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Bioinformatics, Institute of Computer Science
Freiburg University, Germany

Christina Schmiedl∗

Bioinformatics, Institute of Computer Science
Freiburg University, Germany

Shay Zakov
Department of Computer Science

Ben Gurion University of the Negev, Israel

Abstract

Sparsification is a technique to speed up dynamic programming algorithms which has been suc-
cessfully applied to RNA structure prediction, RNA-RNA-interaction prediction, simultaneous align-
ment and folding, and pseudoknot prediction. So far, sparsification has been more a collection of
loosely related examples and no general, well understood theory. In this work we propose a general
theory to describe and implement sparsification in dynamic programming algorithms. The approach
is formalized as an extension of Algebraic Dynamic Programming (ADP) which makes it applicable
to a variety of algorithms and scoring schemes. In particular, this is the first approach that shows
how to sparsify algorithms with scoring schemes that go beyond simple minimization or maximiza-
tion, like enumeration of suboptimal solutions and approximation of the partition function. As an
example, we show how to sparsify different variants of RNA structure prediction algorithms.

1 Introduction

Dynamic programming (DP) algorithms enjoy a great popularity in many areas of bioinformatics, rang-
ing from simple sequence alignments, over RNA structure prediction to predictions of RNA interactions
or the Viterby algorithm used for Hidden Markov Models. Since efficiency is a major concern for large
scale analysis, various techniques have been developed to speed-up DP algorithms over sequence data.
The techniques used comprise the Four-Russians method [1, 2, 3], Valiant’s approach [4, 5, 6], as well
as various sparsification approaches [7, 8, 9, 10, 11, 12]. Among those techniques, sparsification has
been most popular, as it is applicable to a wide range of applications, comparably easy to implement,
and yields good speed-ups in both theory and practice.

Sparsification approaches consider the intermediate results computed so far to identify parts of the
computation that can be ignored since they cannot contribute to a solution anymore. As a consequence,
the DP tables become sparse and require less computation time and in some implementations also less
space. Sparsification has been recently applied to RNA structure prediction [8, 10], simultaneous align-
ment and folding [9], RNA-RNA-interaction prediction [11], and the prediction of RNA pseudoknot
structures [12]. In all those applications sparsification yielded a significant speed-up. For RNA struc-
ture prediction, for example, it reduces the complexity from O(n3) to O(n2ψ(n)), where ψ(n) has been
shown to be significantly smaller than n.

While it is intuitively clear that all sparsification approaches mentioned above are somehow related,
they have not been characterized in term of a common framework that highlights their similarities and
differences. In order to talk about DP algorithms at a general level we make use of Algebraic Dynamic
Programming (ADP) [13]. ADP is a formalism that allows to formulate DP algorithms over sequence
data in a simple, declarative, and formally precise way. There also exist compilers [14, 15] that yield
automatically generated implementations for ADP programs. As ADP is very general, it has been used
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to develop tools for a variety of different tasks like RNA shape analysis (RNAshapes [16]), predic-
tion of RNA pseudoknot structure (pknotsRG [17]), or the prediction of microRNA/target duplexes
(RNAhybrid [18]).

This paper has two main contributions. First, we extend the ADP formalism to handle sparsification.
This leads to a more general understanding of the entire concept of sparsification and allows to quickly
implement sparsified variants of DP algorithms formulated in ADP. Second, we show that the general
notion of sparsification we propose also works for advanced scoring schemes. So far, sparsification has
only been applied to simple minimization and maximization problems, but our notion of sparsification
generalizes effortlessly to the enumeration of suboptimal solutions and approximation of the partition
function.

2 A quick overview on ADP

DP algorithms are usually described with recursion equations. Those equations contain all essential as-
pects of the program including the recursive structure of the problem decomposition, the scoring scheme,
and the question which sub-results should be tabulated. ADP is an alternative way to describe DP algo-
rithms over sequence data which clearly separates all those aspects. As a detailed introduction of ADP is
out of the scope of this paper, we will only give a quick overview based on the example of the Nussinov
algorithm. More details about ADP can be found in [13].

The Nussinov algorithm [19] is a classical algorithm to predict for a given RNA sequence a nested
structure with maximal number of base pairs (where only certain pairs, namely A-U, G-U and C-G pairs
are allowed). It recursively computes the maximum number of base pairs of a subsequence from position
i to j as N(i, i−1) = 0, N(i, i) = 0 and for j > i

N(i, j) = max


N(i, j−1)

max
k s.t.

(k, j) valid base pair, i≤k< j

N(i,k−1)+N(k +1, j−1)+1 (1)

The first recursion case represents structures where the last position j is unpaired and the second case
covers pairing of j with any position k. An analogous ADP program would consist of the four grammar
rules

N →
nil

ε

|
single

a
|

unpaired

N a
|

paired

N a N â
. . .h (2)

representing the two base cases and the two recursive cases, and the algebra

nil() = 0 single(a) = 0 unpaired(x,a) = x

paired(x,a,y, â) = x+ y+1 h(X) = maxX
(3)

representing the scoring. The grammar is similar to a context free grammar (CFG) but with trees on the
right hand side of the rules. If only the leaves of the trees are considered, a normal context free grammar
is obtained. In the example, the grammar has a nonterminal symbol N and terminal symbols a and â
representing arbitrary bases such that (a, â) is a valid base pair. The inner nodes of the trees are functions
of the algebra. During the run of an ADP program, the input sequence is parsed as in a usual CFG. But
since the right hand side of the grammar rules are trees, each derivation constructs a tree instead of a
string by recursively replacing each nonterminal by the subtree derived by it1. The input sequence CAG

1Note that these trees are not identical to the derivation trees of CFGs.
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Figure 1: Two parses of the input ”CAG” for the grammar given in (2).

has, for example, different parses (see Fig. 1) representing the structure without base pairs and the one
with the base pair C−G. Each such tree can be interpreted as a term whose evaluation yields some score.
In this example, the first tree evaluates to 0 and the second one to 1 since the trees represent structures
with 0 and 1 base pair, respectively.

The choice function h is some additional annotation in the grammar that we ignored so far. It de-
scribes the optimization criterion, i.e. which of the parses are the solution(s). Formally, it takes a set
of parses (or more precisely a multiset of their scores) as argument and returns the optimal score(s). In
most cases the result is a singleton set, but ADP programs can also, for example, enumerate all possible
parses or pick the best 10.2

When the choice function is applied at the very end, after the parser constructed all possible parses,
the ADP program behaves like a simple generate and test program that enumerates all possible structures
and then picks the one with maximum number of base pairs. This can be turned in efficient dynamic
programming by interleaving a CYK like grammar parser with the application of the choice function.
More precisely, the CYK parser runs as usual recursively computing for all subsequences from some i to
some j and each nonterminal X the set of all possible parses. But instead of storing in a table entry X [i, j]
the set of all parses, the parses are first evaluated to their score and then the choice function is applied
such that only the (multisets of) optimal scores need to be stored in the table. Assume, for example, that
“CAG” is a part of some longer input sequence. Then only the second possible parse for “CAG” would
be considered when recursively constructing parses for any larger parts of the input, as its score is the
maximum among the two parses of the fragment.

You can also choose another recursive decomposition. The grammar and algebra shown in Fig. 2
create a Nussinov variant which is more suitable for sparsification. The decomposition says that any
RNA structure (S) can either be split into two parts (A) or is a closed structure (B) which consists either
of a single base or an outermost basepair with an arbitrary structure below.

3 A general extension for sparsification in ADP

So far, sparsification is not a well defined concept but merely a collection of examples. The essential
basis of all those approaches [8, 9, 11, 12] is to introduce specific tests at some places in the recursion
to determine whether the currently computed value is a candidate. For (some of the) subsequent compu-
tations then only candidates need to be considered whereas other entries can be safely ignored without
affecting the correctness of the recursion. The test for candidacy depends on the respective algorithm
(e.g. the OCT and STEP criteria in Sect. 4). We propose the following general extension of ADP that is
neither limited to any fixed such criterion nor to a specific choice function h.

2h(X) must not even be a subset of X . For partition function computation, for example, h(X) computes the sum of all
elements of X .
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S →
nil

ε

| B | A . . .h

A →
split

S B
. . .h

B →
single

a
|

pair

a S â
. . .h

nil() = 0

split(x,y) = x+ y

single(a) = 0

pair(a,x, â) = x+1

h(X) = maxX

Figure 2: Grammar (on the left) and algebra (on the right) for a variant of the Nussinov algorithm that
is suitable for sparsification.

Definition 1 (sparsification operator). For an ADP program with nonterminals A and B and a choice
function h we define

B\h A := {B−B′ with B′ s.t. h(B]A) = h((B−B′)]A) and |B′| is maximal}

In the equation each nonterminal implicitly represents its set of solutions on the respective part of the
input.3Note that there might be more than one set which satisfies the above criterion for B′. In this case,
we assume that B′ is selected arbitrarily among these sets.

A new nonterminal Bc representing only the candidates among the possible parses of B can be ob-
tained with a grammar rule Bc→B\h A. Intuitively, Bc then contains only the parses of B that are required
provided that A is also considered in the recursion. By Def. 1, any rule S→ A|B with choice function h
can, for example, safely be replaced by S→ A|Bc. For h(X) = maxX it denotes that Bc[i, j] is B[i, j] if
B[i, j] > A[i, j] and empty otherwise. But it generalizes nicely to other choice functions and also result
sets of size greater one, as we will see in Sect. 5.

To implement the sparsification operator, the parser must be extended for grammar rules like Bc→
B \h A. Once some table entries A[i, j] and B[i, j] = {b1, . . . ,bk} are computed, Bc[i, j] is computed as
follows. We initialize Bc[i, j] = /0 and check sequentially for each bx i≤ x≤ k if h(Bc[i, j]]{bx, . . . ,bk}]
A[i, j]) = h(Bc[i, j]]{bx+1, . . . ,bk}]A[i, j]). If this is not the case, bx is added to Bc[i, j]. If we assume
that the solution sets have constant length (usually even singleton sets), this check requires constant time.

To benefit from sparsification also in terms of space complexity, Bc should be stored in some kind of
sparse table data structure (and B should not be stored at all). This data structure should allow to jump
from one non-empty entry to the next non-empty one in the same row or column in constant time. This
is essential, since the main benefit of sparsification happens when Bc occurs in the right hand side of
some other grammar rule, e.g. the rule for A in Fig. 3(a). Usually, to compute A[i, j], the parser would
consider each of the linearly many possible split points k to combine S[i,k− 1] with Bc[k, j]. But if Bc

is sparse, all k for which Bc[k, j] is empty can be discarded. The possibility to go from one non-empty
entry of Bc to the next one is hence essential to reduce the number of points k. This can be achieved,
for example, by representing the sparse table by lists containing the non-empty entries of each individual
row and column.

3B]A creates a multiset, i.e. if some entry occurs once in both A and B it occurs twice in the result. This is important, for
example, for the partition function calculation covered in Sect. 5
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(a)

S →
nil

ε

| Bc | A . . .h

A →
split

S Bc
. . .h

B →
single

a
|

pair

a S â
. . .h

Bc → B\h A

(b)

S →
nil

ε

| Bc | A . . .h

A → C |
split

Lc Bc
. . .h

B →
single

a
|

pair

a S â
. . .h

Bc → B\h A

C →
left

a S
. . .h

Lc → S\h C

Figure 3: Sparsified Nussinov grammar with (a) OCT and (b) OCT-STEP criterion

4 Sparsified variants of the Nussinov algorithm

To keep the presentation simple, we show how to apply our sparsification operator to the Nussinov
algorithm. It can be used analogously for more complex recursions.

The grammar in Fig. 2 is semantically ambiguous [20] in the sense that one RNA structure corre-
sponds to several different parses: Since A[i, j] can be split into S[i, i−1] (of length 0) and B[i, j], B[i, j]
can be derived from S[i, j] as S[i, j]→ B[i, j] or S[i, j]→ A[i, j]→ S[i, i−1]B[i, j]→ B[i, j]. By constrain-
ing S in the rule of A to have at least length 1 this ambiguity is eliminated. While this only avoids to
consider the same part of the search space more than once, sparsification allows to completely ignore
regions of the search space if it is guaranteed to find a solution outside these regions.

4.1 OCT sparsification

OCT sparsification reduces the complexity of the rule for A in the grammar of Fig. 2 by reducing the
number of splits of A into some S and some B.

Definition 2 (OCT criterion [10]). A subsequence from i to j is optimally co-terminus (OCT) if i = j
or if every optimal folding of it contains the base pair (i, j), i.e. for h(X) = maxX B[i, j] = {b} and
A[i, j] = {a} with b > a.

One can show that there is an optimal split point k for A[i, j] such that B[k, j] is OCT [10]. This
means, that we only have to examine all split points for A[i, j] where the second fragment is OCT. This
leads to the grammar shown in Fig. 3(a). We show now (for h(X) = maxX) that Bc[i, j] contains exactly
the OCT fragments. Since A has at least length 2, for each i Bc[i, i] = B[i, i] follows directly from Def. 1.
So let us consider the case where B[i, j] has at least length 2. If there exists a parse for A[i, j] which
has a higher or equal score than B[i, j] it holds: h(B]A) = h(A) = h((B−B′)]A) for B′ = B. Hence,
Bc[i, j] is empty if A[i, j] ≥ B[i, j]. Analogously, if A[i, j] < B[i, j] then h(B]A) = h(B) 6= h(A) implies
h(B−B′) = h(B) and consequently Bc[i, j] = B[i, j].

4.2 OCT-STEP sparsification

The Nussinov algorithm can be sparsified even more by using the STEP criterion.
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Definition 3 (STEP criterion [10]). A subsequence from i to j is called a step sequence, if in every
optimal folding the base i is paired.

One can show that there is an optimal split point k for A[i, j] such that either k = i+1, or S[i,q−1] is a
STEP and B[q, j] is an OCT sequence [10]. For the split point k = i+1, we need to introduce the new rule
C. Furthermore we can use C[i, j] to create a sparse table Lc (for left paired), which contains the STEP
entries. The grammar is displayed in Fig. 3(b). We show now (for h(X) = maxX) that a subsequence
from i to j is stored in Lc[i, j] if and only if it is a STEP sequence. If there exists a parse for C[i, j] which
has a higher or equal score than S[i, j] it holds: h(S]C) = h(C) = h((S−L′)]C) for L′ = S. Hence,
Lc[i, j] is empty if C[i, j] ≥ S[i, j]. If S[i, j] > C[i, j] then h(S]C) = h(S) = h(S− L′) 6= h(C) implies
L′ = /0 and therefore Lc[i, j] = S[i, j]. A comparison of the efficiency of OCT and OCT-STEP variants is
available in the appendix.

5 Sparsification for advanced scoring schemes

So far, sparsification has only been applied to simple maximization and minimization problems. How-
ever, Def. 1 generalizes naturally to more complex scoring schemes. In the grammars of Fig. 3 we can,
for example, set h(X) = maxk X to enumerate the multiset of scores of the k best solutions. In this case,
by Def. 1 Bc[i, j] contains exactly the scores of the suboptimally co-terminus structures in the sense that
the structure is among the k best structures and contains the base pair (i, j). This is exactly what we need
to keep the tables as sparse as possible but still to be able to reconstruct the k best solutions using the
standard back-tracing techniques. A practical evaluation comparing the sparseness for finding the best
solution to finding the k best solutions can be found in the appendix.

Another important choice function is h(X) = ∑x∈X x which is required to compute the partition func-
tion. Partition function computation is not sparse, as each structure contributes to the sum (except if it
has score 0) and hence cannot be ignored. Our ADP sparsification operator automatically shows this
behavior: For h(X) = ∑x∈X x, Def. 1 implies that B′ can only contain entries with a score of 0. Hence,
the sparsified grammars can also be used for partition function calculation, but the resulting computa-
tions are not expected to be sparse, since the problem itself is not sparse. One can also approximate the
partition function by rounding scores with a negligible contribution to 0. In this case, those parts of the
search space would again automatically become sparse in the implementation.

6 Conclusions

We presented the first systematic approach to describe the existing approaches of sparsification in dy-
namic programming in terms of a general framework. Our sparsification operator is able to express dif-
ferent sparsification criteria including the OCT and STEP criteria or any other criterion which is based
on checking whether certain solutions B are “still required when” considering some other solutions A.
Although we have discussed this here for the Nussinov algorithm, it generalizes to more complex algo-
rithms for RNA structure prediction [8], simultaneous alignment and folding [9], RNA-RNA-interaction
prediction [11], and the prediction of RNA pseudoknot structures [12]. This work also shows how to gen-
eralize these approaches to the enumeration of suboptimal solutions or the approximation of the partition
function.

Since our prototypical Haskell implementation is not intended for efficient implementations, the next
important step will be to integrate the theory into the current ADP to C++ compiler Bellman’s GAP [15].
Concerning the sparsification of advanced scoring schemes, the next interesting question is whether an
approximated partition function can still be used, for example, to get a reasonable approximation of
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the base pair probabilities. Another interesting question is whether there exist general techniques to
transform regular grammars to sparse equivalent grammars.
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7 Appendix

7.1 Evaluation for the sparsified variants of the Nussinov algorithm

In order to evaluate the effectiveness of the sparsification approaches mentioned in Sect. 4, we extended
the existing Haskell implementation of ADP [13] with our sparsification operator. Note that the Haskell
implementation of ADP is intended as a flexible and extensible platform for quick experiments and not
optimized for performance. Therefore, this section is only a feasibility evaluation for which we used the
Haskell interpreter hugs to measure the number of split points of the different Nussinov variants. For
implementations of practical relevance, an analogous extension of the ADP to C++ compiler Bellman’s
GAP [15] is required (which we have planned as future work).

Based on the extension of the Haskell ADP system, we implemented the different Nussinov variants
in order to measure their degree of sparseness. We took 100 random sequences of length 100 and 200
and folded them using the non-sparse Nussinov variant, the OCT variant and the OCT-STEP variant. The
average number of split points required on a single 2.3 Ghz Opteron 2356 processor with 4 GB memory
is given in Table 1. Also the average proportion of split points examined by the sparse variants compared
to the original Nussinov algorithm are shown. One can see that the proportion of split points analyzed
by the sparse variants compared to the original Nussinov algorithm decreases with increasing sequence
length. The OCT-STEP variant is slightly more sparse than the OCT variant. Note that we compare our
sparse variants to the original Nussinov algorithm with a recursion A→ SB which hence considers only
split points where the outermost bases of B can pair. The evaluation done in [10] compares the sparse
variants to a basic variant with significantly more split points due to a recursion of the form A→ SS. We
also compared our implementation to this variant and could confirm the results reported in [10].

Table 1: Number of split points for the different Nussinov variants for random sequences of different
length.

Grammar
average number of split points over 100 random sequences

of length 100 of length 200

Nussinov, Fig. 2 65288 510473
NussinovOCT, Fig. 3(a) 10620 (16.3 %)1 53947 (10.6 %)1

NussinovOCTSTEP, Fig. 3(b) 9430 (14.4 %)1 43679 (8.6 %)1

1average proportion of split points examined by the sparse variants compared to the original Nussinov algorithm

7.2 Evaluation for enumerating suboptimal solutions

As explained in Sect. 5, sparsification can also be applied to advanced scoring schemes as, for example,
enumerating the best k suboptimal solutions. To measure how effective sparsification is in this scenario,
we counted the number of split points examined during bottom-up parsing. So if a split point of a
fragment s and a fragment b is considered, k2 instances of the split point are examined, as k suboptimal
solutions need to be stored for each fragment in the original Nussinov algorithm. When sparsification
is applied, the number of suboptimal solutions that need to be stored can be reduced. We computed for
100 random sequences of length 50 the average number of split points examined during the evaluation
of suboptimal solutions. The results can be found in Table 2. We also show the average proportion of
split points examined by the sparse variants compared to the original Nussinov algorithm. One can see
that the proportion of split points analyzed by the sparse variants compared to the original Nussinov
algorithm decreases with increasing k.
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Table 2: Number of split points for the different Nussinov variants for enumerating suboptimal solutions

Grammar
average number of split points over 100 random sequences

k = 1 k = 5 k = 10

Nussinov, Fig. 2 8573 128461 416778
NussinovOCT, Fig. 3(a) 2277 (26.6 %)1 26032 (20.3 %)1 77986 (18.7 %)1

NussinovOCTSTEP, Fig. 3(b) 2124 (24.8 %)1 17576 (13.7 %)1 49595 (11.9 %)1

1average proportion of split points examined by the sparse variants compared to the original Nussinov algorithm
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