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Proof (of Lem. 1) Each instance of a fragment of degree k is uniquely determined by its 2k
boundaries. Each boundary has one of the values 1 . . .m. If the other boundaries are fixed, each
constrained boundary can take at most two different values. Hence #m

P (T ) ∈ O(m2kp−c′2c′),
which equals O(m2kp−c′) since c′ is considered as constant.

Each split is determined by the 2(kp +k1+k2) boundaries of the parent and the two children.
Every two of them depend on each other: each parent boundary must coincide with some child
boundary and from the remaining boundaries of the children, always two are directly adjacent.
Hence, kp +k1 +k2 values can be chosen to determine each instance. Due to the same argument
concerning the constraints as before, it holds #m

C (T ) ∈ O(mkp+k1+k2−c2c) = O(mkp+k1+k2−c).

Proof (of Lem. 2)
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Line (2) = (3) holds since for aligned fragments Fa, Fb and a split (F 1
a , F 2

a ) of Fa, always a
split (F 1

b , F 2
b ) of Fb can be constructed such that F 1

a is aligned to F 1
b and F 2

a is aligned to F 2
b .

Line (3) = (4) relies on the fact that the split F 1
a , F 2

a is arc-preserving, which allows to split
up the computation of C

(
Fa, Fb

)
into two independent parts. Line (6) is equivalent to line (5)

because optimal alignments for these two parts always correspond to an optimal alignment of
the fragments covering them both.

Proof (of Lem. 3) W.l.o.g. assume that the split type T contains a constraint on the first
fragment. Let A be the optimal alignment of Fa and Fb and let Tb be the basetype obtained
by removing all constraints from T . Assume that there is no T-split (F 1

b , F 2
b ) of Fb such that A
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aligns F 1
a to F 1

b and F 2
a to F 2

b . Lem. 2 implies that there exists at least one Tb split (F 1
b
′
, F 2

b
′)

with this property. Since (F 1
b
′
, F 2

b
′) is not of type T , there must exist some interval F 1

a [i] = 〈x〉
such that (a) the interval has a size constraint in T (b) x is a boundary of the parent Fa (c) A
aligns x to some y that is not the boundary y′ of Fb corresponding to the boundary x of Fa. The
last property ensures that the intereval F 1

b
′[i] has size greater than one (since it must contain

both y and y′) and hence the size constraint of T is not satisfiable.
Since A aligns the interval 〈x〉 to the interval containing y and y′ and x is aligned to y, the

boundary y′ is aligned to a gap. Hence, there is a T-split that separates exactly y′ from Fb, A
aligns Fa with the remaining fragment of Fb.

Proof (of Lem. 4) We proof the two claims by simultaneous induction over the parse tree.
That is, when we proof one of the claims for a single node, we can assume that both claims hold
for the children nodes by induction hypothesis.

Clearly, the claims hold for atomic Fa (base case of induction). Otherwise Fa is split by a
split of A&U split type into fragments F 1

a and F 2
a with n1 and n2 descendants, respectively.

For the case that Fa has degree 1, only split type 121 needs special attention. In this case, for
computing all C

(
Fa, Fb

)
we group the fragments Fb by their leftmost boundary. For all fragments

in one group we need only O(n′m3) space, because we only recurse to costs C
(
F 1

a , F 1
b

)
with a

fix leftmost boundary of F 1
b ; by claim 2, all these costs are computed in O(n1m

3) space, which
is reused for each group. For the second fragment, we only need O(n2m

3) by claim 1. Finally,
we store the costs in O(m2). Clearly, O(n1m

3 + n2m
3 + m2) = O(n′m3).

For the case that Fa has degree 2, we only compute costs for Fb with fix leftmost boundary.
For this aim, we only need costs C

(
F 1

a , F 1
b

)
for F 1

b with the same fix boundary, which are
computed in O(n1m

3) due to claim 1.
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