
Lifting Prediction to Alignment of RNA Pseudoknots

Mathias Möhl∗

Bioinformatics, Institute of Computer Science,
Albert-Ludwigs-Universität, Freiburg, Germany,

mmohl@informatik.uni-freiburg.de

Sebastian Will?

Bioinformatics, Institute of Computer Science,
Albert-Ludwigs-Universität, Freiburg, Germany

Computation and Biology, CSAIL of MIT,
Cambridge, MA, USA,

swill@csail.mit.edu

Rolf Backofen†

Bioinformatics, Institute of Computer Science,
Albert-Ludwigs-Universität, Freiburg, Germany,

backofen@informatik.uni-freiburg.de

Abstract

Prediction and alignment of RNA pseudoknot structures are NP-hard. Nev-
ertheless, several efficient prediction algorithms by dynamic programming have
been proposed for restricted classes of pseudoknots. We present a general scheme
that yields an efficient alignment algorithm for arbitrary such classes. Moreover,
we show that such an alignment algorithm benefits from the class restriction
in the same way as the corresponding structure prediction algorithm does. We
look at six of these classes in greater detail. The time and space complexity of
the alignment algorithm is increased by only a linear factor over the respective
prediction algorithm. For five of the classes, no efficient alignment algorithms
were known. For the sixth, most general class, we improve the previously best
complexity of O(n5m5) time to O(nm6), where n and m denote sequence lengths.
Finally, we apply our fastest algorithm with O(nm4) time and O(nm2) space to
comparative de-novo pseudoknot prediction.

Keywords: alignment, dynamic programming, RNA, structures

∗Joint first authors
†Corresponding author

1

1 Introduction

In the last years, it has become clear that RNA molecules play very important roles in
a cell, among them regulatory and catalytic ones (Couzin, 2002), much beyond acting
only as a messenger. A recent computational screen for structural RNA (Washietl
et al., 2005a) has revealed that there are more than 30.000 putative non-coding RNAs
(ncRNAs). For the functional annotation, classification and further investigation of
these RNAs, it is essential to infer the secondary structure of these ncRNA, and to
use this structure information for comparative analysis.

Nearly all major approaches for the computational analysis of ncRNAs have been
restricted to nested secondary structure, neglecting pseudoknots. However, pseudo-
knots are far from being a rare event. As stated in Staple and Butcher (2005), the
pseudoknot motif is “among the most prevalent RNA structures”. Using exactly clus-
tered stochastic simulations, Xayaphoummine et al. (2003) have estimated that up
to 30% of the base pairs in G+C-rich sequences are forming pseudoknots. For E.coli,
it was estimated that 15.5%± 6.5% of the base pairs are included in pseudoknots.

There are three major problems concerning the analysis of pseudoknotted RNAs,
which depend on each other. First, there are only few known pseudoknots. Second,
the prediction of pseudoknots is computationally very expensive. The full problem is
known to be NP-hard (Lyngsø and Pedersen, 2000), efficient algorithms exist only for
restricted classes of pseudoknots. And third, the reliability of the existing prediction
programs is not very good. The main reason for the low quality of the prediction
programs is that there are too few known structures where the programs can be
trained on, an approach that was successfully applied to nested RNA structures (see
e.g. CONTRAfold (Do et al., 2006)). Vice versa, the low prediction quality and the
high computational costs hinder the research on pseudoknot structures.

The most promising way out of this dilemma is to use comparative approaches for
predicting pseudoknotted secondary structures. Since the structure is more conserved
than the sequence of RNA, this requires an alignment of both sequence and structure
(called sequence-structure alignment in the following). This has been a very success-
ful approach for nested secondary structures, where a complete variety of practical
tools exists, e.g. LocARNA (Will et al., 2007), MARNA (Siebert and Backofen, 2005),
FOLDALIGN (Gorodkin et al., 1997; Havgaard et al., 2007), Dynalign (Mathews and
Turner, 2002; Harmanci et al., 2007). However, there are only few approaches for
sequence-structure alignment for pseudoknotted approaches, e.g. lara (Bauer et al.,
2007). The research on this topic is far behind the computational analysis of pseu-
doknot structure prediction, where several approaches in varying complexity for re-
stricted classes have been introduced (Lyngsø and Pedersen, 2000; Rivas and Eddy,
1999; Uemura et al., 1999; Akutsu, 2000; Deogun et al., 2004; Dirks and Pierce, 2003;
Reeder and Giegerich, 2004). All these algorithms use the properties of the restricted
class in a dynamic programming approach to efficiently solve the prediction problem.

In this paper, we consider the problem of sequence-structure alignment with

2

known pseudoknot structures. This is the necessary basis for comparative analy-
sis of pseudoknots. We introduce a general scheme that generates a pseudoknot
alignment algorithms for a restricted class of pseudoknots, given the corresponding
prediction approach. Our general scheme can be applied to pseudoknot classes for
which a dynamic programming approach exists. Basically, we use the decomposition
strategy of the structure prediction, and apply this strategy to solve the associated
alignment problem for known structures efficiently. The additional complexity of the
alignment algorithm compared to the corresponding prediction problem is only linear
in the length of the sequence, both in space and time, which is surprisingly small.
For comparison, in the case of the only known pseudoknot alignment methods for
a restricted class of pseudoknots, namely for the class handled by the algorithm of
Rivas and Eddy (1999) in O(n6), the corresponding alignment problem was solved
in Evans (2006) with a time complexity of O(n10) and space complexity of O(n8).
Compared to that, our approach requires only O(n7) time and O(n5) space on this
class, although it supports a more general scoring scheme. Furthermore, the run
time of the algorithms generated by our general scheme scales with the complexity
of the aligned structures. In particular, the worst case complexity applies only to the
actual pseudoknots, whereas simpler parts of the structures are aligned much faster.
A central technical insight of the work is how pseudoknot alignment can benefit from
a variety of structural restrictions in the same way as structure prediction does. We
discuss six classes of pseudoknot structures in detail, namely Lyngsø and Pedersen
(2000); Rivas and Eddy (1999); Uemura et al. (1999); Akutsu (2000); Deogun et al.
(2004); Dirks and Pierce (2003); Chen et al. (2009); Reeder and Giegerich (2004).
For five of these classes, no exact alignment algorithms existed up to now.

Then, we used the fastest of our introduced alignment approaches that handles
the structure class described by Reeder and Giegerich (2004). The resulting algorithm
has a time complexity of O(n5), compared to O(n4) for the prediction. We tested
this approach on known pseudoknot classes from the Rfam-databases (Griffiths-Jones
et al., 2005) and compared it with an implementation of the nested-nested sequence-
structure alignment method of Jiang et al. (2002) in the tool MARNA (Siebert and
Backofen, 2005). We found that using the known pseudoknot structures improves the
quality of alignments, especially for low pairwise sequence identity. Furthermore, we
set up a first prototype pipeline for combining alignment and prediction of pseudoknot
structures. Such a pipeline is the basis for automatic pseudoknot annotation of large
amounts of candidate ncRNA as predicted by ncRNA screens, e.g. provided by the
RNAz-tool of Washietl et al. (2005b), where the secondary structure is unknown.
We applied our prototype pipeline to a data set of 50 putative ncRNAs from a
current Ciona intestinalis screen (Missal et al., 2005). This revealed that using a
comparative approach increases the reliability of pseudoknot structure annotation.
Whereas the Reeder&Giegerich prediction method pknotsRG would find pseudoknots
in all of the 50 examples, only 14 of them show sufficiently many compensatory
base pair mutations after using alignment in addition to the pseudoknot structure

3

prediction. Such compensatory base pair mutations enlarges the reliability of the
prediction since they give a strong evidence for an evolutionary conservation of the
structure. Compensatory base pair mutations are commonly used as a verification
for real biologically relevant structures. This prototypical pipeline is only an initial
step and some work remains to be done to setup an integrated pipeline. However,
the prototype application shows that such an integrated pipeline is feasible. With
the work presented here, we have done the first but essential step to set up such an
approach.

Related work Evans proposed a fixed parameter tractable algorithm that com-
putes the longest arc preserving common subsequence of pseudoknots (Evans, 1999)
and an algorithm to compute the maximum common ordered substructure of two
RNA structures (Evans, 2006). As mentioned above, the latter guarantees polyno-
mial run time, but the polynomial is significantly larger than in our approach. In
our own previous work, we developed a fixed parameter tractable algorithm to align
arbitrary pseudoknots (Möhl et al., 2008). Despite addressing the same task, this
algorithm differs much from our current approach and the run time depends on other
properties of the input structures. Finally, there exists a heuristic approach based on
integer linear programming that is usually fast in practice, but does not guarantee
optimal solutions (Bauer et al., 2007).

Roadmap After giving basic concepts (Sec. 2), we present a general framework
for decomposing RNA structures that can be instantiated with the methods used
by various pseudoknot prediction algorithms (Sec. 3). Then we describe a general
method to construct a corresponding sequence structure alignment algorithm for each
of these instances (Sec. 4) and have a detailed look at the different instances (Sec. 5).
Finally, we present experimental results obtained with our implementation (Sec. 6)
and give some concluding remarks (Sec. 7).

2 Preliminaries

Sequences and fragments An arc-annotated sequence is a pair (S, P), where S
is a string over the set of bases {A,U,C,G} and P is a set of arcs (l, r) with 1 ≤ l <
r ≤ |S| representing bonds between bases, such that each base is adjacent to at most
one arc. We denote the i-th symbol of S by S[i]. For an arc p = (l, r), we denote its
left end l and right end r by pL and pR, respectively. An arc p ∈ P is crossing if there
is an arc p′ ∈ P such that pL < p′L < pR < p′R or p′L < pL < p′R < pR; then p and
p′ form a pseudoknot. An arc-annotated sequence is crossing if it contains crossing
arcs, otherwise it is nested.

An alignment A of two arc-annotated sequences (Sa, Pa) and (Sb, Pb) is a set
A1 ∪ A2, where A1 ⊆ [1..|Sa|] × [1..|Sb|] is a set of match edges such that for all

4

(i, j), (i′, j′) ∈ A1 holds 1.) i > i′ implies j > j′ and 2.) i = i′ if and only if j = j′

and A2 is the set of gap edges { (x,−) | x ∈ [1..|Sa|] ∧ @y.(x, y) ∈ A1 } ∪ { (−, y) |
y ∈ [1..|Sb|] ∧ @x.(x, y) ∈ A1 }. A base that is adjacent to a gap edge is called
aligned to a gap. Two bases Sa[i], Sb[j] are matched by A if (i, j) ∈ A and two arcs
pa ∈ Pa, pb ∈ Pb are matched if (pL

a , p
L
b) ∈ A and (pR

a , p
R
b) ∈ A. Each alignment

has an associated cost based on an edit distance with two classes of operations. The
operations where first introduced by Jiang et al. (2002) and are illustrated in Fig. 1.
Base operations (mismatch and insertion/deletion) work solely on positions that are
not incident to an arc. Base mismatch replaces a base with another base and has
associated cost wm. A base insertion/deletion removes or adds one base and costs
wd. The second class consists of operations that involve at least one position that
is incident to an arc. An arc mismatch replaces one or both of the bases incident
to an arc. It costs wam

2 if one base is replaced or wam if both are replaced. An arc
breaking removes one arc and leaves the incident bases unchanged. The associated
cost is wb. Arc removing deletes one arc and both incident bases and costs wr.
Finally, arc altering removes one of the two bases that are incident to an arc and
costs wa = wb

2 + wr
2 , cf. Jiang et al. (2002).

Define for two arc annotated sequences (Sa, Pa) and (Sb, Pb) and k ∈ {a, b}

χ(i, j) := if Sa[i] 6= Sb[j] then 1 else 0

ψk(i) := if ∃p ∈ Pk.p
L = i or pR = i then 1 else 0

gapk(i) := wd + ψk(i)(
wr

2
− wd)

basematch(i, j) := χ(i, j)wm + (ψ1(i) + ψ2(j))
wb

2
.

gapk(i) denotes the cost to align base Sk[i] to a gap, basematch(i, j) the cost to
align Sa[i] to Sb[j] under the assumption that their possibly adjacent arcs are not
matched.

[Figure 1 about here.]

3 Decomposing Sequences

In general, dynamic programming (DP) algorithms for RNA alignment, structure pre-
diction or similar tasks, rely on a recursive decomposition of the RNA sequence into
subsequences or combinations of subsequences, which we will call fragments in the
following. For example, the standard nested secondary structure prediction (Zuker
and Stiegler, 1981; Hofacker et al., 1994) decomposes a subsequence into two consec-
utive subsequences, whereas the algorithm of Rivas and Eddy (1999) for predicting a
restricted class of pseudoknots uses fragments that consist of two unconnected subse-
quences. Thus, the type of decompositions considered by each algorithm has major
impact on both complexity and the class of structures handled by the algorithm.

5

We will develop a general view on decomposition strategies for RNA structures
with pseudoknots. As a first insight, we point out that the central difference between
the various DP based structure prediction algorithms is their choice of one such strat-
egy. This choice determines the characteristic trade-off between the class of handled
pseudoknots and the resulting complexity of the algorithm. As our main contribu-
tion, we will introduce a general framework for sequence-structure alignment. This
framework can be instantiated with arbitrary decomposition strategies. Instantiated
with a decomposition strategy of any structure prediction method, the alignment al-
gorithm has only linear time and space overhead compared to the structure prediction
algorithm. The scheme provides the first sequence-structure alignment methods for
many pseudoknot classes and covers the classes of all known DP based pseudoknot
prediction algorithms.

A fragment F of an arc annotated sequence (S, P) is a k-tuple of intervals
([l1, r1], . . . , [lk, rk]) with 1 ≤ l1 ≤ r1 + 1 ≤ · · · ≤ lk ≤ rk + 1 ≤ |S|. Note that
this definition allows empty intervals [i+ 1, i]. The ranges between the intervals, i.e
[r1 + 1, l2 − 1], . . . , [rk−1 + 1, lk − 1], are called gaps of F . We call k the degree of F
and l1, r1, . . . , lk, rk its boundaries. The set of positions covered by F (denoted with
F̂), is defined as the union of the intervals contained in F . The i-th interval [li, ri] of
F is denoted with F [i] and with F [i]L and F [i]R we denote its left and right boundary
li and ri, respectively. For better readability, we abbreviate intervals of the form [i, i]
as 〈i〉.

F is called arc-complete, iff l ∈ F̂ ⇔ r ∈ F̂ for each (l, r) ∈ P . F is called atomic
if F covers either exactly the two ends of an arc of P or a single position not adjacent
to an arc. As an example, in Fig 2, the boxed fragments have all a degree of 2, F 2

a

and F 2
b are atomic and Fb as well as F 1

b are not arc-complete.
Let F , F 1 and F 2 be fragments of the same sequence. The pair (F 1, F 2) is a split

of F iff F̂ = F̂ 1] F̂ 2.1 We call F 1 and F 2 the children and F the parent of the split.
The split is called arc-preserving, if F , F 1 and F 2 are arc complete. In Fig. 2, the
split (F 1

a , F
2
a) of Fa is arc-preserving – the split (F 1

b , F
2
b) of Fb is not arc-preserving

due to the leftmost arc of Pb.
A parse tree of a sequence (S, P) is a binary tree where each node is an arc-

complete fragment of (S, P) such that (a) the root is ([1, |S|]), (b) each inner node is
a fragment F and has two children F1 and F2, such that (F1, F2) is an arc-preserving
split of F , (c) each leaf is an atomic fragment. Fig. 3 shows two ways to visualize a
parse tree.

[Figure 2 about here.]

[Figure 3 about here.]
1For simplicity, we introduce only binary splits. However, the introduced concepts are raised to

n-ary splits straightforwardly.

6

A parse tree represents one fixed recursive decomposition of a sequence. The basic
idea of our alignment algorithm scheme is to handle the sequences asymmetrically.
The algorithm recursion follows a single fixed parse tree for the first sequence. At
each split of the parse tree, it considers all compatible splits of the second sequence.
In contrast to the splits of the parse tree, these compatible splits don’t have to be
arc-preserving. Formally, two splits are compatible, if they have the same split type
which is defined as follows.

The basic type of a split (F 1, F 2) of a fragment F is defined by the following
construction. The interval [min(F̂),max(F̂)] decomposes into the intervals of F 1,
the intervals of F 2 and gaps of F . If we order these from left to right and replace the
intervals of F 1 by 1, the ones of F 2 by 2 and the remaining ones by G (for gap), we
obtain a string T over {1, 2, G} that we call the basic type of the split. Every split
has exactly one basic type.

The type can be further refined by annotating constraints. In particular, we
introduce the size constraint that restricts an interval to have at most size one in
each instance of the type. It is indicated by marking the respective symbols 1 or
2 in the type with ′. Size constraints will be used to describe the common case of
splits that split off an atomic fragment. A type containing constraints is called a
constrained type. Note that each size constraint reduces the number of splits of this
type by one order of magnitude, because it reduces the degrees of freedom by one.

If (F 1, F 2) is of type T , we call it a T -split. As an example, in Fig. 2 the splits
of Fa and Fb are of basic type 12G21 and of constrained type 12′G2′1.

The complexity of the alignment algorithm depends on the number of children
and parent instances of the considered split types. On the number of parents, because
for a given fragment in one sequence, we consider all fragments in the other sequence
having the same type. On the number of children, because it determines the number
of ways an aligned fragment can be split in sub-alignments. These numbers depend
on the length m of the second sequence and are defined as the number of children
and the number of parents, respectively:

#m
C (T) = |{ (F 1, F 2) | (F 1, F 2) is a T-split of some F and F̂ ⊆ [1,m] }|

#m
P (T) = |{F | ∃(F 1, F 2) that is a T-split of F and F̂ ⊆ [1,m] }|

Lemma 1 For some sequence with length m and a split type T , let the degree of the
parent and the two children be kp, k1 and k2, respectively. Furthermore, let c denote
the degrees of freedom that are reduced by the constraints of T and c′ ≤ c denote the
corresponding reduction for the parent instances. Then #m

C (T) ∈ O(mkp+k1+k2−c)
and #m

P (T) ∈ O(m2kp−c′).

Proof. Each instance of a fragment of degree k is uniquely determined by its 2k
boundaries. Each boundary has one of the values 1 . . .m. If the other boundaries
are fixed, each constrained boundary can take at most two different values. Hence
#m

P (T) ∈ O(m2kp−c′2c′), which equals O(m2kp−c′) since c′ is considered as constant.

7

Each split is determined by the 2(kp + k1 + k2) boundaries of the parent and
the two children. Every two of them depend on each other: each parent boundary
must coincide with some child boundary and from the remaining boundaries of the
children, always two are directly adjacent. Hence, kp + k1 + k2 values can be chosen
to determine each instance. Due to the same argument concerning the constraints as
before, it holds #m

C (T) ∈ O(mkp+k1+k2−c2c) = O(mkp+k1+k2−c). 2

4 The Alignment Algorithm Scheme

4.1 The Variant for Basic Types

The algorithm takes two arc-annotated sequences (Sa, Pa), (Sb, Pb) and a parse tree
for (Sa, Pa) as input2. For each fragment in the parse tree, the algorithm recursively
computes alignments to all fragments of (Sb, Pb) that have the same basic type.
In order to present the precise recursions, we need the following formal notion for
alignments of fragments.

The restriction of an alignment A to fragments Fa, Fb is defined as A|Fa×Fb
:=

{ (i, j) ∈ A | i ∈ F̂a ∪ {−}, j ∈ F̂b ∪ {−} }. A aligns two fragments Fa and Fb of
the same degree k, short alignA(Fa, Fb), if and only if for all (a1, a2) ∈ A and for all
i ∈ 1 . . . k it holds that a1 = − or a2 = − or a1 ∈ Fa[i] ⇔ a2 ∈ Fb[i]. Note that for
a given alignment A, a fragment of one sequence can be aligned to several fragments
of the other; consider e.g. Fig. 2, where A aligns F 1

a to F 1
b = ([3, 5], [11, 12]) and also

to ([3, 4][11, 12]).
The cost of A can be computed recursively as cost(A) with

cost(A) =

gapa(i) + cost(A′) if A = {(i,−)}]A′

gapb(j) + cost(A′) if A = {(−, j)}]A′

(χ(l1, l2) + χ(r1, r2))wam
2 + cost(A′) if A = {(l1, l2), (r1, r2)}]A′

and (l1, r1) ∈ Pa, (l2, r2) ∈ Pb

basematch(i, j) + cost(A′) if A = {(i, j)}]A′

and third case is not applicable.

This computation relies only on the property of the scoring scheme that all costs
except for matching an arc are local to a single base. If A aligns two fragments
Fa and Fb, the cost is computed analogously as CA(Fa, Fb) := cost(A|Fa×Fb

). The
optimal cost to align two fragments is defined as

C
(
Fa, Fb

)
:= min

A with alignA(Fa,Fb)
{CA(Fa, Fb)} .

2Such a parse tree can be constructed using standard parsing techniques. Furthermore, the
structure prediction algorithms discussed later implicitly construct parse trees that can also be
reused for this purpose.

8

The optimal cost to align the entire sequences is C
(
Fa, Fb

)
for Fa = ([1, |Sa|]) and

Fb = ([1, |Sb|]). It can be computed by recursively applying the next lemma, where
F 1

a and F 2
a are chosen according to the parse tree.

Lemma 2 (Split lemma) Let Fa and Fb be fragments of (Sa, Pa) and (Sb, Pb), re-
spectively. Let (F 1

a , F
2
a) be an arc-preserving split of Fa of basic type T . Then

C
(
Fa, Fb

)
= min

T -split (F 1
b ,F 2

b) of Fb

{
C
(
F 1

a , F
1
b

)
+ C

(
F 2

a , F
2
b

)}
(1)

Proof.

C
(
Fa, Fb

)
= min

A. alignA(Fa,Fb)
{CA(Fa, Fb)} (2)

= min
A.∃ T -split (F 1

b ,F 2
b) of Fb. alignA(F 1

a ,F 1
b)∧alignA(F 2

a ,F 2
b)
{CA(Fa, Fb)} (3)

= min
A.∃ T -split (F 1

b ,F 2
b) of Fb. alignA(F 1

a ,F 1
b)∧alignA(F 2

a ,F 2
b)

{
CA(F 1

a , F
1
b) + CA(F 2

a , F
2
b)
}

(4)

= min
T -split (F 1

b ,F 2
b) of Fb

{
min

A. alignA(F 1
a ,F 1

b)∧alignA(F 2
a ,F 2

b)

{
CA(F 1

a , F
1
b) + CA(F 2

a , F
2
b)
}}

(5)

= min
T -split (F 1

b ,F 2
b) of Fb

{
min

A. alignA(F 1
a ,F 1

b)

{
CA(F 1

a , F
1
b)
}

+ min
A. alignA(F 2

a ,F 2
b)

{
CA(F 2

a , F
2
b)
}}
(6)

= min
T -split (F 1

b ,F 2
b) of Fb

{
C
(
F 1

a , F
1
b

)
+ C

(
F 2

a , F
2
b

)}
(7)

Note that in expressions like A. alignA(Fa, Fb), the dot can be read as “where the
following condition holds:”. Thus, in line (2) we minimize over all alignments A
where alignA(Fa, Fb) holds. Line (2) = (3) holds since for aligned fragments Fa, Fb

and a split (F 1
a , F

2
a) of Fa, always a split (F 1

b , F
2
b) of Fb can be constructed such

that F 1
a is aligned to F 1

b and F 2
a is aligned to F 2

b . Line (3) = (4) relies on the
fact that the split F 1

a , F
2
a is arc-preserving, which allows to split up the computation

of C
(
Fa, Fb

)
into two independent parts. Line (6) is equivalent to line (5) because

optimal alignments for these two parts always correspond to an optimal alignment
of the fragments covering them both. 2

Note that if the split of Fb is not arc-preserving, the respective arcs are broken or
removed, since there is no arc of Fa that they can be matched to. The cost for break-
ing or removing the two ends of the arcs is contained in C

(
F 1

a , F
1
b

)
and C

(
F 2

a , F
2
b

)
,

respectively. The evaluation of the recursion is done efficiently by dynamic program-
ming, i.e. all intermediate values C

(
Fa, Fb

)
are tabulated, such that each instance

is computed only once. The recursive case, shown in Fig. 4a, is directly given by
Eq. (1). At the leafs of the parse tree, the base cases, shown in Fig. 4b, are applied.
The actual alignment can be constructed using the usual back-trace techniques.

9

[Figure 4 about here.]

Complexity Let n and m be the length of the two sequences, respectively. First
note that the parse tree has only O(n) nodes, since each split introduces at least one
new boundary, of which there exist only O(n) many. Let Tp and Tc be types of splits
in the parse tree, where #m

P (Tp) and #m
C (Tc) are maximal among the occurring split

types, respectively. For a node Fa with split Tp the algorithm materializes the costs
C
(
Fa, Fb

)
for #m

P (Tp) fragments Fb. Assuming the worst case for each node, this
results in a space complexity of O(n ·#m

P (Tp)). The time complexity is dominated by
the computation at Tc-splits. There, according to Lem. 2, the algorithm minimizes
over #m

C (Tc) terms; each is computed in O(1). This results in a worst case time
complexity of O(n ·#m

C (Tc)). #m
P (Tp) and #m

C (Tc) are asymptotically bounded due
to Lemma 1. For the case of non-constrained, basic types we instantiate to O(nm2k)
space and O(nm3k) time complexity, where k is the maximal degree among the splits
in the parse tree.

4.2 An Optimized Variant for Constrained Types

By the preceding complexity analysis, the time and space complexity directly depend
on #m

P (T) and #m
C (T) for the basic types. Lemma 1 shows how constraints in types

reduce these numbers, and thus bear the potential to reduce the complexity. However,
we cannot simply use constraint types instead of basic types in the recursion of Fig. 4a.
Let’s assume that F 1

a is atomic and T is constrained correspondingly; furthermore,
Tu denotes the unconstrained, basic split type corresponding to T . In the optimal
alignment, F 1

a is not necessarily aligned to an atomic F 1
b . However, we know (by

Lem. 2) that for any Tu-split (F 1
b , F

2
b) of Fb, at most one of the bases of F 1

b per
interval of F 1

b is matched to F 1
a and the others are aligned to gaps. Using this

observation, we can still split off a fragment F 1
b of Fb satisfying the constraint type

T after ‘eating away’ the gaped bases, which we do by introducing ‘shrink’-cases.
The following lemma directly leads to the optimized recursion equation as given

in Fig. 5.

Lemma 3 (Split lemma for constrained types) Let Fa and Fb be fragments of
(Sa, Pa) and (Sb, Pb), respectively. Let (F 1

a , F
2
a) be an arc-preserving T -split of Fa,

where T contains size constraints for at most one of the fragments and at least one
boundary of each interval of the constrained fragment coincides with a boundary of
Fa.3 Let A be an optimal alignment of Fa and Fb. Then there is a T -split (F 1

b , F
2
b)

of Fb such that either the constrained fragment of the split is matched to one or two
gaps by A and the remaining fragment is aligned to Fa or there is a T -split (F 1

b , F
2
b)

such that A aligns F 1
a to F 1

b and F 2
a to F 2

b .

3This condition can be generalized to constraints on more than one fragment as long as no two
adjacent symbols are constrained. This is mostly relevant for n-ary splits.

10

Proof. W.l.o.g. assume that the split type T contains a constraint on the first
fragment. Let A be the optimal alignment of Fa and Fb and let Tb be the base
type obtained by removing all constraints from T . Assume that there is no T-split
(F 1

b , F
2
b) of Fb such that A aligns F 1

a to F 1
b and F 2

a to F 2
b . Lem. 2 implies that there

exists at least one Tb split (F 1
b
′
, F 2

b
′) with this property. Since (F 1

b
′
, F 2

b
′) is not of type

T , there must exist some interval F 1
a [i] = 〈x〉 such that (a) the interval has a size

constraint in T (b) x is a boundary of the parent Fa (c) A aligns x to some y that is
not the boundary y′ of Fb corresponding to the boundary x of Fa. The last property
ensures that the interval F 1

b
′[i] has size greater than one (since it must contain both

y and y′) and hence the size constraint of T is not satisfiable.
Since A aligns the interval 〈x〉 to the interval containing y and y′ and x is aligned

to y, the boundary y′ is aligned to a gap. Hence, there is a T-split that separates
exactly y′ from Fb, A aligns Fa with the remaining fragment of Fb. 2

In extension of Lem. 2, Lem. 3 allows size constraints in the split type T . Ac-
cording to the lemma, the recursion of the optimized algorithm shown in Fig. 5,
introduces additional shrink cases. These cover the minimization cases where one
cannot split as in Lem. 2 by the (now possibly constrained) split type T .

[Figure 5 about here.]

5 Instances of the Algorithm Scheme

In this section, we focus on the behavior of our general algorithm scheme for different
restricted classes of pseudoknots. We analyze the classes of pseudoknots produced
by different structure prediction algorithms (Lyngsø and Pedersen, 2000; Rivas and
Eddy, 1999; Uemura et al., 1999; Akutsu, 2000; Deogun et al., 2004; Dirks and Pierce,
2003; Chen et al., 2009; Reeder and Giegerich, 2004) and show that the alignment
can benefit of the structural restrictions in exactly the same way as the prediction.
In particular we show for each of the prediction algorithms how to construct a corre-
sponding alignment algorithm with only a linear increase in complexity (see Table 1).
Following Condon et al. (2004), we name the classes of structures according to the
authors of the respective prediction algorithms: R&E (Rivas and Eddy (1999)), A&U
(Akutsu (2000) and Uemura et al. (1999)), L&P (Lyngsø and Pedersen (2000)), CCJ
(Chen et al. (2009)), D&P (Dirks and Pierce (2003)), and R&G (Reeder and Giegerich
(2004)). Also note that on nested structures the algorithm behaves like an algorithm
by Jiang et al. (2002).

R&E structures The prediction algorithm by Rivas and Eddy (1999) requires
O(n6) time and O(n4) space. It is restricted to structures for which parse trees exist
where each fragment has a degree of at most 2. Our algorithm aligns structures from
this class in O(nm6) time and O(nm4) space. Compared to that, the best alignment

11

algorithm for this class known so far (by Evans (2006)) requires O(n5m5) time and
O(n4m4) space.4

[Table 1 about here.]

A&U structures The algorithms of Akutsu (2000), Uemura et al. (1999) and
Deogun et al. (2004) predict structures with simple pseudoknots in O(n4) time and
O(n3) space. For the structures of this class, there always exist parse trees, where
the splits are limited to the constrained types

12 121 12′G2′1 1G2′12′ 12′G1 1G2′1 1G12′ 12′G2′.

By Lem. 1, there exist only O(m4) splits (F 1
b , F

2
b) of these types (i.e. #m

C (T) ∈ O(m4)
for all but the first and last of the above types). Hence our algorithm runs in O(nm4)
time on these structures. Due to Lem. 1, the space complexity is at most O(nm4)
too; this can be improved to O(nm3), because for the allowed splits all unconstrained
children fragments of degree 2, which dominate the space complexity, have the same
leftmost boundary as their parent. In the computation of the costs C

(
Fa, Fb

)
, we

can thus group all such fragments Fb with the same leftmost boundary. For each of
these groups only O(m3) fragments Fb exist and the space is reused for each group. A
rigorous argument for the improvement is given by the next lemma, which is proved
by simultaneous induction over the parse tree.

Lemma 4 (Improved space complexity for A&U) Let Fa be a node of a parse
tree for an A&U structure, where Fa has degree k and n′ descendants. Then, O(n′m3)
space suffices to compute 1.) for k = 1 or atomic Fa of degree 2, all O(m2) costs
C
(
Fa, Fb

)
and 2.) for k = 2, all O(m3) costs C

(
Fa, Fb

)
, where all Fb share a fix

leftmost boundary.

Proof. We proof the two claims by simultaneous induction over the parse tree.
That is, when we proof one of the claims for a single node, we can assume that both
claims hold for the children nodes by induction hypothesis.

Clearly, the claims hold for atomic Fa (base case of induction). Otherwise Fa

is split by a split of A&U split type into fragments F 1
a and F 2

a with n1 and n2

descendants, respectively.
For the case that Fa has degree 1, only split type 121 needs special attention. In

this case, for computing all C
(
Fa, Fb

)
we group the fragments Fb by their leftmost

boundary. For all fragments in one group we need only O(n′m3) space, because we
only recurse to costs C

(
F 1

a , F
1
b

)
with a fix leftmost boundary of F 1

b ; by claim 2, all
these costs are computed in O(n1m

3) space, which is reused for each group. For the
4Evans’s algorithm computes the longest arc-preserving common subsequence, which can be con-

sidered as a special case of our edit distance measure.

12

second fragment, we only need O(n2m
3) by claim 1. Finally, we store the costs in

O(m2). Clearly, O(n1m
3 + n2m

3 +m2) = O(n′m3).
For the case that Fa has degree 2, we only compute costs for Fb with fix leftmost

boundary. For this aim, we only need costs C
(
F 1

a , F
1
b

)
for F 1

b with the same fix
boundary, which are computed in O(n1m

3) due to claim 1. 2

This space improvement follows a general principle applicable in dynamic pro-
gramming that makes use of invariants on the most complex items and groups their
computation. This invariant is conveniently reflected in our representation by split
types.

L&P structures Lyngsø and Pedersen (2000) predict certain pseudoknots in O(n5)
time and O(n3) space. Their class of pseudoknots is restricted such that there must
exist a parse, where the split of the root has basic type 12121 and such that the
two fragments of this split are both nested. This implies that they can be further
decomposed with splits of constrained types

12’G2’1G1 1G21G1 12G1G1 2G1G12 (for fragments with degree 3)
2’1G12’ 21G1 1G12 1G2 (for fragments with degree 2)

2’12’ 12 (for fragments with degree 1)

The degree 3 splits decompose only fragments that start with the first sequence
position and end with the last sequence position; it suffices to consider only splits
of Fb that share this property. This means, we see here a further example of a type
constraint. This maximality constraint reduces the degrees of freedom for this type
by 2. Indicating the constraints, we refine the first four types to

↓12′G2′1G1↓ ↓1G21G1↓ ↓12G1G1↓ ↓2G1G12↓ .

To see that no other splits for fragments of degree 3 are required, note that with
the first three split types, the fragment can be decomposed until its first two intervals
are no more connected by arcs and once this is the case, a split of the fourth type
can be applied.5

The complexity analysis with Lem. 1 leads for each of these split types to at most
O(m5) instances, which implies O(nm5) time complexity. For example, for split type
T =↓ 12′G2′1G1 ↓ , we have kp = k1 = 3, k2 = 2, c = 4 and hence #m

C (T) ∈
O(m3+3+2−4) = O(m4) and for T ′ =↓2G1G12↓ we have kp = 3, k1 = k2 = 2, c = 2
and hence #m

C (T) ∈ O(m3+2+2−2) = O(m5).
The space complexity can be reduced from O(nm4) to O(nm3) by the same gen-

eral principle that we observed for the A&U structures. That is, first we can distin-
guish simple fragments that have degree 1 or are constrained and complex fragments

5Lyngsø and Pedersen give another intuition based on the idea of considering cyclic sequences.
This is reflected by the split types in the way that each split for fragments of degree 3 is analogous
to the split for fragments of degree 2 below it, if the part before the first gap is cyclically moved to
the end of the type

13

that are unconstrained and have degree 2. Then, we identify an invariant for the
occurring complex fragments and use it for space reduction by grouping. In the L&P
split types, the second fragment is always simple. Hence, for each split there are only
O(m2) values to store for the second fragments.

The first fragment of each split type has either degree less than 2 or it contains
the pattern 1G1, where G is the last gap in the split type. This implies that the
computation of each fragment of degree at least 2, recursively relies only on fragments
that have the size of the last gap in common. The costs for the simple fragments can
thus always be computed by grouping the complex fragments by this gap size and
reusing the memory.

D&P structures Dirks and Pierce (2003) developed an algorithm to compute the
partition function for RNA pseudoknots, which can also be modified to predict the
MFE structure. The algorithm takes O(n5) time and O(n4) space. The corresponding
parse trees of the predicted structures are limited to fragments of degree at most two
and the splits are of types

12 1212 21G1 12G1 1G21 1G12 1′2G21′.

Again, according to Lem. 1 there exist at most O(m5) splits (F 1
b , F

2
b) for each of

these types and hence our alignment algorithm requires O(nm5) time and O(nm4)
space on these structures.

CCJ structures The algorithm of Chen et al. (2009) predicts structures containing
for example kissing hair pins and 4-chains (i.e. four stems arranged from left to
right such that each stem overlaps with the neighboring stems). CCJ structures
are recursively composed out of TGB fragments (three groups of bands). A TGB
fragment has one gap and can be parsed with the following split types:

2′12′G1 2′1G12′ 12′G2′1 1G2′12′ (add a single arc)
21G1 12G1 1G21 1G12 (add CCJ structure recursively)

Those fragments are called TGB since their structure consists of three groups of arcs:
arcs in the first interval (2′12′G1), arcs that connect the two intervals (2′1G12′ and
12′G2′1), and arcs in the second interval (1G2′12′). A CCJ structure is composed
from TGB fragments by the following split types

1212 1′21′ 12

The first one combines two TGB fragments, the second one adds a single arc and the
third one concatenates two CCJ structures. For all those split types T necessary to
parse TGB and CCJ structures, by Lem. 1 #m

C (T) ∈ O(m5) and #m
P (T) ∈ O(n4).

Hence the alignment of these structures can be done in O(nm5) time and O(nm4)
space.

14

R&G structures The efficiency of the structure prediction algorithm by Reeder
and Giegerich (2004) (O(n4) time, O(n2) space) is due to the restriction to canonical
pseudoknots. A stem of base pairs is called canonical if it cannot be extended by
another valid base pair. The canonical stem containing a given base pair is thus
uniquely determined. In R&G structures, pseudoknots are formed only by two cross-
ing canonical stems. Reeder and Giegerich structures can be decomposed by split
types

2′1 12′ 12 1′21′ E1 = 1c23c41c53c E2 = 12′G2′1,

where we introduce another type constraint in E1 (denoted by ·c) claiming that
fragments 1 and 3 each form a canonical stem.6

The type E1 represents a split into 5 independent parts, where fragment 1 and 3
form the canonical pseudoknot. To simplify the presentation, so far we limited splits
to contain only two fragments, but the concept generalizes to more complex splits
without any difficulty. E2 is used to further decompose the stems corresponding to
the first and third fragment of E1.

All types have at most O(m4) instances, resulting in O(nm4) time complexity.
The type E1 deserves special attention, because its unconstrained variant has O(m8)
many instances. However due to the constraints this is reduced to O(m2), since a
split of constrained type E1 is already determined by fixing start and end position of
the parent fragment. Because the RNA structures are fix, the start position of the
fragment is the start position of a uniquely determined base pair in stem 1 and this
uniquely determines the first stem. The second stem is determined analogously by
the end position.

In the same way as the structure prediction algorithm finds the best canonical
structure for a sequence, the alignment algorithm finds the best canonical alignment.
Here, canonical means that a stem of a pseudoknot can only be aligned to another
maximally extended stem.

The space complexity is reduced as follows. For all split types except E1 and E2

applies again that they only contain degree 1 or atomic fragments. In E1, from all
fragments of degree 2 only the O(n2) canonical instances are considered. In E2, the
second fragment is size constrained and the first fragment shares its first and last
boundary with the split fragment. Hence, the O(m4) instances of the first fragment
can be grouped into groups of O(m2) elements that have a common first and last
boundary. This reduces the space complexity to O(nm2).

6Note that our split types (with the exception of E2) correspond to the grammar rules given in
Reeder and Giegerich (2004): S → . | . S | S. | SS | (S) | [kS{lS]kS}l.

15

6 Results

6.1 Accuracy of Pseudoknot Alignment

[Figure 6 about here.]

We use a benchmark set of 8 RNA families of Rfam (Griffiths-Jones et al., 2003)
that are annotated with pseudoknots. Albeit in total Rfam contains 16 such families,
we restricted the test set to RNAs with length of at most 125. From each family, we
selected the pair of members with the lowest sequence identity, in order to maximally
challenge the algorithms. We used the consensus structure (projected to the respec-
tive sequence) as structure input, since Rfam does not contain a separate structure
for each sequence.

We compared our tool PKalign to MARNA (Siebert and Backofen, 2007) and lara
(Bauer et al., 2007). While lara represents the only other pseudoknot alignment
method available so far, the comparison to MARNA allows us to evaluate the benefit
of taking pseudoknots into account: MARNA is based on the exact same scoring
scheme as PKalign (and we used the same parameter values), but since it is unable
to handle pseudoknots, we had to resolve the crossing by removing some base pairs.
The accuracy to reproduce the Rfam alignment is measured by the COMPALIGN
score. The results are shown in Fig. 6.

The comparison to MARNA shows that taking the pseudoknots into account in
general improves the accuracy. The accuracy of PKalign and lara is comparable,
the minor differences between their results seem to be caused by differences in the
scoring scheme, different choices if several optimal alignments exist and by the fact
that PKalign does not yet support affine gap costs.

6.2 Detecting Conserved Pseudoknots

[Figure 7 about here.]

The reliability of pseudoknot de-novo prediction is still very low. Common pre-
diction programs, tend to predict pseudoknots even in pseudoknot free RNA and do
not allow to distinguish safely between true pseudoknots and false positives. This
behavior could already be observed for pknotsRG (Reeder and Giegerich, 2004) in the
following small study.

Therefore, it is desirable to increase the specificity of predictions by requiring
confirmation due to homologous RNAs. This approach provides much stronger evi-
dence by observing compensatory mutations in conserved crossing base pairs that are
predicted in several homologous RNAs. Such a procedure is useful for reliably anno-
tating pseudoknots in unknown RNA, e.g. from genome wide screens for non-coding
RNA.

16

As a preliminary approach towards comparative pseudoknot identification, we
suggest a pipeline for detecting potential pseudoknots that starts with a set of homol-
ogous RNAs, and performs the following steps: 1.) for each sequence predict locally
optimal and suboptimal pseudoknots of the R&G class, using pknotsRG (Reeder and
Giegerich, 2004) in local mode. 2.) determine candidate pseudoknots that occur at
similar positions in k of our sequences (here, k = 3). 3.) using our approach, align
the k-tuples of pseudoknots pairwise all-against-all; this information is used to con-
struct a multiple alignment by T-Coffee (Notredame et al., 2000). 4.) analyze the
alignment for conserved, crossing compensatory mutations.

First, we tested our approach on Rfam data using the same set of 8 families as
above. For each family, we randomly selected six sequences for our analysis. We found
pseudoknot candidates with crossing compensatory mutations in all of these families.
For four families, we could reproduce triplet alignments of the known pseudoknots
that showed crossing compensatory mutations for three of the families; an example is
given in Fig. 7a. The figure depicts an alignment of the pseudoknotted sub-sequences
with start and end position. For each sub-sequence we show the structure predicted
by pknotsRG. The last line gives the consensus structure and highlights base pairs of
the pseudoknot which are confirmed by crossing compensatory mutations.

The procedure was then applied to the 50 unannotated ncRNA candidates pre-
dicted by an RNAz screen of Ciona intestinalis (Missal et al., 2005). In this screen,
the C. intestinalis genome was compared to C. savignyi and O. dioica, thus per
candidate we get three sequences from the three organisms that are analyzed by the
above pipeline. In total, we predicted pseudoknot candidates for only 14 of the 50
RNAs; in contrast, pknotsRG predicts pseudoknots in all of the ncRNAs. Fig. 7b
shows one prediction by this experiment.

7 Conclusions

We presented a general algorithm scheme for pairwise alignment of pseudoknots. This
scheme yields an efficient alignment algorithm for arbitrary classes of pseudoknots
that can be predicted efficiently by dynamic programming. Moreover, we showed that
such an alignment algorithm benefits from restrictions to certain structure classes in
the same way as structure prediction algorithms do. This theoretically interesting
result actually yields a series of new alignment algorithms for specific pseudoknot
classes; for earlier pseudoknot alignment algorithms, it improves time and space
complexity.

Our short study for increasing the reliability of pseudoknot prediction by ac-
counting for comparative information is probably the first biologically meaningful
application of pseudoknot alignment to biological data and demonstrates the new
possibilities due to our method. It points directly to the appealing idea of automatic
pseudoknot annotation in unknown, potential ncRNA from genome-wide screens.

17

7.0.1 Acknowledgments.

We thank Kristin Reiche for providing data of the Ciona RNAz screen and our Master
student Jörg Bruder for implementing the parsing component of PKalign. M. Möhl
is funded by the German Research Foundation.

7.0.2 Disclosure Statement.

No competing financial interests exist.

18

References

Akutsu, T., 2000. Dynamic programming algorithms for RNA secondary structure
prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62.

Bauer, M., Klau, G. W., and Reinert, K., 2007. Accurate multiple sequence-structure
alignment of RNA sequences using combinatorial optimization. BMC Bioinformat-
ics 8, 271.

Chen, H.-L., Condon, A., and Jabbari, H., 2009. An O(n(5)) Algorithm for MFE
Prediction of Kissing Hairpins and 4-Chains in Nucleic Acids. Journal of Compu-
tational Biology 16, 803–15.

Condon, A., Davy, B., Rastegari, B., Zhao, S., and Tarrant, F., 2004. Classifying
RNA pseudoknotted structures. Theoretical Computer Science 320, 35–50.

Couzin, J., 2002. Breakthrough of the year. Small RNAs make big splash. Science
298, 2296–7.

Deogun, J. S., Donis, R., Komina, O., and Ma, F., 2004. RNA secondary structure
prediction with simple pseudoknots. In APBC ’04: Proceedings of the second
conference on Asia-Pacific bioinformatics, 239–246. Australian Computer Society,
Inc., Darlinghurst, Australia, Australia.

Dirks, R. M. and Pierce, N. A., 2003. A partition function algorithm for nucleic acid
secondary structure including pseudoknots. Journal of Computational Chemistry
24, 1664–77.

Do, C. B., Woods, D. A., and Batzoglou, S., 2006. CONTRAfold: RNA secondary
structure prediction without physics-based models. Bioinformatics 22, e90–8.

Evans, P. A., 1999. Finding common subsequences with arcs and pseudoknots. In
CPM ’99: Proceedings of the 10th Annual Symposium on Combinatorial Pattern
Matching, 270–280. Springer-Verlag, London, UK.

Evans, P. A., 2006. Finding common RNA pseudoknot structures in polynomial
time. In Combinatorial Pattern Matching (CPM 2006), Lecture Notes in Computer
Science, volume 4009/2006, 223–232. Springer Berlin / Heidelberg.

Gorodkin, J., Heyer, L., and Stormo, G., 1997. Finding the most significant common
sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res 25,
3724–32.

Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S. R., 2003.
Rfam: an RNA family database. Nucleic Acids Research 31, 439–41.

19

Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R., and Bateman,
A., 2005. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids
Research 33 Database Issue, D121–4.

Harmanci, A. O., Sharma, G., and Mathews, D. H., 2007. Efficient pairwise RNA
structure prediction using probabilistic alignment constraints in Dynalign. BMC
Bioinformatics 8, 130.

Havgaard, J. H., Torarinsson, E., and Gorodkin, J., 2007. Fast pairwise structural
RNA alignments by pruning of the dynamical programming matrix. PLOS Com-
putational Biology 3, 1896–908.

Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, S., Tacker, M., and Schuster,
P., 1994. Fast folding and comparison of RNA secondary structures. Monatshefte
Chemie 125, 167–188.

Jiang, T., Lin, G., Ma, B., and Zhang, K., 2002. A general edit distance between
RNA structures. Journal of Computational Biology 9, 371–88.

Lyngsø, R. B. and Pedersen, C. N. S., 2000. Pseudoknots in RNA secondary struc-
tures. In Proc. of the Fourth Annual International Conferences on Compututational
Molecular Biology (RECOMB00). ACM Press. BRICS Report Series RS-00-1.

Mathews, D. H. and Turner, D. H., 2002. Dynalign: an algorithm for finding the
secondary structure common to two RNA sequences. Journal of Molecular Biology
317, 191–203.

Missal, K., Rose, D., and Stadler, P. F., 2005. Non-coding RNAs in Ciona intestinalis.
Bioinformatics 21 Suppl 2, ii77–ii78.

Möhl, M., Will, S., and Backofen, R., 2008. Fixed parameter tractable alignment
of RNA structures including arbitrary pseudoknots. In Proceedings of the 19th
Annual Symposium on Combinatorial Pattern Matching (CPM 2008), LNCS, 69–
81. Springer-Verlag.

Notredame, C., Higgins, D. G., and Heringa, J., 2000. T-Coffee: A novel method for
fast and accurate multiple sequence alignment. Journal of Molecular Biology 302,
205–17.

Reeder, J. and Giegerich, R., 2004. Design, implementation and evaluation of a prac-
tical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics
5, 104.

Rivas, E. and Eddy, S. R., 1999. A dynamic programming algorithm for RNA struc-
ture prediction including pseudoknots. Journal of Molecular Biology 285, 2053–68.

20

Siebert, S. and Backofen, R., 2005. MARNA: multiple alignment and consensus struc-
ture prediction of RNAs based on sequence structure comparisons. Bioinformatics
21, 3352–9.

Siebert, S. and Backofen, R., 2007. Methods for multiple alignment and consensus
structure prediction of RNAs implemented in MARNA. Methods Molecular Biology
395, 489–502.

Staple, D. W. and Butcher, S. E., 2005. Pseudoknots: RNA structures with diverse
functions. PLOS Biology 3, e213.

Uemura, Y., Hasegawa, A., Kobayashi, S., and Yokomori, T., 1999. Tree adjoining
grammars for RNA structure prediction. Theoretical Computer Science 210, 277 –
303.

Washietl, S., Hofacker, I. L., Lukasser, M., Hüttenhofer, A., and Stadler, P. F., 2005a.
Mapping of conserved RNA secondary structures predicts thousands of functional
noncoding RNAs in the human genome. Nature Biotechnology 23, 1383–90.

Washietl, S., Hofacker, I. L., and Stadler, P. F., 2005b. Fast and reliable prediction
of noncoding RNAs. Proc. Natl. Acad. Sci. USA 102, 2454–9.

Will, S., Reiche, K., Hofacker, I. L., Stadler, P. F., and Backofen, R., 2007. Inferring
non-coding RNA families and classes by means of genome-scale structure-based
clustering. PLOS Computational Biology 3, e65.

Xayaphoummine, A., Bucher, T., Thalmann, F., and Isambert, H., 2003. Prediction
and statistics of pseudoknots in RNA structures using exactly clustered stochastic
simulations. Proc. Natl. Acad. Sci. USA 100, 15310–5.

Zuker, M. and Stiegler, P., 1981. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–
48.

21

List of Figures

1 Edit operations according to Jiang et al. (2002) 23
2 Alignment with some boxed fragments Fa,Fb that are split into their

white and gray parts F 1
a , F

1
b (white boxes) and F 2

a , F
2
b (gray boxes),

respectively. Gap edges of A are not shown. 24
3 A structure and two ways to visualize a parse tree thereof. Note that

in the parse tree, each leaf is atomic. 25
4 a) Recursive case for basic split type and b) base cases of the algorithm. 26
5 Optimized recursive case. This applies to the general case of a con-

strained type T satisfying the conditions in Lem. 3. C
(
−, F i

b

)
denotes

the cost of deleting F i
b . 27

6 Comparison MARNA vs. PKalign vs. lara on 8 pseudoknot families.
The numbers in brackets give the sequence identity. 28

7 a) Correctly predicted pseudoknot in the Rfam family Corona pk3 and
its alignment. b) Predicted pseudoknot of potential ncRNA. 29

22

Figure 1: Edit operations according to Jiang et al. (2002)

23

Figure 2: Alignment with some boxed fragments Fa,Fb that are split into their white
and gray parts F 1

a , F
1
b (white boxes) and F 2

a , F
2
b (gray boxes), respectively. Gap edges

of A are not shown.

24

Figure 3: A structure and two ways to visualize a parse tree thereof. Note that in
the parse tree, each leaf is atomic.

25

a) Recursive case:

C
(
Fa, Fb

)
= min

T -split (F 1
b ,F 2

b) of Fb

{
C
(
F 1

a , F
1
b

)
+ C

(
F 2

a , F
2
b

)}
,

where the parse tree splits Fa into (F 1
a , F

2
a) by a split of basic type T

b) Base cases:

C
(
〈i〉, [l, r]

)
= min

C
(
〈i〉, [l + 1, r]

)
+ gap2(l) if l ≤ r

C
(
〈i〉, [l, r − 1]

)
+ gap2(r) if l ≤ r

basematch(i, l) if l = r

gap1(i) if l > r

C
(
Fa =(〈pL〉, 〈pR〉), ([l1, r1], [l2, r2])

)
=

min

C
(
〈pL〉, [l1, r1]

)
+ C

(
〈pR〉, [l2, r2]

)
C
(
Fa, ([l1 + 1, r1], [l2, r2])

)
+ gap2(l1) if l1 ≤ r1

C
(
Fa, ([l1, r1 − 1], [l2, r2])

)
+ gap2(r1) if l1 ≤ r1

C
(
Fa, ([l1, r1], [l2 + 1, r2])

)
+ gap2(l2) if l2 ≤ r2

C
(
Fa, ([l1, r1], [l2, r2 − 1])

)
+ gap2(r2) if l2 ≤ r2

(χ(pL, l1) + χ(pR, l2))wam
2 if (l1, l2) = (r1, r2) ∈ Pb

Figure 4: a) Recursive case for basic split type and b) base cases of the algorithm.

26

C
(
Fa, Fb

)
= min

T -split (F 1
b ,F 2

b) of Fb

min

C
(
F 1

a , F
1
b

)
+ C

(
F 2

a , F
2
b

)
C
(
Fa, F

2
b

)
+ C

(
−, F 1

b

)
if T contains some 1’

C
(
Fa, F

1
b

)
+ C

(
−, F 2

b

)
if T contains some 2’

Figure 5: Optimized recursive case. This applies to the general case of a constrained
type T satisfying the conditions in Lem. 3. C

(
−, F i

b

)
denotes the cost of deleting F i

b .

27

Figure 6: Comparison MARNA vs. PKalign vs. lara on 8 pseudoknot families. The
numbers in brackets give the sequence identity.

28

a)
[[-[[[[[....((.....-)).-((((((((((..]]]]]-]]....))))))))))

X90572.1 6 cu-uguacagaaugguaag-cac-guguaguaggagguaca-agcaacccuauugcau 59

[[-[[[[[....((.....-)).-((((((((((..]]]]]-]]....))))))))))

X66718.1 6 cu-uguacagaaugguaag-cac-guguaaugggagguaca-agcaaccccauugcau 59

[[[[[[-[.(((...-..)))...((((((((((.-]-]]]]]]-...))))))))))

AF058944.1 6 cucuau-cagauugg-augucuugcugcuauaaua-g-auagag-aagguuauagcag 58

cons. str. [[-[[[-[................((((((((((.-]-]]]-]]....))))))))))

b)
[[[[[[[..((((]]]]]]].(((((((...)))))))......))))--

ci_658349 52 ucucagggugaaaucugagacggaaacgauucguuuccuauauauuuc-- 99

[[[[[[.(((((((]]]]]].(((((((...))))))).....)))))))

cs_658349 55 ucucaguuuaauaccugggacggaaacgauucguuuccucuauguauuaa 104

[[[[[[[.(((((]]]]]]].((-(((.....)))-)).....-)))))-

od_658349 53 ucucagugugacagcugagaccg-uccuacuggga-cgucuau-uguca- 98

cons. str. [[[[[[[..((((]]]]]]].((-(((.....)))-))......))))..

Figure 7: a) Correctly predicted pseudoknot in the Rfam family Corona pk3 and its
alignment. b) Predicted pseudoknot of potential ncRNA.

29

List of Tables

1 Pseudoknot classes and complexity of their prediction and alignment. 31

30

Table 1: Pseudoknot classes and complexity of their prediction and alignment.
class R&E A&U L&P D&P CCJ R&G

prediction
time O(m6) O(m4) O(m5) O(m5) O(m5) O(m4)
space O(m4) O(m3) O(m3) O(m4) O(m4) O(m2)

alignment time O(n5m5) - - - - -
(literature) space O(n4m4) - - - - -
alignment time O(nm6) O(nm4) O(nm5) O(nm5) O(nm5) O(nm4)

(new scheme) space O(nm4) O(nm3) O(nm3) O(nm4) O(nm4) O(nm2)

31

