. Optimized recursive case. This applies to the general case of a constrained type
T satisfying the conditions in Lem. 3. C

`
−, F i

b

´
denotes the cost of deleting F i

b .

Table 1. Pseudoknot classes and complexity of their prediction and alignment.

class R&E A&U L&P D&P R&G

prediction
time O(m6) O(m4) O(m5) O(m5) O(m4)
space O(m4) O(m3) O(m3) O(m4) O(m2)

alignment time O(n5m5) - - - -
(literature) space O(n4m4) - - - -

alignment time O(nm6) O(nm4) O(nm5) O(nm5) O(nm4)
(new scheme) space O(nm4) O(nm3) O(nm3) O(nm4) O(nm2)

5 Instances of the Algorithm Scheme

In this section, we focus on the behaviour of our general algorithm scheme for
different restricted classes of pseudoknots. We analyse the classes of pseudoknots
produced by different structure prediction algorithms [5, 14–19] and show that
the alignment can benefit of the structural restrictions in exactly the same way
as the prediction. In particular we show for each of the prediction algorithms how
to construct a corresponding alignment algorithm with only a linear increase in
complexity (see Table 1). Following Condon et al. [29], we name the classes of
structures according to the authors of the respective prediction algorithms: R&E
(Rivas and Eddy [14]), A&U (Akutsu [16] and Uemura [15]), L&P (Lyngsø and
Pedersen [5]), D&P (Dirks and Pierce [18] and R&G (Reeder and Giegerich [19]).
Also note that on nested structures the algorithm behaves like an algorithm by
Jiang et al. [22].

R&E structures The prediction algorithm by Rivas and Eddy [14] requires O(n6)
time and O(n4) space. It is restricted to structures for which parse trees exist
where each fragment has a degree of at most 2. Our algorithm aligns structures
from this class in O(nm6) time and O(nm4) space. Compared to that, the best
alignment algorithm for this class known so far (by Evans [20]) requires O(n5m5)
time and O(n4m4) space.6

A&U structures The algorithms of Akutsu [16], Uemura [15] and Deogun et
al. [17] predict structures with simple pseudoknots in O(n4) time and O(n3)
space. For the structures of this class, there always exist parse trees, where the
splits are limited to the constrained types

12 121 12′G2′1 1G2′12′ 12′G1 1G2′1 1G12′ 12′G2′.

6 Evan’s algorithm computes the longest arc-preserving common subsequence, which
can be considered as a special case of our edit distance measure.
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By Lem. 1, there exist only O(m4) splits (F 1
b , F

2
b ) of these types (i.e. #m

C (T ) ∈
O(m4) for all but the first and last of the above types). Hence our algorithm
runs in O(nm4) time on these structures. Due to Lem. 1, the space complexity is
at most O(nm4) too; this can be improved to O(nm3), because for the allowed
splits all unconstrained children fragments of degree 2, which dominate the space
complexity, have the same leftmost boundary as their parent. In the computation
of the costs C

(
Fa, Fb

)
, we can thus group all such fragments Fb with the same

leftmost boundary. For each of these groups only O(m3) fragments Fb exist and
the space is reused for each group. A rigorous argument for the improvement is
given by the next lemma, which is proved by simultaneous induction over the
parse tree.

Lemma 4 (Improved space complexity for A&U). Let Fa be a node of
a parse tree for an A&U structure, where Fa has degree k and n′ descendants.
Then, O(n′m3) space suffices to compute 1.) for k = 1 or atomic Fa of degree 2,
all O(m2) costs C

(
Fa, Fb

)
and 2.) for k = 2, all O(m3) costs C

(
Fa, Fb

)
, where

all Fb share a fix leftmost boundary.

This space improvement follows a general principle applicable in dynamic pro-
gramming that makes use of invariants on the most complex items and groups
their computation. This invariant is conveniently reflected in our representation
by split types.

L&P structures Lyngsø and Pedersen [5] predict certain pseudoknots in O(n5)
time and O(n3) space. Their class of pseudoknots is restricted such that there
must exist a parse, where the split of the root has basic type 12121 and such
that the two fragments of this split are both nested. This implies that they can
be further decomposed with splits of constrained types

12’G2’1G1 1G21G1 12G1G1 2G1G12 (for fragments with degree 3)
2’1G12’ 21G1 1G12 1G2 (for fragments with degree 2)
2’12’ 12 (for fragments with degree 1)

The degree 3 splits decompose only fragments that start with the first sequence
position and end with the last sequence position; it suffices to consider only
splits of Fb that share this property. This means, we see here a further example
of a type constraint. This maximality constraint reduces the degrees of freedom
for this type by 2. Indicating the constraints, we refine the first four types to
↓12′G2′1G1↓ ↓1G21G1↓ ↓12G1G1↓ ↓2G1G12↓ .

To see that no other splits for fragments of degree 3 are required, note that
with the first three split types, the fragment can be decomposed until its first
two intervals are no more connected by arcs and once this is the case, a split of
the fourth type can be applied.7

7 Lyngsø and Pedersen give another intuition based on the idea of considering cyclic
sequences. This is reflected by the split types in the way that each split for fragments
of degree 3 is analogous to the split for fragments of degree 2 below it, if the part
before the first gap is cyclically moved to the end of the type
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The complexity analysis with Lem. 1 leads for each of these split types to
at most O(m5) instances, which implies O(nm5) time complexity. For example,
for split type T =↓12′G2′1G1↓ , we have kp = k1 = 3, k2 = 2, c = 4 and hence
#m

C (T ) ∈ O(m3+3+2−4) = O(m4) and for T ′ =↓ 2G1G12 ↓ we have kp = 3,
k1 = k2 = 2, c = 2 and hence #m

C (T ) ∈ O(m3+2+2−2) = O(m5).
The space complexity can be reduced from O(nm4) to O(nm3) by the same

general principle that we observed for the A&U structures. That is, first we
can distinguish simple fragments that have degree 1 or are constrained and
complex fragments that are unconstrained and have degree 2. Then, we identify
an invariant for the occurring complex fragments and use it for space reduction
by grouping. In the L&P split types, the second fragment is always simple. Hence,
for each split there are only O(m2) values to store for the second fragments.

The first fragment of each split type has either degree less than 2 or it contains
the pattern 1G1, where G is the last gap in the split type. This implies that the
computation of each fragment of degree at least 2, recursively relies only on
fragments that have the size of the last gap in common. The costs for the simple
fragments can thus always be computed by grouping the complex fragments by
this gap size and reusing the memory.

D&P structures Dirks and Pierce [18] developed an algorithm to compute the
partition function for RNA pseudoknots, which can also be modified to predict
the MFE structure. The algorithm takes O(n5) time and O(n4) space. The cor-
responding parse trees of the predicted structures are limited to fragments of
degree at most two and the splits are of types

12 1212 21G1 12G1 1G21 1G12 1′2G21′.

Again, according to Lem. 1 there exist at most O(m5) splits (F 1
b , F

2
b ) for each

of these types and hence our alignment algorithm requires O(nm5) time and
O(nm4) space on these structures.

R&G structures The efficiency of the Reeder and Giegerich [19] structure predic-
tion algorithm (O(n4) time, O(n2) space) is due to the restriction to canonical
pseudoknots. A stem of base pairs is called canonical if it cannot be extended by
another valid base pair. The canonical stem containing a given base pair is thus
uniquely determined. In R&G structures, pseudoknots are formed only by two
crossing canonical stems. Reeder and Giegerich structures can be decomposed
by split types

2′1 12′ 12 1′21′ E1 = 1c23c41c53c E2 = 12′G2′1,

where we introduce another type constraint in E1 (denoted by ·c) claiming that
fragments 1 and 3 each form a canonical stem.8

The type E1 represents a split into 5 independent parts, where fragment 1
and 3 form the canonical pseudoknot. To simplify the presentation, so far we
limited splits to contain only two fragments, but the concept generalizes to more
8 Note that our split types (with the exception of E2) correspond to the grammar

rules given in [19]: S → . | . S | S. | SS | (S) | [kS{lS]kS}l.
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Corona_FSE (42)
Parecho_CRE (83)

Entero_OriR (74)
Corona_pk3 (42)

Antizyme_FSE (70)
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Fig. 5. Comparison MARNA vs. PKalign vs. lara on 8 pseudoknot families. The numbers
in brackets give the sequence identity.

complex splits without any difficulty. E2 is used to further decompose the stems
corresponding to the first and third fragment of E1.

All types have at mostO(m4) instances, resulting inO(nm4) time complexity.
The type E1 deserves special attention, because its unconstrained variant has
O(m8) many instances. However due to the constraints this is reduced to O(m2),
since a split of constrained type E1 is already determined by fixing start and
end position of the parent fragment. Because the RNA structures are fix, the
start position of the fragment is the start position of a uniquely determined base
pair in stem 1 and this uniquely determines the first stem. The second stem is
determined analogously by the end position.

In the same way as the structure prediction algorithm finds the best canonical
structure for a sequence, the alignment algorithm finds the best canonical align-
ment. Here, canonical means that a stem of a pseudoknot can only be aligned
to another maximally extended stem.

The space complexity is reduced as follows. For all split types except E1 and
E2 applies again that they only contain degree 1 or atomic fragments. In E1,
from all fragments of degree 2 only the O(n2) canonical instances are considered.
In E2, the second fragment is size constrained and the first fragment shares its
first and last boundary with the splitted fragment. Hence, the O(m4) instances
of the first fragment can be grouped into groups of O(m2) elements that have a
common first and last boundary. This reduces the space complexity to O(nm2).

6 Results

6.1 Accuracy of Pseudoknot Alignment

We use a benchmark set of 8 RNA families of Rfam [30] that are annotated with
pseudoknots. Albeit in total Rfam contains 16 such families, we restricted the test
set to RNAs with length of at most 125. From each family, we selected the pair
of members with the lowest sequence identity, in order to maximally challenge
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a)
[[-[[[[[....((.....-)).-((((((((((..]]]]]-]]....))))))))))

X90572.1 6 cu-uguacagaaugguaag-cac-guguaguaggagguaca-agcaacccuauugcau 59

[[-[[[[[....((.....-)).-((((((((((..]]]]]-]]....))))))))))

X66718.1 6 cu-uguacagaaugguaag-cac-guguaaugggagguaca-agcaaccccauugcau 59

[[[[[[-[.(((...-..)))...((((((((((.-]-]]]]]]-...))))))))))

AF058944.1 6 cucuau-cagauugg-augucuugcugcuauaaua-g-auagag-aagguuauagcag 58

cons. str. [[-[[[-[................((((((((((.-]-]]]-]]....))))))))))

b)
[[[[[[[..((((]]]]]]].(((((((...)))))))......))))--

ci_658349 52 ucucagggugaaaucugagacggaaacgauucguuuccuauauauuuc-- 99

[[[[[[.(((((((]]]]]].(((((((...))))))).....)))))))

cs_658349 55 ucucaguuuaauaccugggacggaaacgauucguuuccucuauguauuaa 104

[[[[[[[.(((((]]]]]]].((-(((.....)))-)).....-)))))-

od_658349 53 ucucagugugacagcugagaccg-uccuacuggga-cgucuau-uguca- 98

cons. str. [[[[[[[..((((]]]]]]].((-(((.....)))-))......))))..

Fig. 6. a) Correctly predicted pseudoknot in the Rfam family Corona pk3 and its align-
ment. b) Predicted pseudoknot of potential ncRNA.

the algortihms. We used the consensus structure (projected to the respective
sequence) as structure input, since Rfam does not contain a separate structure
for each sequence.

We compared our tool PKalign to MARNA [31] and lara [13]. While lara rep-
resents the only other pseudoknot alignment method available so far, the com-
parison to MARNA allows us to evaluate the benefit of taking pseudoknots into
account: MARNA is based on the exact same scoring scheme as PKalign (and
we used the same parameter values), but since it is unable to handle pseudo-
knots, we had to resolve the crossing by removing some base pairs. The accuracy
to reproduce the Rfam alignment is measured by the COMPALIGN score. The
results are shown in Fig. 5.

The comparison to MARNA shows that taking the pseudoknots into account
in general improves the accuracy. The accuracy of PKalign and lara is comparable,
the minor differences between their results seem to be caused by differences in
the scoring scheme, different choices if several optimal alignments exist and by
the fact that PKalign does not yet support affine gap costs.

6.2 Detecting Conserved Pseudoknots

The reliability of pseudoknot de-novo prediction is still very low. Common pre-
diction programs, tend to predict pseudoknots even in pseudoknot free RNA and
do not allow to distinguish safely between true pseudoknots and false positives.
This behavior could already be observed for pknotsRG [19] in the following small
study.

Therefore, it is desirable to increase the specificity of predictions by requiring
confirmation due to homologous RNAs. This approach provides much stronger
evidence by observing compensatory mutations in conserved crossing base pairs
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that are predicted in several homologous RNAs. Such a procedure is useful for re-
liably annotating pseudoknots in unknown RNA, e.g. from genome wide screens
for non-coding RNA.

As a preliminary approach towards comparative pseudoknot identification,
we suggest a pipeline for detecting potential pseudoknots that starts with a set
of homologous RNAs, and performs the following steps: 1.) for each sequence
predict locally optimal and suboptimal pseudoknots of the R&G class (using
pknotsRG [19] in local mode). 2.) determine candidate pseudoknots that occur
at similar positions in k of our sequences (here, k = 3). 3.) using our approach,
align the k-tuples of pseudoknots pairwise all-against-all; this information is used
to construct a multiple alignment by T-Coffee [32]. 4.) analyze the alignment for
conserved, crossing compensatory mutations.

First, we tested our approach on Rfam data using the same set of 8 families
as above. For each family, we randomly selected six sequences for our analysis.
We found pseudoknot candidates with crossing compensatory mutations in all
of these families. For four families, we could reproduce triplet alignments of the
known pseudoknots that showed crossing compensatory mutations for three of
the families; an example is given in Fig. 6a. The figure depicts an alignment of the
pseudoknotted sub-sequences with start and end position. For each sub-sequence
we show the structure predicted by pknotsRG. The last line gives the consensus
structure and highlights base pairs of the pseudoknot which are confirmed by
crossing compensatory mutations.

The procedure was then applied to the 50 unannotated ncRNA candidates
predicted by an RNAz screen of Ciona intestinalis [24]. In this screen, the C. in-
testinalis genome was compared to C. savignyi and O. dioica, thus per candidate
we get three sequences from the three organisms that are analyzed by the above
pipeline. In total, we predicted pseudoknot candidates for only 14 of the 50
RNAs; in contrast, pknotsRG predicts pseudoknots in all of the ncRNAs. Fig. 6b
shows one prediction by this experiment.

7 Conclusions

We presented a general algorithm scheme for pairwise alignment of pseudoknots.
This scheme yields an efficient alignment algorithm for arbitrary classes of pseu-
doknots that can be predicted efficiently by dynamic programming. Moreover,
we showed that such an alignment algorithm benefits from restrictions to certain
structure classes in the same way as structure prediction algorithms do. This the-
oretically interesting result actually yields a series of new alignment algorithms
for specific pseudoknot classes; for earlier pseudoknot alignment algorithms, it
improves time and space complexity.

Our short study for increasing the reliability of pseudoknot prediction by
accounting for comparative information is probably the first biologically mean-
ingful application of pseudoknot alignment to biological data and demonstrates
the new possibilities due to our method. It points directly to the appealing
idea of automatic pseudoknot annotation in unknown, potential ncRNA from
genome-wide screens.
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