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Abstract

Motivation: The CRISPR-Cas9 system is a Type II CRISPR system that has rapidly become the most versatile and
widespread tool for genome engineering. It consists of two components, the Cas9 effector protein, and a single
guide RNA that combines the spacer (for identifying the target) with the tracrRNA, a trans-activating small RNA
required for both crRNA maturation and interference. While there are well-established methods for screening Cas ef-
fector proteins and CRISPR arrays, the detection of tracrRNA remains the bottleneck in detecting Class 2 CRISPR
systems.

Results: We introduce a new pipeline CRISPRtracrRNA for screening and evaluation of tracrRNA candidates in
genomes. This pipeline combines evidence from different components of the Cas9-sgRNA complex. The core is a
newly developed structural model via covariance models from a sequence-structure alignment of experimentally
validated tracrRNAs. As additional evidence, we determine the terminator signal (required for the tracrRNA tran-
scription) and the RNA–RNA interaction between the CRISPR array repeat and the 50-part of the tracrRNA. Repeats
are detected via an ML-based approach (CRISPRidenify). Providing further evidence, we detect the cassette contain-
ing the Cas9 (Type II CRISPR systems) and Cas12 (Type V CRISPR systems) effector protein. Our tool is the first for
detecting tracrRNA for Type V systems.

Availability and implementation: The implementation of the CRISPRtracrRNA is available on GitHub upon request-
ing the access permission, (https://github.com/BackofenLab/CRISPRtracrRNA). Data generated in this study can be
obtained upon request to the corresponding person: Rolf Backofen (backofen@informatik.uni-freiburg.de).

Contact: backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Clustered regularly interspaced short palindromic repeats (CRISPR)
system is a widespread, prokaryotic acquired immune system to de-
fend against invading phages or other genetic material. It consists of
a CRISPR array made of repeats and spacers, which match foreign
genetic material, and a set of CRISPR-associated (Cas) proteins.
While there is a quite large variety of CRISPR systems found in na-
ture, the system can be grouped into two classes and six major types
(Makarova et al., 2020). Class 2 CRISPR systems, consisting of
Types II, V and VI, have a single large effector protein, which makes
them optimal for biotechnological applications. The CRISPR-Cas9
system is a Type II CRISPR system that has rapidly become the most
versatile and widespread tool for genome engineering. It consists of
three components, the Cas9 effector protein, the CRISPR array (i.e.
the spacer-containing element for identifying targets) and the
tracrRNA, which is a trans-activating small RNA required for both
the maturation of the precursor crRNA (CRISPR RNA) as well as
for the later interference. While there are well-established methods

for screening Cas effector proteins and CRISPR arrays, the detection
of tracrRNAs remains the bottleneck in detecting Class 2 CRISPR
systems. Although different approaches have been developed to
screen for tracrRNA, structural covariance models (CM) have most-
ly been used so far to compare clusters of screened putative
tracrRNAs (Briner et al., 2014; Dooley et al., 2021; Fonfara et al.,
2014). These CMs were based on a wide screen of tracrRNA candi-
dates, combined with sequence-based clustering and subsequent se-
quence alignment in each cluster using MAFFT to generate the CM
models. The found CMs covered the whole tracrRNA, including the
anti-repeat part and the terminal hairpin, thus effectively using an
evolutionary model for the anti-repeat part.

We developed a new approach for screening tracrRNA in this
paper that supersedes existing approaches in several aspects. First,
we use structural clustering on experimentally validated tracrRNAs,
generating more specific CMs. Our models also exclude the anti-
repeat part, as we can use here a more reliable information source
by investigating the RNA–RNA interaction between the repeat and
the tracrRNA. Thus, for screening tracrRNA, we first detect
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CRISPR arrays and the associated repeats in a genome, and then use
the interaction between tracrRNA and a repeat as evidence for a
tracrRNA candidate, instead of applying an evolutionary model of

the anti-repeat. In addition, our models also represent information
about which part of the structure is required for tracrRNA function.

Second, we use improved methods to detect CRISPR arrays and
CRISPR cassettes containing the relevant Cas proteins. And third,
our system is not restricted to Type II systems but covers, for the

first time, also Type V systems.

1.1 TracrRNA in Type II systems
Almost all Class II systems, including Type II-A, B, C1 and C2, rely

on a small non-coding RNA called tracrRNA (trans-activating
CRISPR RNA; Chylinski et al., 2013; Makarova et al., 2020) for
both the maturation of crRNA and the later interference step.

Concerning maturation, several studies were performed on crystal
structures of Cas9 that help to understand how Cas9 specifically rec-

ognizes the crRNA: tracrRNA duplex (e.g. Anders et al., 2014; Huai
et al., 2017; Jiang et al., 2015; Jinek et al., 2014). It is now clear
that the tracrRNA consists of two parts, a 50-‘anti-repeat’ part and a

30-tail part called nexus. The crRNA: tracrRNA complex, which is
recognized by Cas9, can be divided into a few domains: the anti-
repeat interacting with repeat (stem and bulge), and the tail part

containing two regular hairpin loops and one small hairpin. Anti-
repeat sequences normally contain 24 nt, and the 30-tail usually has

a sequence length of �75 nt. Despite the tracrRNA from Type II-A
(more specifically: from Streptococcus pyogenes) being well-
investigated, there is a lot to be discovered about tracrRNA biology

and biotechnological applications (see the recent review by Liao and
Beisel, 2021). The critical part here is to screen and characterize the

variety of tracrRNAs found in natural systems, which is the main
application for our CRISPRtracrRNA tool.

1.2 TracrRNA in Type V systems
Type V-K CRISPR-Cas system is a CRISPR-associated transposase

system in Cyanobacteria, where the cas12k effector gene, its
CRISPR array and the Tn7-like transposases TnsB, TnsC and TniQ

form a shared transposon (Strecker et al., 2019). The CRISPR-Cas
effector complex of this system is able to interact with the transpo-
sase complex to guide the transposon into its new location. This

guidance is done by an interaction between Cas12k and the transpo-
sase TniQ as well as the DNA recognition by the crRNA (Park

et al., 2021). CRISPR-associated transposase (CAST) systems are
frequently found next to short protospacers of �17 nt corresponding
to an intern spacer separated from the CRISPR array (Saito et al.,
2021). This spacer is located downstream of a truncated Repeat se-
quence of �12 nt from the 30-end (Saito et al., 2021). Different
sRNA analyses of CAST systems also showed an expression of trun-

cated crRNA from the CRISPR array itself with �17 nt Spacer and
either 12 or 14 nt Repeat sequence length, even though the repeat se-

quence is persistently 37 nt long and the spacers usually reach over
30 nt (Saito et al., 2021; Strecker et al., 2019). The interaction be-
tween Cas12k and the crRNA is promoted by a tracrRNA located

upstream of the CRISPR array. The binding between tracrRNA and
crRNA seems to be facilitated by two different binding sites, one in

the middle area (next to stem-loop 3) and one directly at the 30-end
of the tracrRNA (Querques et al., 2021; Xiao et al., 2021). The first
one binds five nucleotides at the 30-end of the repeat (50-GAAAG-30)
and the second one binds nine nucleotides upstream of it (50-
YYYNYYYAA-30). The fourth base of this second binding site is

most of the time not corresponding to the tracrRNA and seems to
be unbound in the single guide RNA (sgRNA) structure (Xiao et al.,
2021). Interestingly, these positions correspond to the 12–14 nt

processed 30-end of the crRNA. The mechanism and the nuclease for
this processing are still unknown, but this seems to indicate that the
tracrRNA is part of it.

2 Materials and methods

As shown in Figure 1, our CRISPRtracrRNA investigates the differ-
ent components relevant to CRISPR-Cas interference functionality,
which in combination are tailored to robustly detect the trans-
activating CRISPR RNA (tracrRNA) candidates in the provided in-
put genomes. The core components (Component 1þ2 in Fig. 1) are
the determination of the tracrRNA structure motif by newly defined
CMs, and the determination of the terminator hairpin, which is
required for transcription. An additional part of the tracrRNA is the
repeat/anti-repeat interaction (Component 3). We do not learn a
motif here as we have more reliable genomic information that we
can use. In more detail, we detect the first CRISPR arrays using the
ML-based CRISPRidentify (Component 4), as an array is an evi-
dence for the existence of a CRISPR system and it allows us to deter-
mine the repeat, which is subsequently used to determine the anti-
repeat part of the tracrRNA via RNA–RNA interaction prediction.
Additional evidence is acquired by the identification of cas9/cas12
genes (Component 5) using CRISPRcasIdentifier (Padilha et al.,
2020), and computing the distance to the formed tracrRNA candi-
dates. Each of the listed factors is provided with the corresponding
certainty score. Our approach outputs the found candidate set in the
readable format. The candidates are ranked according to their cer-
tainty scores with a clear indication of all the factors (pieces of evi-
dence) that influenced their value. Moreover, the users can change
the parameters for the respective search as well as assign different
weight (importance) values to the factors they consider the most im-
portant (see Section 3.3.1). In the following description, we list the
components in the order of usage in our pipeline. In each part, sev-
eral scores are produced, which are then forwarded to a final com-
bination step (see Section 3.3.1).

2.1 Anti-repeat search
The mature crRNA in Type II will contain one repeat-spacer unit,
which is processed out of a tracrRNA: pre-crRNA duplex. After
maturation, the mature crRNA remains in its interaction with the
tracrRNA, forming a crRNA–tracrRNA duplex that is loaded into
the Cas9 effector module (Chylinski et al., 2013). For that reason, a
strong interaction between a tracrRNA and the repeat is a necessary
requirement for crRNA maturation. Thus, we use RNA–RNA inter-
action prediction with the repeat sequence to screen for tracrRNA
candidates. The repeat binding site on the tracrRNA is called anti-
repeat and is located in the 50-region. In order to perform such a
search for a repeat: tracrRNA interaction, we first need to detect the
CRISPR arrays to obtain the repeat candidates. With these candi-
dates, we perform the coarse screening for the potential anti-repeat
sequences. We then refine the set of anti-repeat candidates by using
RNA–RNA interaction prediction to determine the repeat-anti-
repeat duplex.

Fig. 1. Components of the CRISPRtracrRNA tool. Components 1 and 2 comprise

the structural model of tracrRNAs and are designed to robustly detect the tracrRNA

tail location by comparing the candidate sequence with the existing model and

searching for the terminator sequence. Component 3 uses RNA–RNA interaction

prediction to determine the set of anti-repeat candidates. This component requires

the set of repeat sequences, which are collected in Component 4. This step is

designed to identify CRISPR arrays and the associated repeats. Component 5 uses a

prediction of a whole CRISPR cassette (using CRISPRCasIndentifier) to reliably de-

termine Cas9 or Cas12 effector proteins.
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2.1.1 CRISPR array identification

Since the repeat sequence is required to perform the anti-repeat
search, the initial step in order is to detect all potential CRISPR
arrays in a genome. Here, CRISPRtracrRNA fully relies on
CRISPRidentify (Mitrofanov et al., 2021) for CRISPR array detec-
tion since it can not only provide the detected CRISPR arrays but
also utilizes Machine Learning approach to distinguish the true
CRISPR arrays from repetitive genome structures that are similar to
CRISPR arrays. In its final step, CRISPRidentify utilizes an extra-
tree approach, which provides a certainty score (in fact a pseudo-
class probability) for each array candidate. We use both Bona-fide
(defined by a score higher than 0.8) and Possible candidates (defined
by a score between 0.4 and 0.8) to form the candidate set for
CRISPR arrays. If the user is only interested in the Bona-fide candi-
dates they can use the corresponding input parameter. While the re-
peat sequence is extracted from the array, the certainty score is
propagated to the last step of CRISPRtracrRNA where all the pieces
of evidence are combined (see Section 3.3.1). On top of that
CRISPRidentify utilizes CRISPRstrand (Alkhnbashi et al., 2014) to
predict the array’s orientation. CRISPRstrand also provides a cer-
tainty score that gets also propagated to the last combination step.

2.1.2 Initial anti-repeat search

After the set of CRISPR arrays is determined, the initial search for
anti-repeat sequences is possible. At the beginning of this step, the
consensus sequence for each repeat is determined. Then, for each
consensus repeat sequence, CRISPRtracrRNA utilizes BLAST
(Altschul et al., 1990) to search for regions that show high similarity
with the repeat sequence at hand. To avoid self-targeting within the
CRISPR array, the hits within the CRISPR array regions are filtered
out during this step. For the remaining set of candidates, the values
for hit similarity and hit coverage are calculated. The set is then fil-
tered again using thresholds for the listed values as well as the multi-
plication of both (i.e. square of the geometric mean). The threshold
values can be set by the user. The default values used in the pipeline
are 0.8 for both similarity and coverage, for the multiplication of
similarity and coverage it is set to 0.7. This allows the approach to
eliminate the large value of the false positive hits not related to the
tracrRNA sequences. All three values represent the quality of the ini-
tial anti-repeat candidates. For each of them, all three values are
also propagated to the last combination step.

2.1.3 Enhanced anti-repeat search

As the duplex formation between the tracrRNA and the repeat is
based on RNA–RNA interaction, the BLAST search in the previous
section can only determine initial candidates for repeat-anti-repeat
duplexes. A more detailed investigation of the interaction between
the candidate set of anti-repeat sequences obtained in the previous
step and the corresponding repeat sequences using RNA–RNA inter-
action prediction tools is required. In the CRISPRtracrRNA pipe-
line, we utilize IntraRNA (Mann et al., 2017) to predict the most
probable interaction. IntraRNA is used in the pipeline for two main
reasons. First, it allows to determine the interaction site with greater
precision than the previously used methods RNAhybrid and
RNAcofold, as it takes accessibility of the interaction region and its
structure into account. This step can therefore greatly improve the
initial candidate for the anti-repeat region since the interaction be-
tween crRNA and tracrRNA is usually imperfect and often contains
bulges, which can negatively influence the found hit regions if only
the sequence similarity was taken into account. Second, it also pro-
vides the interaction energy as output, which indicates the strength
of the interaction. Both the interaction interval as well as the inter-
action energy are then propagated to the last combination step.

2.2 Rho-independent termination search
A transcription terminator is a sequence that marks the end of a
DNA operon during transcription. In prokaryotes two types of ter-
minator sequences have been discovered: Rho-dependent termina-
tors, where a large protein called Rho factor plays the crucial role in
disrupting the mRNA–DNA–RNA polymerase transcriptional

complex and Rho-independent terminators that form self-annealing
hairpin structures, which results in the disruption of the mRNA–
DNA–RNA polymease ternary complex. Bacterial small RNA tran-
scripts are in general terminated by Rho-independent termination
(Livny and Waldor, 2007). As the tracrRNA is a small RNA, it must
also contain a rho-independent termination signal. In our
CRISPRtracrRNA approach, we rely on the Erpin (Gautheret and
Lambert, 2001) approach for the efficient search for the Rho-
independent terminator sequence. In the pipeline, Erpin 5.5 is uti-
lized with the default parameters. Erpin provides both the location
of the predicted candidate, as well as a score. Both values are then
used in the last combination step. The score is used directly as a
piece of evidence for the presence of the terminator sequence. The
interval location is used to check the consistency of all present evi-
dence pieces.

2.3 Cas protein search
Since tracrRNA is used as a guide RNA in Type II CRISPR-Cas sys-
tems the presence of the Cas9 protein for Type II system and Cas12
protein for Type V system can be considered as a factor that is posi-
tively correlated with the found candidate being a true tracrRNA.
Therefore, the search for cas genes is an important step in the
CRISPRtracrRNA pipeline. In the CRISPRtracrRNA pipeline, we
rely on CRISPRcasIdentifier version 1.1.0 with default parameters
for the efficient search for cas genes. CRISPRcasIdentifier utilizes an
ML approach for the robust identification and labeling of cas genes.
Therefore, CRISPRcasIdentifier allows us to identify the locations of
all found cas9/cas12 genes and determine the one closest to the
tracrRNA candidate. The distance to the closest cas9/cas12 gene is
negatively correlated with the probability of the candidate being a
true tracrRNA since tracrRNAs tend to be distributed closely to
their associated cas genes.

3 Results

3.1 Sequence structure model for Type II systems
The tracrRNA sequences in Type II systems have been closely
studied. We took the available data of 41 identified tracrRNA
sequences from the (Briner et al., 2014) publication. That study div-
ided the dataset of tracrRNAs into three groups according to the
structural similarity. In our study, we took the given sequences and
removed the identified anti-repeat part. This step is necessary since
the anti-repeat part of the tracrRNA strongly interacts with the cor-
responding crRNA in vivo but can affect the prediction of tracrRNA
secondary structure with wrong interactions in silico when the struc-
ture is predicted without the crRNA attached. The truncated
sequences are then subjected to the GraphClust2 (Miladi et al.,
2019) pipeline via the European galaxy server. The GraphClust2 ap-
proach takes into account both sequence and structure similarities
when forming clusters, which suited our approach perfectly. For
each cluster, a CM is built using Infernal to screen for missing mem-
bers of a cluster. These CMs constitute a sequence-structure model
of that cluster, which can be used to screen genomes for further
members of that model.

The GraphClust2 approach showed consistent results with the
previous sequence-based clustering of the whole tracrRNA (consist-
ing of anti-repeat and 30-tail) as the same three distinctive clusters
were determined (see Supplementary Fig. S2). We then enriched the
dataset by adding 77 additional tracrRNA sequences from the
(Gasiunas et al., 2020) publication. We used an iterative approach
adding new sequences one by one, to be consistent with the original
clustering. Thus, if the newly added sequence was able to fit the clus-
tering it was added and discarded if it would break the current clus-
tering scheme. In this way, we ensure that the sequence-structure
models are preserved and refined to capture additional members.
With this approach, we were able to preserve the clusters structures
and obtain the model with 83 sequences.

We then further investigated the obtained classes. First, we built
the phylogenetic tree of all combined tracrRNA sequences using
MAFFT (Katoh and Standley, 2013) and marked the sequences that
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belong to the model according to the corresponding cluster (see
Fig. 2A). The clusters showed consistent distribution over the tree as
the cluster elements tend to stay close together.

Similarly, we built the phylogenetic tree of the anti-repeat part of
the tracrRNA sequences. Again, we could see the consistent results,
the model clusters also form dense clusters on the formed phylogen-
etic tree. For each cluster, we used PETcofold (Seemann et al., 2011)
to predict the consensus interaction between anti-repeat and repeat
sequences (see Fig. 2B). The obtained interactions between anti-
repeat and repeats were also consistent with the results from Briner
et al. (2014).

For comparison with existing approaches, we also created a se-
quence model for the 83 tracrRNAs. The set of tracrRNAs was ini-
tially clustered with CD-hit (Li and Godzik, 2006). The
corresponding clusters were then subjected to MAFFT to obtain the
consensus cluster secondary structure. Finally, the HMM-build was
used to create the model. As shown in detail in Section 3.5, these se-
quence models capture different properties of tracrRNAs.

In the CRISPRtracrRNA pipeline, we rely on Infernal to com-
pare and score the candidate tracrRNA sequence with the pretrained
model. In more detail, we extracted the three CMs generated by
GraphClust2 and used Infernal’s cmscan, which not only produces
the E-value of the hit and the hit score but also determines the hit
interval. This approach allows CRISPRtracrRNA to also robustly
predict the location of the tail part of the tracrRNA.

3.2 Sequence structure models for Type V systems
So far existing work on screening tracrRNA concentrated on Type II
systems. To screen for tracrRNAs in Type V systems, we first per-
formed computational searches for known Cas12k proteins in order
to find CAST-associated DNA regions. We searched in these CAST
regions for known components, like the transposon genes tnsB, tnsC
and tniQ, CRISPR arrays and transposon insertion elements (see
Supplementary Fig. S3). While doing so we also searched in the
DNA regions for similarities to the known tracrRNAs from
Anabaena sp. PCC7120 and Scytonema hofmanni (Reimann et al.,
2020; Strecker et al., 2019), whose expression could be verified by
small RNA-sequencing. We could identify multiple candidates for
Type V-K tracrRNA, always downstream of the cas12k gene and if
present, upstream of the CRISPR array. After that, these candidates
were clustered by sequence similarity by CD-hit to align the sequen-
ces inside their respective clusters (Li and Godzik, 2006). To in-
crease the significance and avoid wrong predictions of interaction
between the anti-repeat and other areas of the tracrRNA, the

sequences were aligned together with the upstream region until the
second repeat of the CRISPR array. These alignments were then
used for predicting conserved secondary structures, which was per-
formed using the webtool shape studio from the University of
Bielefeld (Janssen and Giegerich, 2015). When comparing the most
prominent potential structures, all clusters showed four main loop
areas inside the suspected tracrRNA areas. We could also detect
three very conserved regions across all tracrRNA candidates. The
first one was located upstream of the tracrRNAs and at least in
Anabaena sp. PCC 7120 overlaps with the tracrRNA promoter
(C1). The second one is in the center of the third main loop (C2) and
the last one contains the fourth main loop as well as the following
anti-repeat (AR) sequence (C3).

We compared these findings to the cryo-electron microscopic
structures of sgRNAs from S. hofmanni by (Querques et al., 2021)
and (Xiao et al., 2021) and looked for common or similar features
in all three models. Our previously predicted four main loops were
comparable to the eight stem-loop (S1–8) model from Xiao et al.
(2021). The first and last main loops were overlapping with stem-
loops S1 and S8. The second main loop included the stem-loops S2
and S3, while the third main loop consisted of S4, S5, S6 and S7.
The conserved sequence inside main loop three overlaps with part of
a pseudoknot and S5. The model of (Querques et al., 2021) showed
a triplex formation of the repeat binding area (AR1) that corre-
sponds to two highly conserved short sequences (50-TTT-30 and 50-
CTTTC-30) inside main Loop 2. The corresponding binding region
on the repeat is highly conserved as well, which suggests a conserved
anti-repeat binding region in this location. Out of this comparison,
we identified local palindromic structures and looked for sequence
similarities in order to map the eight stem-loop model onto the indi-
vidual tracrRNAs. The already identified conserved areas (C1–3)
and the less specific main loop model were used as fix points for this
identification. We could locate S2, S3, S4 and S8 stem-loops as well
as both Anti-Repeat sequences in all tracrRNA candidates, while S1,
S5, S6 and S7 could be identified in most candidates (99%, 92%,
90% and 95%).

In order to obtain the best sequence-structure model for screen-
ing tracrRNAs in the Type V systems, we again utilized the
GrapthClust2 approach. Unlike in the sequence/structure model
generation for Type II systems, where we had experimentally veri-
fied tracrRNAs and known structural classes, we needed to deter-
mine a fitting structural model by testing the performance of a
model in a different fashion. We took the available 91 tracrRNA
candidate sequences and split them into the pairs of train validation
set in a 5-fold fashion. We then trained a model on the training set
and checked the recall potential on the validation set. For each train
test split, we could see that the dataset is very consistent. Namely,
each sequence from the validation set consistently got 16–18 hits
from different sequences in the training dataset for each of the five
runs (see Supplementary Fig. S4).

3.3 Usage of CRISPRtracrRNA
3.3.1 Combining evidence and ranking candidates

The ultimate goal of the CRISPRtracrRNA pipeline is to detect all
the potential tracrRNA candidates in the given genome. For user
convenience, such a list should be filtered and sorted according to
the trust level for each candidate. For that purpose, each tracrRNA
candidate is transformed into an n-dimensional feature vector.

The first five dimensions of this vector are related to the anti-
repeat part of the tracrRNA. The first value is the certainty score of
the corresponding CRISPR array obtained by the CRISPRidentify.
The next two values are the hit similarity and coverage between the
anti-repeat part of the tracrRNA and the corresponding repeat. We
also introduced the multiplication (i.e. square of the geometric
mean) of these two values as a balanced estimation of the overall
similarity between the repeat and anti-repeat parts. The last value of
the anti-repeat component of the vector is the interaction energy of
the repeat-anti-repeat interaction.

Fig. 2. (A) Phylogenetic tree of the 3’-tail of experimentally validated tracrRNA

used in the GraphClust2 analysis. The drawings of the three consensus structures

were taken from the publication (Briner et al., 2014), license number

5287080399685, as they show additional information. They agree with the consen-

sus models as predicted by the GraphClust2 pipeline (see Supplementary Fig. S1).

The phylogenetic tree is based on sequence distance as GraphClust2 does not pro-

duce a tree but only clusters. The sequences that were finally used for our three CMs

are indicated with blue, yellow and green dots. (B) MAFFT-generated phylogenetic

tree of the anti-repeat part of the experimentally validated tracrRNA. It shows that

the independent clustering of the anti-repeats gives consistent results, as nearly the

same three main clusters are generated.
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The next value in the vector representation of the candidate is
the sequence/structure similarity score of the candidate to the pre-
trained model.

The rest of the values are related support information and con-
sistency scores between observations. The support scoring consists
of the three values: The first support evidence score is the certainty
score of the orientation of the CRISPR array predicted with
CRISPRstrand. The second support evidence score is the evidence
score obtained from the terminator sequence search. The last sup-
port score is the score of the Cas9 protein.

On top of the direct support scores, we also introduced the con-
sistency scores. Consistency scores were created to indicate that the
pieces of evidence we consider to be important in the tracrRNA
identification are internally consistent. All the consistency scores are
binary, i.e. the value of each score can only take values 0 and 1.
Value 1 means that the predictions are consistent and the value 0
means that they contradict each other. The first score indicates the
consistency between the interval that represents the anti-repeat and
the part of the tracrRNA that forms a secondary structure accepted
by one of the CMs (using Infernal’s cmscan). In our approach, we
call the results consistent if the overlap and or gap between the pre-
dicted intervals does not exceed 10 nucleotides. The second consist-
ency value is related to the secondary structure part of the tracrRNA
and the terminator sequence. Similar to the previous criterion, we
call the observations consistent if the overlap or the gap does not ex-
ceed the value of 10 nucleotides. The last consistency value indicates
the consistency of the predicted strand. If the terminator sequence
and the strand prediction of the CRISPR array lead to the same
strand for the tracrRNA candidate the observations are called
consistent.

The user is given the option of ranking the identified candidates.
The hierarchy of the candidates can be achieved by providing the
weights (float values between 0 and 1) to the corresponding evidence
factor. That is, if the user is interested in the tracrRNA candidates
where the terminator sequence was identified by Erpin and the tail
part of the tracrRNA candidate was identified with the provided
CMs, they can put 1 for these values. And if they expect a low simi-
larity between repeat and anti-repeat they can put 0 as the corre-
sponding weight value. The default values are set to 1 for all anti-
repeat evidence-related values, identification of the tail with the
model and presence of the anti-repeat. The rest of the values are set
to 0. This allows the researcher to pick candidates that fit prior in-
formation and are most suitable for further investigations.

3.3.2 Different ways for screening tracrRNAs with

CRISPRtracrRNA

Our CRISPRtracrRNA tool incorporates two different approaches
of searching the tracrRNA candidates. The first approach is based
on the assumption that there should be a clear anti-repeat tail pre-
sent in a tracrRNA candidate. When choosing this mode,
CRISPRtracrRNA first searches for the CRISPR arrays, extracts the
corresponding repeat sequences and performs a search for anti-
repeat sequences (see Material and Methods). The initial set of
tracrRNA candidates is formed based on the anti-repeat sequences.
Subsequently, each of the candidates is subjected to the sequence/
structure similarity search with the pretrained CMs.

The second approach of running CRISPRtracrRNA concentrates
on the structural models we defined for tracrRNAs. This mode starts
with the sequence-structure similarity search between the provided
sequence and the trained models using cmscan. This mode is espe-
cially suitable for large datasets since it is less computationally
demanding, or in cases where the anti-repeat part of the certain
tracrRNA sequences is relatively small and thus will not produce a
high complementarity score with the corresponding repeat sequence.
In such a scenario the naive search for anti-repeat candidates based
solely on the sequence similarity would naturally fail as it would re-
port an overwhelming number of false-positive hits. In order to
overcome this challenge, CRISPRtracrRNA utilizes the sequence
structure search first in this mode. Then the user has an option to

search for anti-repeat sequences in the flanking regions of the identi-
fied hits.

Both of the approaches form the final candidate set by comple-
menting the candidate set with the support information see Support
Information.

CRISPRtracrRNA is implemented in python and available as
a standalone command line interface. It can be downloaded from
our GitHub repository (https://github.com/BackofenLab/
CRISPRtracrRNA). The initial setup of the CRISPRtracrRNA is
done via creation of a conda environment and can be done with a
single command. All the components of the CRISPRtracrRNA
are either included in the GitHub repository or integrated in the
conda environment which eliminates the need for additional
download or setup steps. The algorithm can be executed with the
command line. The parameters are fully described in the help op-
tion as well as in the GitHub page.

The algorithm output is written in an easy-to-read CSV file. The
tracrRNA candidates are ranked according to the corresponding cer-
tainty score and the important factors specified by the user. The user
can find the flanking regions for each candidate as well as the candi-
date location. On top of that, each evidence factor is listed in the
corresponding column.

The user is allowed to assign the importance weights to the evi-
dence factors of their desire or use the default ones (See Table S1 in
Supplementary Materials for the default weight distribution).

3.4 Comprehensive annotation of tracrRNA
We utilized CRISPRtracrRNA to identify potential tracrRNA candi-
dates on the comprehensive dataset of Type II organisms. During
the first step of our research, we ran the ‘sequence/structure mode’
search on the given dataset (see previous Section 3.3.2). With this
approach, we were able to identify potential tracrRNA sequences in
18 227 genomes. We then ran the ‘sequence’ based search mode and
were able to identify tracrRNA in 12 651 organisms with the over-
lap with the sequence/structure model in 11 797 of the candidates.
The rest 22 335 were subjected to the CRISPRtracrRNA with the
anti-repeat mode. The search yielded 71 353 potential candidates
from 11 882 organisms.

We also conducted the taxonomy analysis of the dataset check-
ing the performance of our models. For that purpose, we down-
loaded the GenBank files for the corresponding genomes and
extracted the origin taxonomy.

We then checked the distribution of the organisms by phylum.
Three major phyla in the dataset are Firmicutes, Proteobacteria and
Bacteroidetes with a cumulative sum of 38 983 elements.

We then investigated how well the sequence/structure model and
the sequence-only model agree on the corresponding phyla. For
Firmicutes the models showed the same recall ability and both were
able to detect potential tracrRNA in 10 662 candidates out of 11 602.
In Proteobacteria we were able to see the superior performance of the
sequence/structure model. It was able to provide 5113 candidates
while the sequence-only model detected six candidates and only in
Gammaproteobacteria. The most interesting results were obtained in
the Bacteroidetes phylum where sequence/structure and sequence-only
models produced large sets of unique predictions for each of the
classes: Bacteroidia, Flavobacteria, Chitinophagia, Sphingobacteriia
and Cytophagia. The sequence/structure model reported tracrRNA
candidates in 235 unique organisms while the sequence-only model
found candidates in 442 unique organisms. In 528 organisms candi-
dates were found both by sequence/structure and sequence-only mod-
els (see Fig. 3). To summarize, we found tracrRNA candidates in
17443 organisms. In 514 of them, the candidates were found only
with the sequence-based model while in 5683 the candidates were
reported uniquely by the sequence/structure model. In 11246 organ-
isms, the candidates were identified with both models.

3.5 Comparison with the existing approaches on

Cas9-tracrRNA (Type II)
Despite certain similarities, our approach significantly differs from
the published methods. In their approach, Dooley et al. (2021) relied
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on the anti-repeats and the presence of the RTS sequences to identify
the tracrRNA boundaries. In contrast, CRISPRtracrRNA represents
a multiple evidence level approach and utilizes ML models that were
trained on the verified tracrRNA sequences. On top of that instead
of Minced and PilerCR for the CRISPR array identification,
CRISPRtracrRNA relies on CRISPRidentify, which is a Machine
Learning based tool that showed a robust approach for the CRISPR
array detection. Second, we used CRISPRcasIdentifier, which also
utilizes a state-of-the-art ML approach for cas gene detection.
Finally, in the CRISPRtracrRNA approach, we utilize HMM search
based on both sequence and structure similarities. Our model targets
the tail of the tracrRNA candidate while the model by Dooley et al.
tries to predict the whole tracrRNA sequence.

For that reason, we decided to compare how specific the models
are in their prediction. In order to do that we first calibrated our se-
quence/structure model for Type II systems with Infernal cmcali-
brate. This step sets exponential tail parameters for E-value
determination by generating random sequences, searching them
with the CM and collecting the scores of the resulting hits. The
model from Dooley et al. did not need an additional calibration
since that step was already done. We then submitted the tracrRNA
tail sequences with the known structure (see Sequence structure
model for Type II systems) with Infernal cmscan.

When using the truncated tracrRNA tail sequences, we could im-
mediately see that our CRISPRtracrRNA model is more specific and
shows much lower E-values for the identified hits (see Fig. 4). As the
Dooley et al. CM models cover the whole tracrRNA and our CM
models on the tracrRNA tail sequence, we cannot exclude that some
of the difference is due the fact that the sequence was truncated for
the Dooley et al. CM models, but complete sequences for our mod-
els. We thus further investigated the model by Dooley et al. and sub-
mitted the anti-repeats sequences, to check whether they constitute a
significant part of the information captured by the Dooley et al. CM
models. We can see that that model is also consistently showing
strong hits on the anti-repeat part, showing that a large portion of
the model describes anti-repeat properties as the Dooley et al. CM
model was trained on the complete tracrRNA sequences. While this
approach improves the specificity of the Dooley et al. CM model,
modeling the anti-repeat with CM models has also negative effects
as it (i) ignores the direct evidence of repeat/anti-repeat interactions
in the genome, and (ii) might tend to overfit to known repeat
sequences. In contrast to this approach, our CRISPRtracrRNA pre-
dicts the anti-repeat part and the tail part separately, which can im-
prove the false positive rate of the reported candidates.

4 Conclusion

We developed CRISPRtracrRNA: an end-to-end standalone bioinfor-
matic tool for tracrRNA predictions. In order to robustly predict the

new tracrRNA candidates, CRISPRtracrRNA combines different
sources of evidence. It separately performs a search for the anti-repeat
and tail of the tracrRNA, detects the signal of the terminator sequence
and complements the result with the information about the cas genes.
For that reason, CRISPRtracrRNA utilizes Machine Learning based
start of the art tools such as CRISPRidentify and CRISPRcasIdentier.
For the tracrRNA tail detection, CRISPRtracrRNA uses the sequence-
structure similarity search based on Infernal and data-driven pre-
trained models. In our approach, we obtained models not only for
Type II systems but also, for the first time, for CRISPR Type V sys-
tems. In order to build the model for Type V systems, we constructed
a novel dataset of tracrRNA candidates.

We then compared the specificity of our Type II model with the
existing CMs. We noticed that our model is more specific and in con-
trast to the other method targets only the structural part of the
tracrRNA. Finally, we compared the performance of our sequence/
structure and sequence-only models on the comprehensive dataset of
Type II organisms and saw that despite the large overlap (11 246
organisms the candidates were identified with both models) both se-
quence and sequence/structure models also reported unique candidates
(514 were uniquely reported by sequence model and 5683 by se-
quence/structure model), thus capturing different properties of
tracrRNA. As tracrRNA is a small, structured RNA, we believe that
the sequence/structure models are more appropriate to determine
tracrRNA candidates.

CRISPRtracrRNA is implemented in python and can be easily
set up using the conda environment. It can be executed in two
modes: the complete evidence search, where all the evidence factors
are computed and the fast search where the candidates are formed
based on the sequence/structure model. The latter is suitable for
large datasets. We plan to integrate CRISPRtracrRNA into the
CRISPRloci (Alkhnbashi et al., 2021) web server in order to provide
users with a more in-depth CRISPR-Cas analysis.
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