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ABSTRACT

CRISPR–Cas are adaptive immune systems that de-
grade foreign genetic elements in archaea and bacte-
ria. In carrying out their immune functions, CRISPR–
Cas systems heavily rely on RNA components. These
CRISPR (cr) RNAs are repeat-spacer units that are
produced by processing of pre-crRNA, the transcript
of CRISPR arrays, and guide Cas protein(s) to the
cognate invading nucleic acids, enabling their de-
struction. Several bioinformatics tools have been de-
veloped to detect CRISPR arrays based solely on
DNA sequences, but all these tools employ the same
strategy of looking for repetitive patterns, which
might correspond to CRISPR array repeats. The iden-
tified patterns are evaluated using a fixed, built-
in scoring function, and arrays exceeding a cut-off
value are reported. Here, we instead introduce a data-
driven approach that uses machine learning to detect
and differentiate true CRISPR arrays from false ones
based on several features. Our CRISPR detection
tool, CRISPRidentify, performs three steps: detec-
tion, feature extraction and classification based on
manually curated sets of positive and negative exam-
ples of CRISPR arrays. The identified CRISPR arrays
are then reported to the user accompanied by de-
tailed annotation. We demonstrate that our approach
identifies not only previously detected CRISPR ar-
rays, but also CRISPR array candidates not detected
by other tools. Compared to other methods, our tool
has a drastically reduced false positive rate. In con-
trast to the existing tools, our approach not only pro-
vides the user with the basic statistics on the iden-
tified CRISPR arrays but also produces a certainty
score as a practical measure of the likelihood that a
given genomic region is a CRISPR array.

INTRODUCTION

CRISPR–Cas is an adaptive immune system that is present
in 90% of archaeal and about 40% of bacterial genomes
(1–3). These systems consist of arrays of direct repeats
(CRISPR) and varying suits of CRISPR-associated (cas)
genes that encode proteins involved in the immune func-
tions.

The CRISPR–Cas immune response consists of three
main stages:

(i) Adaptation that consists of selection and excision
of short target segments (protospacers) from foreign
DNA followed by incorporation of these segments into
the CRISPR array, to form spacers via a cut-and-
paste mechanism (4–6). In most CRISPR–Cas sys-
tems, recognition of the protospacers requires the PAM
(protospacer adjacent motif), a short sequence motif in
the target DNA that flanks the protospacer and is cru-
cial for avoiding self-cleavage (7–11).

(ii) Biogenesis of CRISPR (cr) RNAs, including expres-
sion of the pre-crRNA (a leader followed by an array
of repeat-spacer units) and subsequent processing of
the transcript into mature crRNA (12,13).

(iii) Interference that involves invader DNA or RNA
degradation at the cognate protospacer, guided by the
crRNA and catalyzed by a specific complex of Cas pro-
teins or a single, multidomain protein (1,6,14). Typi-
cal of defense systems, CRISPR–Cas loci evolve fast
and are often substantially different among other-
wise closely related strains of bacteria or archaea. The
CRISPR arrays are associated with cas genes that be-
long to >50 families and form combinations specific
to each type and subtype of CRISPR–Cas systems
(2,3,15–18). Some CRISPR–Cas systems are associ-
ated with additional genes whose roles in defense or
other functions of CRISPR–Cas remain to be estab-
lished (19,20). The Cas proteins are generally encoded
in single operons adjacent to the respective CRISPR
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array although there are many exceptions to this pat-
tern.

CRISPR–Cas systems are currently classified into two
classes, six types (I-VI) and >30 subtypes. This classifica-
tion is based on several criteria, primarily, the identity, co-
occurrence and arrangement of the cas genes in CRISPR–
Cas loci (2,3,18). The organization of the adaptation mod-
ule is largely uniform across the diversity of the CRISPR–
Cas systems. Proteins involved in adaptation are the in-
tegrase (endonuclease) Cas1, the structural subunit Cas2
and, in some systems, another endonuclease, Cas4, which
facilitates the integration of PAM-compatible spacers (21).
By contrast, the protein machineries involved in the cr-
RNA biogenesis and interference are highly diverse. The
two classes of CRISPR–Cas systems differ with regard to
the complexity of the effector ribonucleoprotein complexes.
Class 1 effectors consist of several structurally and func-
tionally different subunits, some of which possess the pre-
crRNA cleavage nuclease activity, and accommodate the
crRNA to recognize the protospacer in the target DNA
molecule. The target cleavage activity resides either in one
of the subunits of the effector complex itself or in a sepa-
rate nuclease that is recruited by the effector complex when
bound to the target DNA (13,14,22,23). By contrast, Class
2 systems utilize a single, large, multidomain protein, such
as Cas9, Cas12 or Cas13 that is responsible for the target
recognition and cleavage and, in many case, also for the pre-
crRNA processing (2,13,18). The CRISPR–Cas types and
subtypes further differ in the repertoires of proteins and do-
mains involved in pre-crRNA processing and interference.

The sequence and structure of the CRISPR array it-
self is usually disregarded in the classification of CRISPR–
Cas systems because, although CRISPR repeat organiza-
tion can affect the evolution and diversity of CRISPR
arrays, the relationship between repeat families and as-
sociated CRISPR–Cas types and subtypes is complicated
(2,3,18,24–26). In particular, nearly identical CRISPR-
repeats in the same species can be associated with dif-
ferent subtypes (27,28). Nevertheless, CRISPR arrays or,
more precisely, the constituent repeats can also be clas-
sified into families, capturing the diversity of sequence
motifs and RNA secondary structures (24–26,29–32).
The existing approaches for CRISPR array identifica-
tion, such as CRT (33), CRISPRCasFinder (34), PILER-
CR (35), minced (https://github.com/ctSkennerton/minced)
and CRISPRDetect (36), rely mainly on the repetitive
structure of arrays. CRISPRCasFinder, for example, uses
Vmatch (http://www.vmatch.de/) (37) to find pairs of max-
imal repeats, which are then joined into a consensus repeat
sequence. The array defined by this consensus repeat se-
quence is then scored with a built-in scoring function that
takes into account the lengths of the repeats and spacers,
similarity between the repeats and other features. The other
approaches, while differing in details, rely on a similar over-
all detection approach.

Here, we present a machine-learning (ML) approach for
the processing and evaluation of repetitive elements in order
to detect CRISPR arrays. For the repeat scoring, we do not
rely on a manually curated evaluation function but rather
use a ML method to learn this evaluation function from

data. For this purpose, we constructed an extensive set of
training and test data including both bona fide CRISPR ar-
rays and negative controls. This allows us to substantially
increase the sensitivity and to drastically improve the speci-
ficity of CRISPR array detection, while providing the user
with a reliable quality measurement. The problem of false
positive predictions was not thoroughly investigated in the
existing CRISPR detection tools. We show that our ML-
based approach has a much lower false positive rate than
the other CRISPR detection methods.

MATERIALS AND METHODS

The task of CRISPR array detection consists of the search
for repetitive elements in a genome, which might form the
repeats of a CRISPR array, followed by the evaluation of
the identified putative array. The evaluation criteria can in-
clude the length of the repeat consensus sequence, the sim-
ilarity between the repeats within the array, and features of
spacers and nearby cas genes. The existing approaches use
manually curated evaluation functions that combine these
features into a score. CRISPRDetect, for example, calcu-
lates the score for an array by adding up positive and neg-
ative score contributions, such as +3 if the repeat, which is
required to be longer than 23 bases, contains a known mo-
tif at the end, and a metric for identity among the spacers
(−3 to +1), or −1.5 for dissimilarity between repeats. Ar-
rays with scores above 4.0 are then classified as positive. Al-
though such manually curated scoring functions can work
well for the detection of positive examples, they have sev-
eral disadvantages. First updating the scoring system to a
growing database is a complicated task. Second, there is
no built-in mechanism to balance sensitivity and specificity.
Our analysis described here shows that, whereas the sensi-
tivity of the existing tools is usually high, these tools do not
adequately control for the false positive rate and thus have
a relatively low specificity.

In order to control for both sensitivity and specificity,
we set up the CRISPRidentify pipeline, which replaces
the manually curated scoring function with an ML ap-
proach. The CRISPRidentify pipeline consists of two ma-
jor steps, namely, a new approach to detect and generate ar-
ray candidates, aiming at increased sensitivity, and a versa-
tile, machine-learning based evaluation of the detected can-
didates to increase the specificity. With regard to the first
task, any approach to detect CRISPR arrays faces two main
subproblems: (i) accurate identification of the start and end
positions for each repeat candidate in the array and (ii) ac-
curate identification of the boundaries of the whole array.
Mismatches in the repeat sequences or similarity of some
spacers around the start and end positions can lead to in-
correct identification of the repeat sequence itself. Incorrect
identification of the array boundaries could be caused, for
example, by degradation of the repeat sequence at the end
of the array which makes it difficult to determine the array
end point.

The second major task is the evaluation of the candidates.
CRISPRidentify learns a classifier for CRISPR arrays from
known data to control for the false positive rate, in contrast
to the manually curated scoring functions used by the exist-
ing tools. In this setting, it is natural to rely on: (i) features
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that are extracted from the array for estimating the simi-
larity between bona fide CRISPR arrays and array candi-
dates, (ii) a benchmark set of positive and negative array
examples and (iii) machine learning to learn the evaluation
function from this benchmark. We define new training and
test sets consisting of carefully selected positive and negative
examples. Using these training sets, we train a classifier for
evaluating CRISPR candidates based on 13 array-derived
features (see Table S2 in Supplementary), such as the sim-
ilarity between the repeats, AT-content or stability of the
repeat hairpin. The principal advantage of this approach
is that we not only increase the sensitivity of CRISPR ar-
ray detection, but also drastically reduce the false positive
rate, i.e. increase the specificity. The problem of false posi-
tive predictions has been not properly addressed by the pre-
vious approaches. Finally, the pipeline annotates the array
with additional information such as its orientation, leader
sequence and cas genes.

Benchmark datasets

Overall, we prepared six benchmark datasets to test dif-
ferent aspects related to the detection of CRISPR arrays.
In particular, we compiled the archaeal and bacterial ar-
rays (29,30,38). The first dataset contained 400 archaeal ar-
rays among which 10 were experimentally validated and the
rest were manually verified (Table 1). The second dataset
containing 600 bacterial arrays was constructed from pub-
lished datasets (29,30,38), with the constraint that the corre-
sponding repeat sequences should be at least 85% identical
to published experimental CRISPR-repeats. For simplic-
ity, we will refer to these datasets as archaeal and bacterial
datasets, respectively. As an independent, high-quality, non-
overlapping test set, we additionally selected 550 CRISPR
arrays from archaeal and bacterial genomes using the fol-
lowing criteria: 1) the minimal number of repeats in each
CRISPR array is three, and 2) the maximum distance be-
tween the CRISPR array and the cas gene operon is 500
nucleotides. We will call this the Cas-associated dataset (See
distribution of Cas types in Supplementary materials Table
S7).

The first three datasets were partially used by other tools,
but the fourth one was designed specifically for this work
and is required to control the false positive rate. It contains
300 (100 training and 200 test) false CRISPR arrays and
was constructed based on the tandem repeat dataset and
cases with identical ‘spacers’ (see Tables S2-S4 in Supple-
mentary for more details). For simplicity, we will now re-
fer to this set as false arrays. To obtain more negative ex-
amples, we also created additional distorted CRISPR ar-
rays from the ‘archaeal dataset’ and the ‘bacterial dataset’
by independently shuffling the nucleotides in each repeat
and each spacer sequences. We will refer to these as ar-
chaeal shuffled arrays and bacterial shuffled arrays, respec-
tively. All generated datasets where split into training and
test sets.

In addition to the datasets we generated, we used two
datasets from literature. The first, most comprehensive
one consists of all arrays annotated from the most recent
CRISPR classifications (2,3,18,19), and will be called an-
notated arrays dataset. It consists of 39 371 arrays. The sec-

ond dataset was downloaded from CRISPRCasFinder (34).
It contains 3263 arrays and will be denoted as CRISPRCas-
Finder dataset.

Construction of array candidates

We use Vmatch version 2.3.0 to scan a genomic region for
the occurrences of repeat candidates. Vmatch returns a list
of putative repeat pairs. By default, in CRISPRidentify, we
set the substring length for Vmatch to be in the range of
21 to 55 nucleotides, and the spacing between the matching
pairs has to be in the range between 18 and 78 nucleotides.
Both intervals can be changed by the user. To avoid dupli-
cates, we filter out all the repeat candidates except for the
unique ones.

The next step is to cluster the repeat matches found by
Vmatch, and to extract the bona fide repeat sequence. As a
proxy, the repeat sequence is the consensus sequence of all
repeat matches belonging to a repeat cluster. However, using
a consensus sequence to determine possible repeat candi-
dates poses two problems. First, the length of the consensus
sequence is uncertain because a threshold has to be defined
for conserved columns, and second, we lose control over
the number of mismatches to existing repeat candidate se-
quences in the genome. Thus, instead of using a single con-
sensus sequence, as the first stage, we generate a set F over
each Vmatch cluster containing all possible repeat candi-
dates and their extensions. The set F is a subset of all subse-
quences of a maximal consensus sequence partially ordered
by the subsequence relation (see Figure 1, box ‘Extension’,
for an example).

To generate F, we use the alignment for each cluster to
construct the maximum element of F as a string that is
composed, column-wise, of the nucleotides most frequently
found in the alignment. The minimum element of the set
F is defined as the most consistent substring, and is a sub-
sequence of the maximal element by definition. After the
maximum and minimum elements are calculated, we gen-
erate all sequences which fulfil the requirements that they
1) are subsequences of the maximum element and 2) con-
tain the minimal element as a subsequence. These sequences
then complete the set F. Mathematically, F is a filter (the
dual concept of an ideal) in the partial order defined by the
subsequence relation. As the last step, the set of repeat can-
didates is formed via unification of sets F and initial Vmatch
results and filtering of duplicates (see Supplementary Ma-
terials, Section 1 ‘Enhancement of Vmatch results’). Lastly,
we extend the set of repeat candidates with modifications
of each repeat candidate in which up to 3 nucleotides are
omitted from both ends, resulting in 15 variations of each
repeat. After that, duplicates are filtered out for the last time
and the remaining candidates are added to the pre-existing
clusters. These clustered repeat candidates are then used to
form CRISPR candidates.

After the set of potential repeat candidates is extracted,
we need to form the bona fide CRISPR array candidates.
Unlike the other existing algorithms, where a CRISPR ar-
ray is formed from a repeat consensus by simply splitting the
considered interval into repeats and spacers, our approach
utilizes approximate string search to find the locations of
the repeat sequences using the python regex library available
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Table 1. Generated data sets and their combinations used in the machine learning approach

Name Number comb. Name Number comb. Name Size

Train & validate 2100 Archaeal 800 Archaeal arrays (positive) 400
Archaeal shuffled arrays (negative) 400

Bacterial 1200 Bacterial arrays (positive) 600
Bacterial shuffled arrays (negative) 600

False arrays, train (negative) 100
Test 750 Cas-associated (positive) 550

false arrays, test (negative) 200
CRISPRCasFinder 3263
annotated arrays (positive) 39 371

Figure 1. General architecture of the CRISPRidentify approach. The pipeline consists of two major steps. In the first step (Candidate Generation), candi-
date repeats are identified using Vmatch. Vmatch detects all potential pairwise repeats. This implies that leading and trailing nucleotides have an uncertain
assignment as these repeated nucleotides could be part of the repeat, or part of a repetitive part of the spacer. For this reason, we first determine the
minimal and maximal forms of the repeat by aligning the repeat candidates, and then consider all possible repeats between the minimal and maximal re-
peat variants. Mapping these repeat candidates back to the genome generates different array candidates, which are then evaluated using machine learning.
For that purpose, in the second step (Candidate Evaluation) we extract features from the array such as repeat similarity, the evenness of spacer lengths,
AT-content, minimum free energy of the repeat hairpin and others. We then use different machine learning (ML) approaches, learned on a large data sets
of positive and negative examples, to classify them as CRISPR arrays. We use the scoring of the ML approaches to prioritize the different array candidates.
Finally, we use different tools to annotate the array. Thus, we determine the strand orientation using CRISPRstrand and annotate the leader sequence
using CRISPRleader. In addition, HMM and Prodigal to annotate cas genes.

on PyPI regex. This approach also has an important advan-
tage over simple partitioning of the DNA interval into re-
peats and spacers because this technique allows incorporat-
ing insertions and deletions as editing operations, finding
the locations that minimize the number of editing opera-
tions. This feature allows our approach to effectively iden-
tify potential CRISPR candidates including cases with ab-
normalities, such as truncated repeat (39–41) sequences or
complete spacer deletion (see section seven spacer deletion
and section eight degenerated repeat in the Supplementary
materials).

Feature vector associated with an array candidate

Having obtained suitable CRISPR candidates, we generate
a feature vector for each candidate to use at the evaluation
stage of our pipeline. Users may specify the set of desired
features by choosing one or several of the three classifier
models we developed. Each of these models is defined by
feature selection and encompasses a different combination
of the 13 features we devised for classifying CRISPR ar-
rays. When designing these features, we had three concep-
tual categories in mind, depending on whether we expect
their values to be positively or negatively correlated with
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the likelihood of a true CRISPR array, or whether they
provide supporting information. These are, however, only
conceptual categories that are not further used during the
machine learning approach. Among the factors, which we
expect to augment the evidence for a true CRISPR array
with their growing value, are number of repeats, length of
the repeat sequence and repeat similarity because the more
repeats are found, and the longer and more similar they are,
the stronger the evidence that the result did not occur by
chance.

On top of these features, we compute the RNA mini-
mum free energy (MFE) of the consensus repeat sequence.
The negative MFE is called the MFE score, and lower
MFE scores are positively correlated with the likelihood
of a true CRISPR array (22,27,28,42–44) in some systems.
The reason is that, in many cases, for instance, in the vast
majority of type I cases, the crRNA tends to form stable
stem-loop structures, due to the palindromic organization
of the repeat sequences. Therefore, a low MFE score can
be used to identify stem-loop structures in these systems,
thus buttressing the evidence for true crRNA and, by exten-
sion, CRISPR array. The MFE score was computed using
RNAfold (45). Another feature positively correlated with
the likelihood of a true CRISPR array is high similarity be-
tween the CRISPR candidate repeat sequence and a veri-
fied repeat sequence in the database. The similarity between
a given sequence and the sequences in the database is com-
puted using BLAST (46), which is provided as executable
with our pipeline. In our approach, two BLAST similarity
scores for each CRISPR candidate were computed. The first
score reflects the highest similarity between a candidate and
all experimentally validated repeat sequences. The second
score measures the similarity to a modified version of the
same dataset to which one or two mismatches were added,
thus extending the range of similarity considered by the first
BLAST score. These two scores were treated as two separate
features.

In contrast to the first group of features, the values of
the following features are negatively correlated with the
likelihood that a candidate is a true CRISPR array. The
first such feature is the number of mismatches because re-
peats are usually highly conserved. Furthermore, spacers
of the CRISPR array candidate were assessed in terms of
length and similarity. Because in bona fide CRISPR arrays,
the spacer length is typically uniform, a high variance in
spacer length negatively correlates with the likelihood of
a CRISPR array. With respect to similarity, spacers dif-
fer from repeats in that they are generally not significantly
similar to each other given their origin from different virus
or plasmid genomes. Thus, high level of similarity between
spacers (see Supplementary Figure S2 in Supplementary) is
negatively correlated with the likelihood of a candidate be-
ing a CRISPR array. Another feature that is included in our
pipeline is whether a candidate region contains a protein-
coding sequence. Because CRISPR arrays do not code for
proteins, the presence of coding sequences is negatively cor-
related with the likelihood of an interval being a CRISPR
array. Our pipeline identifies Open Reading Frames (ORFs)
using Prodigal (47), again provided as executable with our
pipeline. If ORFs were found, the result with the highest
confidence value was taken as the feature value. To ac-

count for protein coding-regions even more thoroughly, our
tool also looks for tandem repeat proteins. To this end, the
Prodigal output is fed into a Hidden Markov Model (48),
which searches for similarity with the PFAM database of
tandem repeat proteins. The resulting tandem protein simi-
larity score serves as a feature negatively correlated with the
likelihood of the interval being a CRISPR array.

In the third category, our approach computes two fea-
tures whose growing value is not directly correlated with the
likelihood of the interval being a CRISPR array but could
potentially guide the likelihood in different ways. The first
such feature is the AT-content of the identified repeat se-
quences within a given CRISPR array candidate. Because
bacteria and archaea differ in AT-content, this feature can
help to define implicit subclasses that allow the classifier
to model different properties for bacterial and archaeal ar-
rays. The other additional feature is average spacer length
(see Supplementary Figure S1 in the Supplementary Mate-
rials). This feature is important because, in contrast to re-
peats, spacers in the spacer array can have different lengths.
Overly short or long average spacer length, however, might
signal a false array, which is why such outliers should be
considered in the scoring of the candidates. After all the fea-
tures determined by the classification model were calculated
for each CRISPR array candidate, the resulting up to 13-
dimensional feature vector was subject to machine learning
classification as described below.

Feature selection

After the first successful results using all thirteen features
described above, we went on to evaluate which of the fea-
tures are actually necessary. This can be determined by fea-
ture subset selection (FSS), which generates a subset of fea-
tures best suited for classification. For this purpose, we ap-
plied a wrapper approach (49), which works as follows. We

generated all
13∑

i = 1
(
13
i ) =

13∑

i=1

13!
i !(13−i !) = 8192 $ subsets of the

full sets of 13 features. We then trained for each of the
8192 subsets a model using only the features from the re-
spective subset, and assessed the prediction quality. The re-
sults of these experiments showed that a subset of the 13-
dimensional feature vector is sufficient to reach the 99.8%
accuracy that is achieved with the complete feature set. The
same accuracy levels could be achieved with three of these
models. These models included 8, 9 and 10 features, re-
spectively, with each feature appearing in at least one of
the models. Although the feature combinations overlapped,
they were not subsets of one another (see Table S1 in Sup-
plementary for the models and their feature subsets).

Classification of CRISPR arrays using machine learning

The last step of our CRISPR identification pipeline con-
sists of the evaluation of the obtained CRISPR candidates.
For this purpose, we integrated the implementation of the
Extra trees classifier from the python Scikit-learn package
(50) into our pipeline. We provide the user with an opportu-
nity to pick either of the three pretrained classifiers that we
describe in the Feature Selection and Importance Analysis
subsection or use all of them simultaneously. It is important
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to notice that we do not use the class prediction directly but
take the label pseudo-probability and treat it as a certainty
score. In case of using many classifiers, the score is com-
puted as the average of scores. Based on the distribution of
the output CRISPR array scores, we introduced two deci-
sive score values around which we structured the labels: 0.75
and 0.4. CRISPR arrays with scores greater than or equal to
0.75 were labeled to ‘candidate’, meaning that one of them
likely corresponds to a true CRISPR array. CRISPR ar-
rays with scores between 0.75 and 0.4 were assigned to the
group ‘potential candidate’, meaning that there is a smaller
probability for one of them to be a true CRISPR array.
The CRISPR candidates with scores lower than 0.4 were as-
signed to the group ‘low score candidates’, indicating that
they are probably not valid CRISPR arrays. After perform-
ing the grouping, the algorithm picks the ‘bona fide candi-
date’ as the candidate with the highest score among the can-
didates in the ‘possible candidate’ group. Then all the can-
didates are reported in files corresponding to their groups.
Hence, the user may not only inspect the bona fide candi-
dates but also all the alternatives with their respective statis-
tics.

Repeat and spacer databases

Our tool can also be used to build a user-specific CRISPR
array databases. In order to illustrate the potential of this
feature, we used data from archaea and bacteria genomes.
The archaeal dataset consisted of 251 complete and 736
incomplete genomes, while the bacterial dataset included
1693 complete genomes and 25335 incomplete ones. Hav-
ing identified CRISPR arrays in each dataset with our tool,
we extracted the complete set of spacers as well as the con-
sensus repeat sequence for each CRISPR array. Using these
results, we built two databases, one for the identified re-
peats and the other one for spacers. The output of the re-
peat database lists, for each consensus repeat sequence, all
genomic locations, the organisms, as well as the number of
locations and organisms where an array with this consensus
repeat can be found (see Table S6 and Figure S6 in Supple-
mentary).

RESULTS AND DISCUSSION

Existing CRISPR datasets contain many suspicious arrays

The main drawback of the current tools for CRISPR ar-
ray identification is the lack of scoring of the obtained re-
sults, i.e. absence of a thorough evaluation of the likelihood
of each reported array to be a true CRISPR array. We sus-
pected that lacking a stringent quality evaluation might en-
rich existing datasets with false-positives. A high prevalence
of questionable results produced by the commonly utilized
CRISPR identification tools could pose a problem not only
to experimental researchers, which might invest effort in the
investigation of false predictions, but also to tool developer
using these datasets as standards (51).

One type of spurious arrays that we found to be com-
mon in public databases are arrays that contain damaged
repeats or spacers with unusually high similarity to one an-
other. In these cases, a possible explanation is a duplica-
tion or repetitive structure stemming from a source other

than CRISPR. Consider the example in Figure 2, which is
an array that was predicted as positive by the CRT tool.
As shown in Figure 2A, the array contains a damaged re-
peat as well as two nearly identical spacers that differ by
only one nucleotide. Further examination showed that the
array lies within a predicted protein-coding sequence on
the opposite strand, suggesting that this is not a functional
array. Moreover, the CRISPR locus is in a region that is
predicted to be intrinsically disordered in the protein en-
coded on the opposite strand, and the repeat (and part of
the spacers) are predicted by the Anchor tool (52) to be lin-
ear interacting peptides (Figure 2B). Thus, in this case, the
repetitive structure at the nucleotide level, most likely, orig-
inates from a repetitive structure at the protein level, and
accordingly, is not a functional CRISPR array. Other sus-
picious cases showing, for example, low repeat similarity
or a highly non-uniform distribution of spacer lengths can
be found in Section 9 ‘Spurious Arrays in Existing Tools’
and Supplementary Figures S3–S5 of the Supplementary
material.

To assess the scale of the problem, we investigated the
3263 array candidates in the CRISPRidentify benchmark
set and systematically searched for suspicious arrays that
are predicted as positive by CRT, CRISPRDetect and
CRISPRCasFinder. We considered an array to be suspi-
cious if it had at least one of the following properties: (i)
a high similarity between spacers (sequence identity > 0.6),
(ii) mutations in repeats (identity between repeats < 0.8),
(iii) similarity between repeat and spacer (identity between
repeat and spacer > 0.5) or (iv) an uneven spacer length
distribution. The spacer length was considered to be dis-
tributed unevenly if at least one spacer was 70% shorter than
the average. To exclude any bias in the tool parameter set-
ting, we considered only arrays that could be handled by
all tools. Thus, we filtered out the cases with only two re-
peats, or arrays with repeats shorter than 23 or longer than
55 nucleotides as this setting is covered by all tools. Note
that each tool predicted slightly different locations overlap-
ping these arrays. Altogether, we obtained 1358 arrays that
passed this filter and were predicted as positive by CRT,
1395 by CRISPRCasFinder and 346 by CRISPRDetect.
Among these predictions, 602 arrays predicted by CRT, 628
arrays predicted by CRISPRCasFinder and 110 arrays pre-
dicted by CRISPRDetect were deemed suspicious under the
above criteria (see Table 3). This corresponds to potential
false positive rates of 44.3% (CRT), 45.0% (CRISPRCas-
Finder) and 31.8% (CRISPRDetect) (see Table S5 in Sup-
plementary). Although these numbers are upper bounds be-
cause it cannot be ruled out that a suspicious array is actu-
ally functional, they clearly show that false positive predic-
tions are a substantial problem for all available methods for
CRISPR detection.

The CRISPRidentify Pipeline using a machine-learning
based scoring system

To overcome the problem of false positives, we set up the
CRISPRidentify pipeline (see Figure 1). It consists of two
steps, namely, a sensitive approach to detect array candi-
dates, and rigorous evaluation of the detected candidates
using machine learning.
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A

B

Figure 2. Example of a spurious detected array. (A) The repeat spacer structure is special in two aspects. First, the two spacers are identical (marked in
yellow) with the exception of one position. Second, the third repeat has several mismatches (marked in red). (B) The locus is overlapping a predicted protein
on the opposite strand, which has an intrinsically disordered region predicted by several tools to overlap the array position. Furthermore, the three repeats
overall exactly with three linear interacting peptides (LIPs) predicted by Anchor. In addition, the first LIP is terminated at the position where the last repeat
(in opposite direction) has a mutated region. This together provides a repetitive protein sequence or a duplication event as an alternative explanation for
the repetitive structure predicted as CRISPR array.

In the first step, we used the Vmatch tool to detect pair-
wise matches of a repeat, from which we reconstruct ar-
ray candidates by combining compatible pairwise repeat
matches. Vmatch builds an efficient computational index
structure named suffix arrays that allows for a fast search
for matching substrings in the DNA sequence. Pairwise
matches that fulfill predetermined length and spacing re-
quirements based on reliable observations are then pro-
cessed further (see Methods for details). The principal diffi-
culty at this step is that assignment of the leading and trail-
ing nucleotides of the spacers can be ambiguous. Thus, mis-
matches in the repeat sequences or similarity of some spac-
ers around the start and end positions can lead to incorrect
identification of the repeat sequence itself. Consider the fol-
lowing repeat composition:

It remains unclear whether the G- and A-nucleotides
coloured in green and red, respectively, belong to the re-
peats, or to the spacers that happen to contain the same first
(or, respectively, last) nucleotides in two cases. Repeat find-
ing tools, such as Vmatch, find pairwise matches, which are
likely to be copies of the same repeat. Thus, in our exam-
ple, Vmatch would return the following pairwise matches

that could all be instances of the repeat: and

This situation results in three distinct potential ar-
ray variants. To identify these cases, we first cluster the pair-
wise matches representing repeat candidate sequences based
on the distance between them. However, the correct repeat
candidate might not be included in the Vmatch results due
to potential similarities in the beginnings or ends of spac-
ers, or mismatches between repeat sequences. In the simpli-

fied example above, the candidate would not have

been found as an exact pair match because there is no sec-
ond example of this form in the genome. To overcome this
problem, we extend each cluster in an enhancement proce-
dure by additional repeat candidates. First, we generate a
set F over each Vmatch cluster containing all possible re-
peat candidates and their extensions. To generate F, we use
the alignment for each cluster to construct the maximum
element of F as a string that is composed, column-wise, of
the nucleotides most frequently found in the alignment. The
minimum element of the set F is defined as the most consis-
tent substring, and is a subsequence of the maximal element
by definition. The set F is a subset of all subsequences of a
maximal consensus sequence partially ordered by the sub-
sequence relation (see Figure 1, box candidate extension).
Mathematically, F is a filter in the partial order defined by
the subsequence relation. It contains all subsequences that
contain the minimal repeat element and are itself subse-
quences of the maximal element (see Methods and Figure
1, box titled ‘Extension’, for details).

As a result, the first step of our pipeline produced multi-
ple CRISPR array candidates for the same genomic region.
Thus, an essential second step is to evaluate all these candi-
dates under stringent criteria. On the one hand, this evalu-
ation guarantees that the best candidate is selected for each
genomic region. On the other hand, the task of the evalua-
tion is to exclude repetitive patterns that might be detected
as CRISPR arrays by other tools but show otherwise little
similarity with bona fide CRISPR arrays, resulting in a bet-
ter control over the false positive rate. For this purpose, it
appears natural to rely on 1) a benchmark set of positive
and negative array examples, 2) features that are extracted
from the array to estimate the similarity between bona fide
CRISPR arrays and array candidates, and 3) machine learn-
ing to learn the evaluation function from this benchmark.
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The positive examples for the benchmark set are easily
generated by selecting an appropriate subset of annotated
CRISPR arrays (see Materials and Methods). The recon-
struction of negative examples, however, is more challeng-
ing as there is no curated benchmark set for this purpose.
Here, we constructed a negative data set based on the tan-
dem repeat dataset and cases with identical ‘spacers’ (see
Materials and Methods for more details).

For the purpose of ML-based evaluation, our pipeline
associates to each array candidate a feature vector, which
is a set of numerical values (features) that describe differ-
ent properties of the array. In our pipeline, the feature vec-
tor consists of a maximum of 13 features, including repeat-
associated features, namely, number of repeats, length of the
repeat sequence, repeat similarity, number of mismatches,
AT-content, and the RNA minimum free energy (MFE)
of the repeat, which is indicative of a stem-like structure
present in the vast majority of type I arrays. We added
also added two BLAST scores that determine the simi-
larity of the identified repeats to known repeat sequences.
Spacer-related features are similarity between spacers, av-
erage spacer length and spacer uniformity, i.e. a measure
of the variability of the spacer length. Additionally, we in-
cluded two features that are associated with the whole array,
namely, an ORF score, which measures whether the array
overlaps with a protein-coding region, and a tandem pro-
tein similarity score, which is used to detect tandem repeat
proteins (see Materials and Methods and Table S2 in Sup-
plementary for details). Once the feature vector was asso-
ciated with a repeat region, a trained classifier was used to
decide whether an array candidate is likely a CRISPR array,
and the score for this likelihood was calculated.

CRISPRidentify not only defines and scores CRISPR ar-
rays, but provides the user with more detailed information
on the respective CRISPR–Cas systems for further investi-
gation. Thus, we use CRISPRstrand (30) to predict the ori-
entation of the array, and CRISPRleader (38) to predict the
start of the leader sequence. In addition, the results of the
CRISPR array analysis are complemented with the infor-
mation on the detected adjacent cas genes. We used Prodi-
gal (50) for the protein prediction, with subsequent classifi-
cation using Cas-specific Hidden-Markov-Models (HMM).
An important aspect of our annotation is the analysis of de-
generated repeat elements, as well as detection of insertion
sequence (IS) elements, a type of transposable elements that
can influence the prediction of CRISPR arrays. A degener-
ated repeat element can be missed during the CRISPR array
identification due to a high number of mismatches exceed-
ing the detection threshold. To overcome this problem, we
apply an additional search for degenerated repeat sequences
using the approximate search method from the CRISPR
identification part.

The IS elements are widespread in archaeal and bacterial
genomes (53) and thus can disrupt CRISPR arrays. Integra-
tion of an IS element into a CRISPR array would mislead
existing CRISPR detection tools to predict two or more dis-
tinct CRISPR arrays, despite the relatively close positioning
and identity of the repeat sequences. To detect IS-elements,
the known IS sequences were clustered using the Markov
Cluster Algorithm (MCL) (54) and an HMM model for
each cluster using hmmbuild (48). When two neighboring

CRISPR arrays with identical repeat sequences were de-
tected, Prodigal was used to extract protein sequences from
the gap region, and the resulting sequences were searched
for the presence of an IS-element using the IS-HMM mod-
els. If an IS-element is found, our pipeline has an option to
merge the separated parts of the array (see the Degenerated
repeat and IS element search section in the Supplementary
Materials for an example).

CRISPRidentify outperforms the existing tools thanks to
machine-learning based evaluation

We investigated different types of machine learning (ML)
approaches, including Support Vector Machine, Naive
Bayes, K-nearest neighbors, Fully Connected Neural Net-
work, Decision Tree, Random Forest classifier and Extra-
trees classifier, for the use in CRISPRidentify. The per-
formance analysis for the CRISPRidentify pipeline con-
sists of two parts. First, we determine which of the ML-
approaches performs best by checking the classification per-
formance of each. Then, we compare the selected, best ML-
approach to the existing tools, using the built-in scoring
function and thresholds of these tools as the classifier. To
avoid any bias from the training in the comparison with
other tools, we split the positive and negative datasets into a
train&validate dataset to determine the best ML-approach
and parameters for CRISPRidentify, and an independent
test dataset that was only used for the comparison to other
tools (see Table 1 and Methods for details on benchmark
sets). With the train&validate dataset, we used a 10-fold
cross-validation strategy to assess the accuracy of the dif-
ferent ML-approaches. As the train&validate dataset is bal-
anced (see Table 1), reporting the accuracy is sufficient to
assess the performance of each approach. As can be seen
in Figure 3, ensemble methods, in particular, Extra Trees,
which learn a whole ensemble of simple classifiers and out-
put the average estimate for all of them as the overall classi-
fication result, clearly outperform the other classifiers with
a median accuracy of 0.91. Thus, we employed Extra Trees
for the further analyses.

Once we have selected and trained Extra Trees on the
train&validate set, we used the untouched test set (see Ta-
ble 1) to compare the performance of our method using
the chosen classifier with those of other tools. Because our
test set is unbalanced due to the smaller amount of negative
data, we report, in addition to the accuracy (ACC), also the
balanced accuracy (BACC) and the Mathews correlation
coefficient (MCC, see Figure 3 and Table 2), as these predic-
tion quality measurements are better suited in this case. The
high true positive rate (TPR) demonstrates the high sensi-
tivity of all approaches, with CRT having the lowest sensi-
tivity (TPR = 0.93) and our tool, CRISPRidentify, having
the highest sensitivity (TPR = 0.99). The specificity, how-
ever, is drastically different between CRISPRidentify and
the existing tools. As indicated above, means to reduce the
false positive rate (or equivalently, increase the true negative
rate, as FPR = 1 – TNR) was not investigated in great depth
for the existing tools. Thus, CRISPRidentify has the highest
possible TNR of 1, whereas CRT has a low TNR of 0.42,
and CRISPRCasFinder and CRISPRDetect show interme-
diate specificities (TNR of 0.64 and 0.74, respectively). The
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Figure 3. Performance of different Machine Learning classifiers. We conducted the grid search of hyperparameters for each of the classifiers (See supple-
mentary Materials Section 13). The initial experiment shows the dominance of the ensemble methods for CRISPR array classification. See the variety of
cas gene types in the Supplementary Materials Section 14

Table 2. Performance of CRISPR detection tools on the test dataset, which was not used for training CRISPRidentify. As the test set is imbalanced, we
report, beside the accuracy, also the balanced accuracy and the Matthews correlation coefficient

TPR TNR ACC BACC MCC

CRISPRidentify 0.99 1 0.99 0.99 0.99
CRT 0.93 0.42 0.79 0.67 0.42
CRISPRCasFinder 0.96 0.64 0.87 0.80 0.67
CRISPRDetect 0.96 0.74 0.89 0.85 0.73

Table 3. Spurious Arrays in the CRISPRCasFinder datasets (27). To detect arrays that are likely false positive candidates, we first filtered arrays that are
not covered by the parameter setting of the different tools (i.e. ≤3 repeats, or repeat length <23 or >55). The remaining number of arrays is listed in the
row standard arrays. Arrays that were labeled as likely negative (see Methods) if they had one of the following four defects: 1) damaged repeats, 2) high
similarity between spacers, 3) uneven distribution of spacer lengths and 4) high similarity between repeats and spacers. The following rows list how many of
these likely negative arrays had specific deficiencies (see text for details). Note that some arrays can have several problems, hence there are multiple entries
in these rows. The FDR is calculated considering all likely negatives as true negatives, as we do not have other information. This FDR values are, however,
likely overestimates. Nevertheless, they show the dimension of the problem

CRT CRISPRCasFinder Detect

Arrays declared positive 1866 3263 764
Standard arrays 1358 1395 346
Likely negative arrays 602 628 110
of which are arrays with damaged repeats 165 189 40

with similar spacers 57 0 13
with uneven spacers lengths 473 508 83
with sim. repeats to spacers 23 4 11

FDR 44,3% 45,0% 31,8%
likely positive arrays 756 767 236

relatively low specificity of the other tools is also manifested
in their low balanced accuracy and Mathews correlation co-
efficient.

We then investigated the false positives in more detail to
see whether a particular type of arrays was preferentially
misclassified by a group of tools. Examination of the over-
lap between different tools shows that the majority of the

false positives are unique for a specific tool (see Figure 4).
From the 200 false arrays of our test set, all have been mis-
classified (that is, recognized as CRISPR) by at least one of
the existing tools, and none by CRISPRidentify. A substan-
tial majority of the false arrays (159, or 79.5%) were mis-
classified by exactly one tool, and only one array was mis-
classified by all three tools. In addition to excluding a spe-
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Figure 4. Comparison of false positive predictions on the test dataset with
200 false arrays. In summary, all false arrays were reported as a true array
by at least one existing tool. In contrast, CRISPRidentify predicts all 200
as true negatives. Even further, the majority (159 out of 200) of the arrays
were reported as a true array by only one approach, validating the quality
of the false data set all these 159 arrays where reported as false arrays by
two existing tools. For more details about the datasets see corresponding
statistics in the Supplementary Table S4 Section 10. Corresponding distri-
bution plots are presented in Supplementary Section 19.

cific bias, these observations support our selection of false
arrays as true negatives. Among the tested tools, CRT had
the highest false positive rate (117 false positive predictions
(FP), FPR = 58.5%), followed by CRISPRCasFinder (72
FP, FPR = 36%) and CRISPRDetect (53 FP, FPR = 26.5%)
(See feature distribution of false predictions in Supplemen-
tary Figures S12–S16). The CRISPRidentify had, as stated
before, a zero false positive rate.

We then investigated the true positive predictions, i.e.,
correctly reported CRISPR arrays, as well as false negative
predictions, in more detail. We employed the full, compre-
hensive dataset of all annotated arrays from the most re-
cent CRISPR classifications (2,3,18,19) (see Materials and
Methods) to obtain a wider picture of arrays that remained
undetected by different tools. This dataset or a larger part
of it were not used for training the parameters for several
reasons: (i) the dataset would be highly imbalanced, (ii) we
would be unable to perform the same quality control, due to
the dataset size, as for the train&validate dataset and (iii) the
arrays are probably largely predicted with one of the exist-
ing tools. The last point is problematic as it would bias our
tool to mimic the prediction tool that was mostly used to
annotate these arrays. As shown in Figure 5, the sensitivity
is high for all existing tools, but nevertheless, CRISPRiden-
tify performed the best (99.8%), followed by CRISPRCas-
Finder (98.9%), CRISPRDetect (94.5%) and CRT (93.5%).
In this test, CRISPRidentify could detect 147 previously
annotated arrays (2,3,18,19) that were not detected by any
other approach. Overall, only 89 arrays, 7% or the total
of 35310, were predicted by all tools, indicating consider-
able variation among the predictions. In summary, these
results show that, in CRISPRidentify, we increased the al-

Figure 5. CRISPRidentify recall level in comparison with other tools on
the annotated arrays dataset. This dataset was compiled out of 987 ar-
chaeal and 27 028 bacterial genomes obtained from NCBI. Only 89, 7%
of the annotated arrays, are predicted by all tools. 147 arrays are only pre-
dicted by CRISPRidentify, which is nearly three times as many as the 55 ar-
rays predicted only by CRISPRCasFinder. Concerning the largest overlap
between tools outside the commonly predicted 35310 arrays, 9.0% or 808 +
1095 + 3 arrays are predicted by both CRISPRCasFinder and CRISPRi-
dentify.

ready high sensitivity of the existing approaches, while sub-
stantially improving the specificity as well.

Both expected and unexpected features are important for
CRISPR identification

To assess the importance of different features, we first per-
formed feature selection to remove non-informative fea-
tures. This procedure also helps avoid overfitting to the
training data. Thus, we generated three subsets of features
including 8, 9 and 10 features, respectively, that are sufficient
to reach the 99.8% accuracy. Although the feature combina-
tions overlapped, they were not subsets of one another (see
Methods for details, and Table S1 in Supplementary for the
models and their feature subsets).

We then investigated how much each feature contributes
to the prediction quality. Specifically, we used the ReBATE
algorithm since it showed state of the art performance for
the similar task (55). We ran the algorithm on the training
set with different numbers of the nearest neighbors within
the interval [1, 100], to compute the relative importance of
each feature. We then compared the importance values ob-
tained with the training set with the feature importance of
the trained model. To this end, we sampled 10 000 CRISPR
candidates from the comprehensive dataset and re-ran the
ReBATE algorithm with the same settings. Despite minor
differences, both runs showed similar results with slightly
different orderings of spacer similarity, spacer uniformity
and AT-content (see Figure 6).

Overall, as could be expected, repeat similarity is clearly
the most important feature. The MFE-feature is also ex-
pected to contribute substantially because the repeat forms
a stem-loop structure that is required for processing in the
vast majority of type I systems. The AT-content did not
come across as a direct decision-making feature, i.e., there
was no correlation between AT-content and array quality.
Thus, this appears to be a supporting feature defining sub-
classes that can help the classifier to compensate for the dif-
ferences between archaeal and bacterial arrays, probably,

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkaa1158/6027817 by Albert-Ludw

igs-U
niversitaet Freiburg,  alkhanbo@

inform
atik.uni-freiburg.de on 13 January 2021



Nucleic Acids Research, 2020 11

Figure 6. Feature importance distribution of eight most influential features which was computed with ReBATE algorithm. Feature importance distribution
on the train dataset described in Table 1 and sampled cases from the comprehensive dataset classified with our approach. The sampled results contained
10 000 classified CRISPR array candidates.

also in combination with the MFE feature. The blast score
is important because similarity of the repeat sequence to a
known repeat is a clear sign of a true array. The importance
of this feature, however, is not high enough to jeopardize the
generalization capacity of the trained model. Repeat length
is also an important feature as the majority of known ar-
rays in bacteria show a narrow distribution of the repeat
length, with peaks around 28 and 36 nt, and in archaea,
there are three peaks of repeat lengths (Figure 7). We also
investigated the distribution the repeat lengths in the false
arrays, finding that this distribution is somewhat broader
than the distribution for the bona fide arrays, but covers a
similar length range (Figure 7). This also shows that our set
of false arrays shares basic properties with the true ones.

Whereas the importance of all repeat-related features
could be readily expected, we found that, among all fea-
tures, the second and third most important ones (second
and fourth in the comprehensive data set, see Figure 6) are
related to the spacers. Spacer similarity was one of the cri-
teria used for constructing the negative set and is thus neg-
atively correlated with the likelihood of the candidate being
a true CRISPR array. The reason is simply that the pres-
ence of many (nearly) identical spacers in an array is strong
evidence of a non-CRISPR repetitive element. However, we
observed extensive overlap between spacer similarity in the

positive and negative training set, showing that spacer sim-
ilarity alone is not sufficient to discard an array (see Sup-
plementary Section 3). This conclusion was supported by
database analysis in which we found a few cases of spacer
duplication in an array. Further, we found that the spacer
lengths have a sharp peak around 30–35 for bacteria (see
Supplementary Section 3), which is why spacer uniformity
is an important feature as well.

In addition, we used the comprehensive dataset (see Sup-
plementary material Section 12) for a quantitative compar-
ison of bona fide CRISPR arrays and genomic regions that
exhibit similarities to CRISPR arrays but are likely to be
true negatives, that is, low scoring candidates detected by
our pipeline. We found that such low scoring candidates
tend to have much shorter repeat sequences, with the major-
ity having a repeat length of about 20 nucleotides. In con-
trast, the vast majority of bona fide arrays had longer re-
peats consisting of more than 30 nucleotides. Another strik-
ing difference pertained to the number of repeats per array.
Whereas low score candidates consistently contained 3–5
repeats per array, bone fide arrays were distributed more
uniformly, often showing cases with large (>30) number of
repeats. Further, the spacer length distribution of bona fide
arrays was heavily concentrated within the interval between
27 and 50 nucleotides. Low scoring candidates, in contrast,
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Figure 7. Distribution of repeat lengths in archaea and bacteria for positive and negative arrays. CRISPR arrays were obtained by CRISPRidentify on
the annotated arrays dataset (see Table 1. Bona fide Arrays were defined as candidates that obtained certainty score (probability of being a CRISPR array)
higher or equal to 0.75, Low score Arrays obtained certainty scores lower than 0.4). See separate distributions for archaea and bacteria in Supplementary
Section 18 Distributions of arrays with different scores.

showed a rather uniform distribution of spacer lengths be-
tween 0 and 60 nucleotides (see Figures S7–S11 in Supple-
mentary materials)

Repeat and spacer databases

In addition to CRISPR array identification, our tool also
includes a feature that allows users to build databases that
collate relevant information on the identified arrays. The
advantage of this database is that it classifies CRISPR ar-
rays into different categories (bona fide, alternative, possi-
ble, low score) and provides detailed information on each
array, such as the repeat sequence, the spacer elements, the
array score, its orientation, and other characteristics (see
Materials and Methods for details).

CRISPRidentify can handle common challenges faced by ex-
isting tools

Multiple studies show that, in many functionally charac-
terized CRISPR arrays, there is notable accumulation of
point mutations in the repeats at the 3’-end (41,56,57). To
assess the frequency of such mutations, we investigate the
bona fide arrays obtained by CRISPRidentify in a com-
prehensive genome dataset (see Supplementary Section 12).
We filtered out cases with an overall repeat similarity be-
low 0.8 and repeat number <3, in order to focus on read-
ily identifiable substitutions in the first or last repeat. The
array orientation was determined using CRISPRstrand. In
an effort to attain an even higher specificity, we introduced
two groups of mutated terminal repeats: (i) damaged, where
the number of substitutions in the first or last repeat of
the array did not exceed 5 and (ii) severely damaged (more
than five mismatches with the consensus repeat sequence),
where we suspect degenerated repeat sequences in the ar-
ray (39–41) (here, using CRISPRidentify, we found that

substitutions in 3’-end repeats were frequent, appearing in
10 425 of the 39 378 analyzed arrays (27%). We also no-
ticed that severe damage occurred in nearly a half of the
mutated repeats, 5125 (13%) (See Supplementary materials
Table S8). We examined how the existing tools could handle
the identification of the repeats with mismatches by check-
ing for the predicted start and end positions for each ar-
ray. Of the arrays with mismatches detected by CRISPRi-
dentify, CRT, CRISPRCasFinder and CRISPRDetect re-
ported 7974 (76%), 8523 (82%) and 387 (4%) cases in the
damaged category, respectively, and 3518 (68%), 3714 (72%)
and 8 (0.1%) cases in the severely damaged group, respec-
tively. While CRT and CRISPRCasFinder yielded similar
results, CRISPRDetect reported many fewer cases. This
difference is due to the conservative approach adopted by
CRISPRDetect. Despite its ability of tolerate mismatches,
CRISPRDetect often does not include the damaged repeat
in the candidate set. In contrast, CRT and CRISPRCas-
Finder can both add heavily damaged repeat candidates in
the predicted arrays (see Supplementary Section 16).

Another potential challenge for CRISPR array identifi-
cation could be the presence of identical spacers in the ar-
ray. In order to investigate this case, we examined bona fide
CRISPR arrays obtained by CRISPRidentify from a com-
prehensive genome dataset (see Supplementary Section 12)
as well as CRISPR arrays from the training and test sets for
the classification. We took into account two possible con-
figurations: first, a sequence of identical spacers forming a
‘cluster’ of consecutive elements, and second, sparse identi-
cal spacers separated by other, distinct spacers. For the first
case, our tool identified 2391 arrays, and for the second case,
1444 arrays of the total 39 378 arrays analyzed (see Table
S9 in Supplementary materials section 18, also see Tables
S10 and S11 for the analogous distribution on the train and
test sets). The majority of the identified arrays with identi-
cal spacers contained less than three spacer duplicates. This
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result implies that, although our approach penalizes high
similarity between spacers, it nevertheless can detect arrays
with a limited number of repeated spacers, while discard-
ing those in which many spacers are identical. In contrast,
the existing tools do not evaluate the detected CRISPR ar-
rays for spacer similarity and therefore can report spuri-
ous candidates with large clusters of identical spacers. In-
deed, we examined the results of CRT, CRISPRCasFinder
and CRISPRDetect, and found that all these tools reported
some spurious CRISPR array candidates with large clusters
of identical spacers (>5) (see Supplementary Section 18).

Finally, our approach is able to identify CRISPR ar-
ray candidates with complete spacer deletion, in contrast,
to CRT and CRISPRCasFinder which do not support the
search for such cases. We investigated the frequency of such
cases in the comprehensive CRISPR array dataset collected
with CRISPRidentify and found that 152 of the 39 378 iden-
tified arrays contained spacer deletion (see Supplementary
Section 12).

Tool availability

The CRISPRidentify is available as an open-source tool in
GitHub

https://github.com/BackofenLab/CRISPRidentify
It is implemented and tested in Python version 3.7.6 and

ML models exported following the
model persistence from scikit-learn.
https://scikit-learn.org/stable/modules/

model persistence.html
CRISPRidentify accepts a complete or partial genome

sequences input and identifies all possible arrays using a dif-
ferent mode of setting.

CONCLUSION

In this work, we present a pipeline for the detection of
CRISPR arrays, CRISPRidentify, which includes a highly
sensitive method for the detection of array candidates, fol-
lowed by a data-driven, machine-learning based approach
for the evaluation of these candidates. We demonstrate
the ability of CRISPRidentify to accurately distinguish
true CRISPR arrays from false ones. Although all existing
CRISPR identification tools are highly sensitive, CRISPRi-
dentify outperforms them by this measure, while also being
substantially more specific. Using a DNA sequence as in-
put, our pipeline performs three steps: (i) detection of repet-
itive elements and construction of array candidates, (ii) ex-
traction of several array-related features and (iii) ML-based
classification of array candidates based on the extracted fea-
tures. The detected CRISPR arrays are then reported to the
user accompanied by extensive annotation. In contrast to
the existing tools, CRISPRidentify not only provides the
user with the basic statistics of the identified CRISPR ar-
rays, but also outputs a confidence score as an easily inter-
pretable measure of the likelihood that a given genomic lo-
cus encompasses a CRISPR array. Thus, users can immedi-
ately assess the confidence of the identification of each po-
tential CRISPR array, which is a substantial advantage over
the other CRISPR detection tools. Another key feature of
our approach is its flexibility. Whereas other tools use pre-

determined constant filtering criteria, CRISPRidentify dy-
namically builds such criteria based on the data employed
during training. Thus, CRISPRidentify can adjust to new,
previously unseen training data and use it to enhance the
overall performance.
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