Fixed Parameter Tractable Alignment of RNA
Structures Including Arbitrary Pseudoknots

Mathias Mohl*!, Sebastian Will*2?, and Rolf Backofen?

! Programming Systems Lab, Saarland University, Saarbriicken, Germany,
mmohl@ps.uni-sb.de
2 Bioinformatics, Institute of Computer Science, Albert-Ludwigs-Universitét,
Freiburg, Germany,{will,backofen}@informatik.uni-freiburg.de

Abstract. We present an algorithm for computing the edit distance of
two RNA structures with arbitrary kinds of pseudoknots. A main benefit
of the algorithm is that, despite the problem is NP-hard, the algorith-
mic complexity adapts to the complexity of the RNA structures. Due to
fixed parameter tractability, we can guarantee polynomial run-time for
a parameter which is small in practice. Our algorithm can be considered
as a generalization of the algorithm of Jiang et al. [1] to arbitrary pseu-
doknots. In their absence, it gracefully degrades to the same polynomial
algorithm. A prototypical implementation demonstrates the applicabil-
ity of the method.
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1 Introduction

Over the last years, numerous discoveries attribute to RNA a central role that
goes far beyond being a messenger and comprises regulatory as well as catalytic
functions [2]. The turn of focus from purely sequence based analysis, as largely
applied for DNA and proteins, to structure based analysis, as required for RNA,
imposes a challenge to bioinformatics.

For this reason, RNA sequence/structure alignment is a rich and active field
of research [1,3-6]. Almost all current approaches rely on the assumption that
the pseudoknot-free representation of RNA structures suffices to obtain reason-
able alignments. This is justified, algorithmically, since this restriction allows
for an efficient treatment, as well as biologically, since the function of an RNA-
molecule is mainly determined by its pseudoknot-free, secondary structure, which
is usually more conserved than its sequence. Recent findings at least question the
assumption that pseudoknots can be neglected. Today, it is known that many
natural RNA molecules not only contain pseudoknots, but that these pseudo-
knots have diverse and important functions in the cell [7] and are therefore highly
conserved [8]. Moreover, the concrete alignment of the pseudoknot region is of
major interest, since pseudoknots often occur at the functional centers of RNAs.

Many problems associated with the prediction or alignment of structures
with arbitrary pseudoknots are NP-hard [1,9]. To overcome the limitation to
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pseudoknot-free structures, but still maintain a complexity that is affordable
in practice, one has several alternatives. A first approach is to consider only a
restricted class of pseudoknots, which allows a polynomial algorithm [10-12].
Second, there are heuristic approaches which are usually fast, but which are not
guaranteed to find the optimal structure or do not give a performance guarantee,
or both [6]. Here we will follow a third direction, namely to design an algorithm
that can align arbitrary pseudoknots, always computes optimal structures and
nevertheless has a performance guarantee in terms of fixed parameter tractabil-
ity. Whereas polynomial runtime cannot be guaranteed in general for NP-hard
problems, unless P=NP, fixed parameter tractability allows to guarantee poly-
nomial runtime if some parameter, which is usually small on practical instances,
is considered as constant.

We present an algorithm that computes the optimal alignment of two RNA
structures with respect to their edit distance. The parameter determining the
exponential runtime depends on how complex the crossing stems are arranged
and is small in practice. As a nice property, the algorithm gracefully degrades
to the algorithm of Jiang et al. [1] for the simpler class of structures handled by
their algorithm.

Related Work. Most of the algorithms for RNA sequence structure alignment
are not able to align pseudoknots [13,5, 3, 1].

Among the algorithms supporting pseudoknots, there are several grammar-
based approaches for motif finding, which try to align a sequence with given
structure to a sequence with unknown structure (usually a genomic sequence)[14,
15]. In these approaches, the class of supported pseudoknots depends on the
expressivity of the underlying grammar formalism.

Concerning the alignment of two pseudoknotted structures, Evans [9] de-
veloped a fixed parameter tractable algorithm that computes the longest arc
preserving common subsequence of two sequences with arbitrary kinds of pseu-
doknots. This problem is related to edit distance. However, on input classes
where our algorithm guarantees polynomial run-time due to the fixed parame-
ter, the run-time of Evan’s algorithm is not polynomially bounded.

Another algorithm by Evans [12] finds the maximum common ordered sub-
structure of two RNA structures in polynomial time (more precisely in O(n!?)
time and O(n®) space, where n denotes the length of the sequences), but only
for a restricted class of pseudoknots.

Bauer et al. [6] give an algorithm based on integer linear programming with
Lagrangian relaxation that aligns two sequences with arbitrary pseudoknots. As
a heuristic approach, it works usually well in practice but gives no guarantees
on performance and may even fail to yield optimal results.

Furthermore, there is a fixed parameter tractable algorithm by Blin et al. [16]
for protein design involving RNA, which shares an important idea with our
approach, namely the bipartitioning of the complete set of base pairs into an
efficiently tractable subset and the remaining “hard” base pairs (in our case,
pairs of base pairs).
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Fig. 1. a) Realized arc pairs (A,D), (B,E), and (C,F). (A,D) and (C,F) are open for
the highlighted subalignment. b) Edit operations (cf. [1])

2 Preliminaries

An arc-annotated sequence is a pair (S, P), where S is a string over the set of
bases {A,U,C,G} and P is a set of arcs (I,r) with 1 <[ < r < |S| representing
bonds between bases, such that each base is adjacent to at most one arc, i.e.
V(l,r)y#£ ', 7"y e P:lAU ANl #£1 Ar £ ANr # 1. We denote the i-th symbol
of S by S[i]. For an arc p = (I,7), we denote its left end [ and right end 7 by p"
and p®, respectively.

For an arc-annotated sequence (.5, P), an arc p € P is called crossing if there
is an arc p’ € P such that p < p™ < p® < p'R or p < pl < p'R < pR. In
the first case, p is called right crossing, in the second case left crossing; p and p’
form a pseudoknot. An arc-annotated sequence (.S, P) containing crossing arcs is
called crossing, otherwise non-crossing or nested.

For two arc annotated sequences (S1, P1) and (Sa, P2), we define x, 11, ¥s:

x(%,7) := if S1[i] # Sa[j] then 1 else 0,
Yr(i) == if 35: (4,5) € Py or (j,i) € Py then 1 else 0 (for k =1,2).

An alignment A of two arc-annotated sequences (S1, P1) and (Sa, P») is a set
A C[1..|51]] x [1..]S2]] of alignment edges such that for all (i, 7), (¢/, ') € A holds
1.) @ > ¢’ implies j > j" and 2.) i = ¢’ if and only if j = j'. For an alignment A
and ¢, j, j’ such that neither (¢, ) nor (¢’, j’) cuts any alignment edge (formally
AN[i. '] x [1..]S2]] = AN[1..|S1]] X [4..5]), we define the subalignment A(i,i'; 7, 5")
of Aby AN[i..i'] x [j..5']. An arc pair is a pair of arcs a = (p1,p2) € P; X Py. We
call a = (p1,p2) realized by A if and only if (p¥, p%), (p}, pY) € A, i.e. when the
arcs p1 and py are matched by A. The set OA(A; 4,45 4,7") of open arc pairs of a
subalignment A(i,4; j,7') in A is the set of arc pairs (p1, p2) that are realized by
A and where either p} < i < plt < i’ and p5 < j <pR < j ori <pl <i’ <pf
and j < pY < j' < p&. In Fig. 1a), we show realized arc pairs and a subalignment;
its set of open arc pairs is {(4, D), (C, F)}.

Each alignment has an associated cost based on an edit distance with two
classes of operations. The operations are illustrated in Fig. 1b). Base operations
(mismatch and insertion/deletion) work solely on positions that are not incident
to an arc. Base mismatch replaces a base with another base and has associated
cost wy,. A base insertion/deletion removes or adds one base and costs wg.



The second class consists of operations that involve at least one position that is
incident to an arc. An arc mismatch replaces one or both of the bases incident
to an arc. It costs 4= if one base is replaced or wgy, if both are replaced.
An arc breaking removes one arc and leaves the incident bases unchanged. The
associated cost is wy. Arc removing removes one arc and both incident bases and
costs w,. Finally, arc altering removes one of the two bases that are incident to
an arc and costs wg.

An alignment A has a corresponding minimal sequence of edit operations.
The cost of A is defined as the sum of the cost of these edit operations.

3 A Fixed Parameter Tractable Algorithm

The algorithm we present computes the minimum cost alignment of two arc
annotated sequences (S1, P1) and (S2, P2) containing arbitrary pseudoknots. In
terms of Jiang et al. [1], we solve EDIT(CROSSING,CROSSING) for their class of
reasonable scoring schemes. These schemes are restricted by w, = % + .

The central idea of the algorithm is to partition the set of arc pairs P; x P,
into a set NC of “non-crossing” arc pairs and a set of “crossing” arc pairs CR =
P; x P, — NC such that the algorithm can interleave a polynomial alignment
method for the arc pairs in NC with an exponential method for the arc pairs in
CR. The exact requirement for such a partition is made precise in the definition
of “valid partition”.

The immediate result is a fixed parameter tractable algorithm whose param-
eter is loosely understood as the number of arc pairs in CR that cover a common
base match. The presented algorithm further reduces this factor substantially by
precomputing the alignment of stems of arcs in CR.3

3.1 Partition into Crossing and Non-Crossing Arc Pairs

Two arcs p and p’ of a sequence cross, iff p& < p'¥ < p® < p'® or p < pl <
p'® < pR. To generalize this from arcs to arc pairs, we define the left and right
end point of an arc pair as

N(p1,p2) = (P7.p5)  and N(p1,p2) = (01, P},

respectively. On those points we consider the partial order < defined as (z1,y1) <
(2,y2) if and only if z1 < z9 and y; < yo.

Two arc pairs a and a’ cross, iff N\.a <\ a' <\ a <\ a or \ a <\
a <\,a' <\,a. Figure 2 represents arc pairs as rectangles in the plane whose
dimensions correspond to the two sequences. If two arc pairs cross, the rectangles
partially overlap, but note that the converse implication does not hold. In Fig. 2
for example, (D, I) and (E,J) cross, whereas (D, I) and (F,G) do not cross.

3 In principle, the idea can be extended from stems to arbitrary non-crossing sub-
structures that are, like stems, closed by an inner and an outer arc. At the cost of
precomputation this lowers the exponential factor of the algorithm further.



Fig. 2. Visualization of the arc pairs of two sequences. The first sequence has arcs A
to E, the second sequence arcs G to J. To maintain readability, only some of the arc
pairs are visualized.

Definition 1 (valid partition). A (bi-)partition of Py x Py into NC and CR
1s valid if and only if for all a,a’ € NC it holds that a and a’ do not cross.

A valid partition of P; x P, can be lifted from a partition of the arcs of P; and
P, by choosing appropriate sets CR; C P; and CRy C P, such that P, — CR,
and P, — CRy are non-crossing and set CR = CR; x CRy. However, this does
not work for arbitrary non-crossing sets P, — CR; and P, — CRs. For example, in
Fig. 2 choosing CR = {4, B, E} x {I} is not valid, since it contains none of the
two crossing arc pairs (A, G) and (D, I). Valid partitions are obtained, if CR;
and CRy contain all left crossing edges.

Lemma 1 (sufficient criterion for a partition). The partition of Py X Py
into CR = {p1 € P | p1 is left crossing} X {pa € P | pa is left crossing} and
NC = P; x P, — CR is valid.

The claim holds since for two arbitrary crossing arc pairs one of them is in CR:
for arc pairs a, o/ with N a <\ d’ <\ a <\, d’ the two arcs of a’ are left
crossing. Analogously, a valid partition is obtained, if CR; and CRy contain all
right crossing arcs.

Since our algorithm handles arc pairs in NC more efficient than arc pairs in
CR, the partition into NC and CR is crucial for the runtime. A good partition
should be minimal in the sense that it becomes invalid, if any element is re-
moved from CR. Finding the best partition among these local minima involves
balancing several parameters, since not only the cardinality of CR influences the
complexity. Thinking of the arc pairs in CR, as rectangles (as indicated in Fig. 2),
both the area of the rectangles and the number of rectangles that overlap in a
common point influence the runtime.

The partition according to Lem. 1 is not yet aware of these aspects and
sometimes does not lead to a local minimum. As an example, in Fig. 2 we would
have CR = {D, E} x {I, J}, but (E, J) can safely be added to NC, since it only
crosses with (D, I) € CR. The fact that no other arc pair containing arc E or J
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Fig. 3. Stem pair (ao,ar) = ((po1,po2), (pr1,pr2)), which covers the dotted arc pair.

can be removed from CR indicates that this is a general limitation of partitions of
arc pairs that are lifted from partitions of arcs. Instead of using these partitions
directly, they could serve as a starting point for further optimization at the level
of arc pairs with techniques like stochastic local search or genetic algorithms.
In the following we assume a valid partition of the arc pairs into CR and NC.

3.2 Precomputation of Stem Pairs

In order to align whole stems in one step, we group arc pairs in CR into pairs of
stems. We define a stem @ in P (for P € {Py, P»}) as a set of arcs {p1,...,pr} C
P with p} < -+ < pb < pR < ... < p® such that no end of arcs in P — Q is in
one of the intervals [p}..p%] or [pR..p}]. In Fig. 2, for example, {A, B} is a stem,
but {4, B, C} is not, since the left end of D is between the right endpoints of B
and C. Note that, according to this notion, stems are allowed to include bulges
and internal loops and do not need to be maximal.

The stem pair of two stems Q; C P; and Q2 C P, is characterized by the
pair (ap,ay) of arc pairs, where ap = (po1,poz2) is the pair of the outermost
arcs and a; = (py1,pr2) is the pair of the innermost arcs of Q1 and Qs, i.e. Qg
consists of the arcs Py, N [p5,...p%] x [pR...p5,] (k = 1,2) (cf. Fig. 3). The stem
pair covers an arc pair a iff a € Q1 X Q2. A stem pair is realized in an alignment
A if and only if ap and aj are realized in A.

We write the set of all stem pairs (ap,ar) where {ap,ar} € CR as STcr.*
A stem pair (ap,ar) is open for a subalignment A(i,i';4,j') in A if and only if
ao and ay are open for A(i,i';4,5') in A. The set of maximal open stem pairs of
A(i,d'54,7") in A is the smallest set M of open stem pairs of A(,4’;7,5') in A
such that each a € OA(A;4,4';7,5') is covered by a stem pair in M.

For each (ap,ar) € STcr, we precompute the cost to align the respective
stem pair as the value of an item S(ap, ar). More precisely, for ao = (po1,po2)
and a; = (pr1,pra), the value of S(ap,ay) is the cost to align S1[p5,]. .. S1[p%]
to Sa[phs) . .. S2[pk,] and simultaneously S;[p%]. .. S1[pR,] to Sa[ph] ... Sa[ps,].
In this sense, an S item describes the cost of two subalignments that are not
independent of each other due to arcs in CR.

4 We assume that the arc pairs of a stem pair are either completely contained in CR or
completely contained in NC, since minimal partitions (as well as partitions according
to Lem. 1) satisfy this property.



S'(i,4' 4,5 ar) =

S'(i+1,4';4,5"sar) + wa + ¥1(3) (g — wa) (gap)
S'(i,1'55 4+ 1,5 ar) + wa + 2(5) (%5 *wd) (gap)
S'(i,i" = 1;4,5"s ar) +wa + 1 (') (% — wa) (gap)

i 456150, = Lian) +wa +92(5) (%5 —wa) (gap)
S'(i+ 1,455+ 1,5 ar) + x4, ))wm + (P1() +2(5)) 3 (align bases)
S'(iyi" = 155,3" = Lar) + x(&', 5" Dwm + (1(8") +1p2(5")) > (align bases)
if ((4,4), (5,7")) € CR

S'(i4+1,¢ =154+ 1,5 — Lyar) + (x(é,5) + x(@,5")) 4= (align arcs)

Fig. 4. Recursion equation to compute S’ items

The computation of S items is based on temporary items S’(i,i’; 4, j'; ar)
that correspond to S(((¢,4),(4,4'));ar) if ((i,i'),(4,5’)) is an arc pair, but are
not limited to this case. S’(4,4'; 7, j'; ((3a,15), (Ja,Js))) is invalid if ¢ > 44, i/ <
i, § > jo or j < jl. The alignment of the innermost arc is computed as
S0, 133,75 (.7, G17)) = (x(ir ) + X(#', )= and step by step enlarged
with the recursions given in Fig. 4, where 1mpllcltly recursive cases relying on
invalid items are skipped.

By the recursion for S/, only the arc pair a; is guaranteed to be realized in
the precomputed optimal stem alignments. However, we want to consider in the
core dynamic programming algorithm only items S(ap, a;) where a; and ap are
realized, in order to avoid ambiguity in the recursion. Therefore, we define items
where ao is not realized as invalid. In consequence, cases referring to these items
are skipped in the core algorithm.

3.3 Core of the Algorithm

The main part of the algorithm recursively computes costs of subalignments.
The recursions are given in Fig. 6 and an illustration is provided in Fig. 5.

The subalignment costs are represented by items D(i,'; 7, /| M) where i, ¢', 7,
and j’ specify the range of the subalignment and M C STcg is its set of maximal
open stem pairs. The precise semantics is that the value of D(i,4; ], 5| M) is
the minimal cost among all subalignments A(%,4'; 7, j') of all alignments A that
satisfy (a) M is the set of maximal open stem pairs of A(4,4'; j, ) in A and (b) for
all (ap,as) € M the precomputed subalignment corresponding to S(ap,ar) is
a subalignment of A. A helpful intuition of M in the D items is that one end
of the stem pairs in M is aligned and the other half is required to be aligned
outside of the range (,4; j, j').

The semantics is reasonable only for a restricted class of items, which we
call valid items. D(i,i';4,5'|M) is valid if ¢/ > i —1, j/ > j — 1, and there is an
alignment A such that M is the set of maximal open stem pairs of A(4,4;7, ')
in A.
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Fig. 5. [llustration of the recursion for computing items D(i,4’; 7, j'| M ). The red dotted
arcs represent the set of open stem pairs M. Case (4) recurses to D(i,41—1; 7, j1 —1| M)
and D(i1 + 1,7’ — 1;51 + 1,5’ — 1|M>). There, the green dotted arcs represent the set
of stem pairs shared between the two alignment fragments (i.e. My N Mz) and the red
dotted arcs represent the remaining elements of M; U Mz, which make up M. Cases
(5) and (6) show concrete stem pairs in light red (in M) and light green (not in M),
respectively.

Given the semantics of D items, the cost of the entire alignment is the value
of D(1,|S1]; 1,152 10). It is computed following the recursion in Fig. 6 with base
cases D(i,i — 154,75 — 1|0) = 0 (for all 4, ). Implicitly, in each recursive step the
cases involving invalid items are skipped.

We will take a closer look at the cases of the recursion. First note that for
CR = ), only items of the form D(4,4'; 7, 5'|0) are valid. Then, the cases (5) and
(6) are always skipped and the recursion degenerates to the recursion of Jiang
et al. [1], shown in Fig. 7, where the items D(i,4’; 7, j'|@) directly correspond to
matrix entries DP(i,i'; j,5").°

In the absence of crossing arcs, the recursion in Fig. 7 is correct since the
case distinction is exhaustive and each case assigns the correct cost. To see this
assume an optimal alignment A with a subalignment A(i,'; 7, j/) without open
arc pairs. Considering the positions i’ and j’, there are exactly the following
cases directly corresponding to the recursion. (1) ¢’ is not aligned in A. If ¢’ is
not adjacent to an arc this is due to a base deletion with cost wgy. Otherwise,
the arc is either removed or altered, which causes cost w, /2. (2) j' is not aligned
in A, analogously. (3) (i',j') € A, but A realizes no arc pair involving (¢, j).

® Note that the restrictions i > 41, > j1 in case 4 of the recursion in Fig. 7 is implicit
in our recursion by skipping cases with invalid items; here D(i,41 — 154,51 — 1|M1)
is invalid.



D(i,i';4,7 |M) = min

D(iyi" = 134, 5’| M) + wa + 1 (i) (5 — wa) (1)
D(i,i'; 3" = 1M) + wa + 12 (§') (5 — wa) (2)
D(i,i" = 135,5" = HM) + x(¢',§) - wm + (1 (') +12(5")) 5> ®3)

if there exist some i1, j1 with ((i1,4'), (j1, ")) € NC
D(i,i1 — 154,51 — 1| M)
min g D01+ L =1+ 1,5 = 1[Ma) | M1, Mo & STon, where 8y
. . g Wam = —
+(x(in, 1) +x (@, 5) =5 (MU My) = (M 1 Me)

if there exists some (ao,ar) € M with
Nao = (i1,51) A N\ar = (7,5") or \ar = (i1,71) A \ao = (', ')

D(iyir — 14, j1 — 1M — {(ao, ar)}) + Zleg2) (5)
D(i,i1 — 1;4,j1 — 1|M U{(a0,ar)}) | (a0, ar) € STcr, where
min +S(ao,a1) Nao = (i',7") and (6)
2 Nar = (i1, j1)

Fig. 6. Recursion equation to compute D items

All adjacent arcs are broken, each causing cost wy/2. If S1[i’] and S[j’] mis-
match this causes additional cost w.,. (4) (¢,7') € A and A realizes an arc pair
((i1,1), (41,4")) with right end (¢',5’). Then, the cost of the whole arc pair is
charged and the subalignment is decomposed into a subalignment before the arc
pair and the subalignment inside the arc pair.

Note that due to the assumption that A(i,4’; j, 7/) has no open arc pairs the
case where (i’,j') € A and A realizes an arc pair with left end (¢, ;) can not
occur. Furthermore, all cases only decompose into subalignments without open
arc pairs. In particular in case (4), the two subalignments can not have open arc
pairs since such arc pairs would be open arc pairs of both subalignments and
then cross the arc pair ((i1,4'), (j1,4))-

The key to understand the recursion in Fig. 6 (illustrated in Fig. 5) is that it
maintains the decomposition of the algorithm of Jiang et al. as much as possible
in the presence of crossing arc pairs. Then, Jiang’s case (4) is no more exhaustive
and has to be extended to consider all cases where the recursive subalignments
contain open arc pairs. To achieve this, we make the open arc pairs explicit via
the additional component M of our items. In principle, it suffices to directly
represent the set of open arc pairs in M. For efficiency reasons, we combine
open arc pairs into open stem pairs in order to keep the sets M small. As a
direct consequence of making the open stem pairs explicit, we can exhaustively
minimize over all alternatives in case (4). In particular, these include the cases
where M; and M5 contain open stem pairs that are not contained in M, namely
those where M; N My # (.



DP(i,i';j,j') = min

DP(i,i" — 1;5,5") + wa + 91 (') (%5 — wa) (1)

DP(i,i';5,5" = 1) + wa + ¥2(5") (5 — wa) (2)

DP(i,i" = 155, = 1) + x(@',5") - wm + (¥1(8") + ¥2(5") 5 ®3)

if there exist some i < i1, j < j1 with ((i1,4), (j1,5")) € P1 x P
DP(7‘77'1 - 1;j7j1 - 1) +DP(7‘1 + 17il - 1;j1 + 1aj/ - 1) (4)
+(x (1, g1) + x(@',5)) g

Fig. 7. Recursion equation for the algorithm of Jiang et al.

For cases (1) to (3), M is invariant since no arc pairs are realized in these
cases. In consequence, the generalization of these cases is straightforward.

In order to make our case distinction exhaustive for CR # (), we need addi-
tional cases (5) and (6) that cover the situations where an arc pair a in CR has
left or right end in (¢, ') (recall that only the arc pairs in NC are handled in
case (4)). There are two such cases: either a is open in A(4,4'; j, ) or not. In the
first case, the maximal open stem pair that covers a is contained in M and hence
uniquely determined. We can therefore decompose into (the respective subalign-
ment of) this maximal open stem pair and the remaining subalignment, where
this stem pair is no more open (case (5)). In the second case, we minimize over
all possible maximal open stem pairs that cover a. Each time, we decompose
again into (the respective subalignment of) this maximal open stem pair and
the remaining subalignment, where now the stem pair is open in this remaining
subalignment (case (6)). Note that we distribute the cost of the precomputed
stem pairs equally among the two subalignments. This is correct, since it is
guaranteed that each alignment contains either both subalignments or none of
them. Further note that, when descending in the recursion, open stem pairs are
introduced via cases (4) or (6) and are removed again via case (5).

When the cost of the alignment is determined, the actual alignment can be
constructed by the usual backtracing techniques.

3.4 Complexity

Let n be max(|S1|, |S2]), let s and s’ be the maximal number of arcs and bases
in a crossing stem, respectively. For an item S(ap,ar) we have O(n?s?) possible
instances: for ap, we can freely choose among the O(n?) arc pairs in CR and for
ay we have O(s?) possible choices, since the arcs of ap and a; must belong to the
same stems. Analogously, for the S’ items we need O(n?s'*) space. Since each
of these items can be computed in constant time, the time complexity coincides
with the required space.

An item D(i,q'; 7,7’ |M) has O(n*) possible instances of i,4’, 7, 5’, but analo-
gously to the algorithm of Jiang et al. [1] only O(n?) of them need to be main-



tained permanently. To measure the number of instances of M, we need the
notion of the crossing number of a point (z,y) € [1..|S1]] x [1..|S2|], defined as
C(x,y) = [{ (ap,ar) € STHRX [Nar < (z,y) <\.ar }|, where STHA™ denotes
the subset of ST that only contains pairs of maximal stems (with respect to set
inclusion). We denote the maximal crossing number with k. Since each maximal
stem pair has O(s*) fragments, there are at most O((s*)CENTCET)) = O(s8F)
possible instances of M for fixed 4, j, i, j'.% Hence we need to compute O(n*s8%)
D items and maintain O(n?s%%) of them in memory at the same time.

The computation of a D item needs only for the recursive alternatives (4) and
(6) of Fig. 6 more than constant time. In alternative (6), iteration over all O(s?)
possible instances of a; is necessary and in alternative (4) we need to iterate over
all possible instances of M; and Ms. Since Ms is uniquely determined by M and
My, there are O(s%F) of these instances. The computation of all the O(n*s®*)
D items hence requires O(ns® - s8%) = O(n*s%%) time.

If at least one of two sequences does not contain pseudoknots, the only mini-
mal partition is CR = @) and NC = P; X P,. In this case the algorithm gracefully
degrades to the one of Jiang et al. [1] requiring O(n*) time and O(n?) space.

4 Practical Evaluation

We implemented a prototype of the algorithm in C+4++ to evaluate its appli-
cability in practice. With the prototype, we computed pairwise alignments of
some RNA structures of the tmRNA database [17]. For our evaluation we have
chosen the longest tmRNA sequence (Mycobacteriophage Bxz1, MB), the short-
est sequence (Cyanidium caldarium, CC), the sequence that contains the largest
crossing stems (Ureaplasma parvum, UP), and a nested version (UPnest) of the
latter, where we removed all left crossing arcs.

We were able to compute the pairwise alignments of these sequences with
1 GB of memory with one exception using 2 GB. Table 1 shows that the runtime
scales well with the complexity of the involved pseudoknots. As we suggested, the
exponential factor k is small on all instances. Whereas alignments of sequences
with large pseudoknots take several hours, sequences with small pseudoknots
can be aligned in a few minutes. In contrast, sequence length has a much smaller
impact on runtime, as in particular the alignments with UPnest show.

For the results in Table 1 we partitioned into NC and CR according to the left
crossing stem criterion (see Lem. 1). However, the runtime can depend heavily
on the partition into NC and CR. For example the alignment of Ureaplasma
parvum and Mycobacteriophage Bxz1 took less than three hours if we chose CR
to contain the pairs of left crossing arcs, but more than 6 hours if we chose
the right crossing arcs instead. Notably, in this case the better partitioning can
be identified in advance by comparing the parameters k and s; k is equal for
both cases, s is 10/7 for the left crossing and 12/12 for the right crossing case.
This comparison indicates that a more sophisticated partitioning into crossing

5 This is a coarse estimate, that counts many invalid requirement sets, in particular
those, where some stem pairs cannot be realized in the same aligment.



Table 1. Runtime of the alignments (on a single Xeon 5160 processor with 3.0 GHz)
and the properties of the aligned structures (n=sequence length, s=max. number of
arcs in crossing stem, pk=number of pseudoknots, k=fixed parameter of the algorithm)
for left crossing partitioning.

pk [memory| runtime
4/4|< 2 GB|726m 52s
4/2|<1 GB|172m 53s
4/1|< 1 GB| 11m 51s
4/0|< 1 GB| 4m 43s
2/2/<1 GB| 43m 20s
2/11< 1 GB| 3m 56s
2/0/<1 GB| 3m 27s
1/1|<1 GB| 1m 11s
1/0|< 1 GB| 2m 6s
0/0|< 1 GB| 4m 21s

aligned sequences| n s
UP /UP  |413/413[10/10
UP /MB  |413/437|10/7
UP / CC  |413/254] 10/2

UP / UPnest |413/413|10/0
MB / MB 437/437| 7/7
MB / CC 437/254| 7/2

MB / UPnest [437/413| 7/0
CC /CC  |254/254] 2/2

CC / UPnest |254/413| 2/0

UPnest/UPnest |413/413| 0/0

OO RO = =IO = = =R

and nested arc pairs, e.g. greedy or stochastic local optimization, may result in
significant speed-ups in practice.

Finally note that the efficiency could be improved further by heuristic opti-
mizations as utilized in many existing alignment tools. For example, skipping the
computation of items that are unlikely to contribute to the optimal alignment
can significantly reduce computation time.

5 Conclusion

We have presented an algorithm that is able to align RNA structures with arbi-
trary pseudoknots using a general edit distance for reasonable scoring schemes.
The algorithm is fixed parameter tractable and our prototypical implementation
shows its applicability in practice.

A central insight due to our method is that pseudoknots can be effectively
handled by partitioning the RNA structure into a set of “easy” and “difficult”
interactions. Then, expensive, exponential computation can be restricted to the
“difficult” part, whereas state-of-the art polynomial methods can be applied to
the “easy” part. Furthermore, since for alignment the dynamic programming
recursions operate on pairs of sequences even more effective partitionings can be
obtained on the level of arc pairs instead of lifting partitions on single arcs.

The idea of partitioning and making this level of abstraction explicit in the
algorithm offers possibilities for further optimization. First, since the concrete
partition strongly impacts the run-time, optimizing the partition is worth inves-
tigating. Second, one obtains heuristic versions of our algorithm by filtering out
unlikely arc pairs.
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