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Abstract
Motivation: Simultaneous alignment and folding (SA&F) of RNAs is the indispensable gold
standard for inferring the structure of non-coding RNAs and their general analysis. The original
algorithm, proposed by Sankoff, solves the theoretical problem exactly with a complexity of O(n6) in
the full energy model. Over the last two decades, several variants and improvements of the Sankoff
algorithm have been proposed to reduce its extreme complexity by proposing simplified energy
models or imposing restrictions on the predicted alignments.
Results: Here we introduce a novel variant of Sankoff’s algorithm that reconciles the simplifications
of PMcomp, namely moving from the full energy model to a simpler base pair-based model, with
the accuracy of the loop-based full energy model. Instead of estimating pseudo-energies from
unconditional base pair probabilities, our model calculates energies from conditional base pair
probabilities that allow to accurately capture structure probabilities, which obey a conditional
dependency. Supporting modifications with surgical precision, this model gives rise to the fast
and highly accurate novel algorithm Pankov (Probabilistic Sankoff-like simultaneous alignment
and folding of RNAs inspired by Markov chains). Pankov benefits from the speed-up of excluding
unreliable base-pairing without compromising the loop-based free energy model of the Sankoff’s
algorithm. We show that Pankov outperforms its predecessors LocARNA and SPARSE in folding
quality and is faster than LocARNA. Pankov is developed as a branch of the LocARNA package
and available at https://github.com/mmiladi/Pankov.
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1 Introduction

In all forms of life, RNAs play essential roles that go beyond coding as messenger RNAs for
the synthesis of proteins. Non-coding RNAs (ncRNAs) directly regulate cellular mechanisms,
where some are known to be conserved for billions of years [2]. ncRNAs often have only weak
sequence conservation, since their (conserved) structure crucially determines their function.
Therefore, inferring the conserved secondary structure of homologs – most often, based on
RNA alignments, is central for the discovery and annotation of functional RNAs.

RNA structural alignment algorithms can be classified depending on whether they fold
and align simultaneously or in turn [19]. The gold standard for computing reliable alignments
(and common structures) of RNAs is still the simultaneous algorithm proposed by Sankoff
in 1985 [18]. By simultaneously aligning and folding the RNAs, it resolves the vicious
cycle that reliable RNA alignments must consider RNA structures (especially for RNAs of
medium to low sequence identity [6]), while computational structure prediction is typically
unreliable without comparative information. For a pair of RNA sequences, the algorithm
finds the optimal alignment and two compatible secondary structures that minimize the
total of sequence-alignment distance score and the free energies of the predicted structures.
With a run-time complexity of O(n6) and O(n4) for memory, the method requires extreme
computational resources, such that its application is largely restricted to small instances
and data sets. Efficient alignment algorithms are needed for the multiple alignments of
the clusters that can be obtained from large scale clustering of data from high-throughput
sequencing experiments [16].

Thus, several approaches have adapted Sankoff’s original algorithm to reduce its computa-
tional costs. Two main lines of the variants can be distinguished. Methods like Dynalign [13]
and FoldAlign [9] reduce the computational complexity by heuristic restrictions, e.g. intro-
ducing banding strategies or limiting the maximum size of the comparable sub-structures.
Since such methods need to perform expensive energy computations in the nearest neighbor
model [14], their applications are still limited without considering heuristic restrictions that
in turn could compromise their accuracy.

A highly viable alternative was proposed with the PMcomp algorithm [10], which replaces
the nearest neighbor energy model with a still accurate probabilistic model. This model allows
to drastically simplify the algorithms, which strongly reduces the computational overhead
and supports further algorithmic optimizations in PMcomp’s successors. For reducing the
overhead, PMcomp-type algorithms evaluate structures based on base pair probabilities,
which are precomputed by McCaskill’s algorithm [15] instead of calculating nearest neighbor
energy terms. Moreover, PMcomp-type algorithms such as LocARNA and similar approaches
with a probabilistic energy model [22, 20, 8, 11] further speed up by reducing the search
space. To this end, LocARNA considers only base-pairs that pass a defined probability
threshold. This sparsification improves over PMcomp’s complexity of O(n6) time and O(n4)
space, each, by a quadratic factor (resulting in the O(n4) time and O(n2) space requirements
of LocARNA).

With the algorithm SPARSE [21], we introduced a second level of sparsification using loop-
closing aware recursions to filter based on the joint probability of base-pairs and associated
loop-closing base-pairs. This sparsification reduces the time complexity of the alignment
algorithm to O(n2), starting from the precomputed probabilities. The joint probabilities
were computed based on our extension of the McCaskill’s algorithm [17].

We emphasize that all these methods, starting with the original Sankoff algorithm,
consider only non-crossing structures, even if crossing base pairs occur relatively frequently
in physical structures [3]. This is generally justified, since most secondary structures are
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dominated by non-crossing base pairs; in turn, the limitation to non-crossing structures allows
dynamic programming techniques, which are far more efficient and flexible than comparable
techniques that consider (even limited forms of) base pair crossings.

In this work, we utilize the joint probabilities in a novel way – not only for strong
sparsification as in SPARSE but as well to evaluate RNA structure more accurately in a
PMcomp-type algorithm. We start with showing that joint (or equivalently, conditional)
probabilities allow to precisely capture structure probabilities in the nearest neighbor energy
model. This corresponds to the exact capture of the nearest neighbor energies themselves.
Remarkably, while previous work discussed only the stacking base-pair helices [1], we cope
with all loop types. Based on the exact model, we suggest careful simplifications, that
allow incorporation of the model into alignment and folding (in the variant of the SPARSE
algorithm). Based on the novel precise probabilistic model, we propose the novel algorithm
Pankov with O(n2) time complexity. As fundamental novelty over its predecessors, it applies
an accurate full-loop energy model for evaluating the structures.

Performing an established benchmark, we show that Pankov is in practice faster than
LocARNA and significantly improves structure prediction over both SPARSE and LocARNA.
Compared to SPARSE, it even improves the sequence alignment quality.

2 Methods

2.1 Preliminaries
Basic notations

An RNA sequence A is a string over the alphabet {A, C, G, U}. A base pair a of A is a pair
(aL, aR) (1 ≤ aL < aR ≤ |A|) such that the respective sequence positions are complementary,
i.e. AU, GC or GU. A non-crossing RNA structure S of A, in the following called structure, is
a set of base pairs, where each two different base pairs (i, j) and (i′, j′) of S do not cross,
i.e. i < i′ < j < j′, and do not share any end, i.e. i, j, i′, and j′ are pairwise different.
To treat the external bases pairs of an RNA structure, we introduce a pseudo-base-pair
a0 := (0, |A|+ 1), which formally encloses all base pairs of A.

Tree structure

A nested RNA secondary structure S can be represented as a rooted structure tree, exemplified
in Figure 1(A,B), where base-pairs are encoded as nodes and the enclosing base-pairs are
the parents of the directly enclosed base-pairs. The chi(a ∈ S) function provides the set of
children base pairs that are directly enclosed by a given base pair a. Thus, the cardinality
of chi(a) is zero for hairpin loops (a3, a5, a6 in Fig. 1), at least two for multi-loops (a4) and
one otherwise (a1, a2), which represents stackings, bulges or interior loops. Furthermore,
the pseudo base pair a0 recursively encloses all base pairs of any structure that can be
formed by A.

Energy and probability of an RNA structure

The energy of a structure S can be estimated using the nearest neighbor energy model, which
is based on a loop-decomposition of the structure, where a loop is defined as the substructure
defined by a base pair a and its enclosed base pairs chi(a). The energy model provides
contributions Eloop(a, chi(a)) for such loops, which are summed up, i.e.

E(S) =
∑
a∈S

Eloop(a, chi(a)). (1)

WABI 2019
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PPMcomp(S) = P(a1) ·P(a2) ·P(a3) ·P(a4) ·P(a5) ·P(a6)
PPankov(S) = P(a3‖a2) ·P(a2‖a1) ·P(a1‖a0) · [P(a5‖a4) ·P(a6‖a4)] ·P(a4‖a0)

Figure 1 (A, B) Illustrations of an exemplary structure S and the respective structure tree.
PMcomp energy model is composed of the probabilities of base-pairs, shown with plain black arcs and
nodes. Pankov energy model additionally incorporates in-loop probabilities of paired base-pairs that
are illustrated with blue arrows. (C) Top: PMcomp structure model assume independence between
the base-pair probabilities by multiplying the probabilities. Bottom: Pankov uses a loop-aware
scheme to compute the probability of the structure that is efficiently calculated from pre-computed
loop-conditional probabilities P (a‖a′) based on the parent-child relation of the base-pairs.

By assuming a Boltzmann distribution of the structures based on the principles of statistical
mechanics, there is a bijection between energies and probabilities of structures. Thus, the
probability P (S) of the structure S is related to its energy E(S) by

P (S) = exp (−E(S)/RT )/Z = 1
Z

∏
a

exp(−Eloop(a, chi(a))/RT ), (2)

based on its loops’ Boltzmann weights and the partition function Z =
∑
S exp (−E(S)/RT ),

which is efficiently computed by McCaskill’s algorithm [15].
If inverted, this allows transforming structure probabilities back to energies:

E(S) = −RT · log(P (S)) + Eens, (3)

where Eens = −RT · log(Z) denotes the ensemble energy. This notation can be further used
to derive the common definition of the probability of a base pair a P (a) as

P (a) =
∑
S3a

P (S), (4)

which can be efficiently computed by McCaskill’s algorithm.

2.2 PMcomp assumes independence of base-pair probabilities
PMcomp alignment and folding score

The alignment and folding score of PMcomp [10], which is assigned to an alignment A and
RNA structures SA and SB , can be formulated as

alignment-scorePMcomp(SA, SB ,A) =
∑
a∈SA

ΨA
a +

∑
b∈SB

ΨB
b +

∑
(iA,iB)∈A

σ(iA, iB) +Nindelγ.

The first two terms define the structural component of the score that is discussed in the
next section. The last two terms define the sequence component of the score. σ is the base
similarity for two matched sequence positions iA and iB from sequence A and B, resp., and
γ is the gap penalty. Nindel is the number of insertions and deletions in A.
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PMcomp structure scoring model

Here, we focus on the structure component of PMcomp’s alignment and folding score, since
we want to investigate how well the probabilistic model reflects the thermodynamic energy
model. The score of a structure S of sequence A normalizes and sums up the log-scores of
its base pair probabilities, i.e.

scorePMcomp(S) =
∑
a∈S

ΨA
a =

∑
a∈S

log (P (a)/Pmin) = log(
∏
a∈S

P (a))− |S \ {a0}| · log (Pmin) .

(5)

Here, base pair probabilities P (a) are normalized via Pmin, the minimal probability of a
significant base-pair, such that less probable base-pairs are unfavored. The logarithm transfers
the probabilistic model back to the energy space similar to Eq. 3.

Putting the normalization term aside, the PMcomp’s structure score contains a notion of
structure probability (see first log term on the right of Eq 5), which we denote with

PPMcomp(S) =
∏
a∈S

P (a). (6)

Noticeably, base pairing events are assumed to be independent, which is in violation with the
underlying Nearest-Neighbor energy model, as we will show next. Thus, PMcomp’s structure
score does not relate well with the energy of the respective structure.

2.3 Exact computation of structure probabilities based on conditional
loop probabilities

Here we prove that the equilibrium probability of a structure within the ensemble of possible
structures can be expressed exactly based on conditional loop probabilities. This provides
the theoretical foundation for discussing the Pankov energy model in the subsequent section.

I Theorem 1. Let P (S) be the probability of structure S and have P (loop(a, chi(a)) | a) as
the conditional probability of the loop in S closed by base-pair a, the following equation holds:

P (S) =
∏
a

P (loop(a, chi(a)) | a) (7)

Proof. The free energy of the secondary structure S is composed of its loop energies Eloop
in the nearest-neighbor thermodynamic model (Eq. 1), which implies that its probability
can be computed from the respective Boltzmann weights of loops (Eq. 2). Decomposing the
right term of Eq. 7 by the partition function Za inside the base-pairs a, i.e.

Za =
∑

Sa closed by a
exp(−E(Sa)/RT ), (8)
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we get:

∏
a

P (loop(a, chi(a))|a) =
∏
a

(∏
a′∈chi(a) Za′

)
· exp(−Eloop(a, chi(a))/RT )

Za

=
∏
a

∏
a′∈chi(a) Za′∏
a Za

·
∏
a

exp(−Eloop(a, chi(a))/RT )

=∗

∏
a′ 6=a0

Za′∏
a Za

·
∏
a

exp(−Eloop(a, chi(a))/RT )

=∗∗
1
Z

∏
a

exp(−Eloop(a, chi(a))/RT ) =(Eq.2) P (S). (9)

(=∗): Every arc but a0 occurs exactly once as a child in the numerator product.
(=∗∗): a0 encloses all possible structures, thus Za0 = Z. J

Eventually, this work extends and generalizes the approach for canonical helices (only
stackings) from [1] to arbitrary secondary structures.

2.4 Pankov structure scoring model
Here, we want to score structures for simultaneous alignment and folding based on the
derived Eq. 7, i.e. based on pre-computed conditional loop probabilities, to better reflect
the structures’ energy within the overall alignment score. Due to the exponential number
of possible multi-loop branchings, a polynomial pre-computation and storing of respective
multi-loop probabilities P (loop(a, chi(a)) is not feasible. Thus, we propose an approximation
of such terms based on pair-in-loop probabilities introduced next.

Approximate loop probabilities using pair-in-loop probabilities
To handle arbitrary multi-loops (closed by a) with any number and composition of children
base pairs chi(a), we restrict computation and storage to all parent-child pairs a×a′ ∈ chi(a),
i.e. we define the pair-in-loop probability P (a′‖a), in the following abbreviated as in-loop
probabilities, as

P (a′‖a) = P (a′ ∈ chi(a) | a) = P (a, a′ ∈ chi(a))
P (a) =

∑
S⊃{a,a′}∧a′∈chi(a) P (S)

P (a) , (10)

where we calculate the joint probabilities of the form P (a, a′ ∈ chi(a)) by an extension of
McCaskill’s algorithm introduced in [17], which can be performed in O(n3) time. To this end,
the pair-in-loop information is stored in additional matrices during the partition function
computation without increasing the computational complexity. The probability of a base-pair
being external, i.e. being enclosed by the pseudo-arc a0, is also computed and stored. Within
the following, we discuss how to approximate loop probabilities from in-loop probabilities.

Pair-in-loop approximation of non-branching-loop probabilities. When using pair-in-loop
probabilities to approximate non-branching loop probabilities, i.e. loops with exactly one
child base pair, the latter is overestimated since Eq. 10 does not distinguish the loop context
of the pair. Therefore, also multi-loops contribute to in-loop probabilities such that it follows

P (a′‖a) ≥ P (loop(a, {a′} = chi(a)) | a). (11)
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Scoring based on least stable multi-loop branch. An alternative approximation would be
to assign the least probable branch to the whole multi-loop. This can be intuited in the
energy space as that least stable branching of the multi-loop dominants formation of the
multi-loop.

PML-min(loop(a, chi(a)) | a) = min
a′∈chi(a)

P (a′‖a). (12)

Due to the same reasons as for non-branching loops, the following relation holds, i.e.

PML-min(loop(a, chi(a)) | a) ≥ P (loop(a, chi(a)) | a). (13)

Assuming multi-loop-branch independence. As a straightforward approach we assume an
independence between the multi-loop branches that are conditioned to be closed under the
same base-pair, i.e.

PML-prod(loop(a, chi(a)) | a) =
∏

a′∈chi(a)

P (a′‖a). (14)

Weighted overall structure scores
For scoring the structure in the implementation of the Pankov alignment algorithm, we assign
the ultimate scoring scorePankov based on the product of multi-loop contributions following
Eq. 14, that we designate as the Pankov’s probability of structure.

PPankov(S) =
∏
a∈S

∏
a′∈chi(a)

P (a′‖a) (15)

Similar to PMcomp, the probabilities are incorporated on the logarithmic scale via the
Φ(a′, a) function, which also includes a normalization via the bonus term β. The latter term
subsequently balances structure and sequence contributions within the alignment scoring.

Φ(a′, a) = log(P (a′‖a)) + β, (16)

scorePankov(S) =
∑
a∈S

∑
a′∈chi(a)

Φ(a′, a)

= log(PPankov(S)) + |S \ {a0}| · β (17)

2.5 Pankov alignment approach
The Pankov algorithm keeps track of closing-loop base-pairs in an efficient manner during
dynamic programming computation of the score matrices. The matrices are defined similar
to the dynamic programming recursions of the SPARSE algorithm [21], which achieve
a quadratic time complexity for the alignment by exploiting the sparsity of the in-loop
probabilities. Thus, Pankov uses the following matrices:

D(a, b) for the scores of matching the two base pairs a = (aL, aR) and b = (bL, bR) and
aligning the two enclosed subsequences;
Mab(i, k) for storing the maximum score of all possible alignments and foldings of the
subsequences A[aL + 1..i] and B[bL + 1..k] that are under the loops enclosed by a and b;
and
IA and IB for supporting variability in the helix size via deletion and insertion of base-pairs
under the loops closed by a and b respectively.

WABI 2019
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The matrix entries can be calcluted recursively:

D(a, b) = max


Mab(aR − 1, bR − 1)
IabA (aR − 1)
IabB (bR − 1)

Mab(i, k) = max



Mab(i− 1, k − 1) + σ(i, k)
Mab(i, k − 1) + γ

Mab(i− 1, k) + γ

max
P (a1)≥θ,P (b1)≥θ

aR
1 =i,bR

1 =k
P (a1,a)≥θ′P (b1,b)≥θ′


Mab(aL1 − 1, bL1 − 1)
+ D(a1, b1) + σ(aL, bL) + σ(aR, bR)
+Φ(a, a1) + Φ(b, b1)



IabA (i) = max

I
ab
A (i− 1) + γ

max
P (a1)≥θ,P (a1,a)≥θ′,aR

1 =i
(aL1 − aL + 1) · γ +D(a1, b) + Φ(a, a1)

IabB (k) = max

I
ab
B (k − 1) + γ

max
P (b1)≥θ,P (b1,b)≥θ′,bR

1 =k
(bL1 − bL + 1) · γ +D(a, b1) + Φ(b, b1)

Here θ is the minimum base-pair probability threshold and θ′ is the corresponding
threshold for the joint in-loop probabilities. Following PMcomp’s energy model, SPARSE
calculates Φ(a, a1) as Ψa1 (independent of the enclosing base pair a) – in Pankov we make
use of the full flexibility.

The asymptotic time complexity of the Pankov alignment algorithm is O(n2). Similar to
SPARSE, the base pairing and joint in-loop probabilities need to be computed only once
for each sequence. This is important for computing multiple alignments, using a pairwise
aligner like Pankov in a progressive scheme (e.g. via mlocarna tool from the LocARNA
software package). The Pankov implementation of the recursions keeps track of both ends
of the base-pairs, while in SPARSE the tracking is relaxed and M matrices with common
left-ends are combined for further speed-up, although the complexity is not affected. So in
practice, compared to SPARSE, Pankov’s run-time is slightly increased.

3 Results and Discussion

3.1 Evaluation of the probabilistic energy models
The evaluation procedure

We evaluated the agreement between the reference and the probabilistic free energy models.
Having the Turner [14] nearest-neighbor full energy model as the reference, we compared the
performance of PMcomp’s base-pair independence model and Pankov’s loop-based conditional
probability model. The Sankoff-like algorithms maximize (or minimize) the sum of structure
and sequence alignment scores over the space of possible formations of alignments and
structure. Hence, a higher correlation between the calculated energies of a model with the
reference free energy values indicates better modeling of the structure score, that is expected
to perform better for the task of RNA simultaneous alignment and folding.

We developed an evaluation procedure to measure the level of agreement between the
probabilistic models and the reference energy model with correlation coefficients. The
procedure performs these steps for an input RNA sequence: (i) suboptimal secondary
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structures are generated using RNAsubopt method [24], for the range of the minimum free
energy structure up to 5kcal/mol (-e=5 -s) and 500 suboptimals. (ii) for each suboptimal
structure, the probability or free energy is calculated according to the described energy
models and structure scores (iii) Over the set of suboptimal structures, the Spearman’s
rank correlation coefficient between the reference RNAsubopt’s free energies and the free
energies/scores of the models are computed.

The five approximation variants of the probabilistic models are evaluated which compute
the probability or score of a structure. More precisely, these variants are computed accord-
ing to the equations PPMcomp(Eq. 6), scorePMcomp(Eq. 5), PPankov using PML-min(Eq. 12),
PPankov using PML-prod (Eq. 14) and scorePankov using PML-prod and β terms (Eq. 17). The
structure probabilities are transferred to the energy dimension according to Eq. 3. For
consistency in the representation, the scores were also scaled with a similar scheme. As
a monotonic function, the energy scale transformation does not affect the absolute rank
correlations in neither of the cases.

The minimal significance probability Pmin in Eq. 5 was set to 1/(2 · sequence-length),
this is used for the PMcomp score scheme of LocARNA. The bonus balance term β from
Eq. 17 was set to 1.5, a bonus of zero makes the rank correlation of scorePankov same
as the rank correlations of PPankov using PML-prod. However, a non-zero value is needed
to balance the total alignment score by appropriately shifting the energy. The base-pair
and conditional in-loop probabilities were computed using the extended implementation of
McCaskill’s algorithm (see methods). The run-time complexity for calculating these values
for a structure, using the precomputed matrices, are linear to the number of base-pairs in
structure (O(|S|)) as well as the length of the sequence.

Figure 2 The distribution of rank correlation for evaluating the energy models over around 500
RNA sequences from RNAstrand database. Spearman’s rank correlations are computed for each
sequence, between the reference and the models’ approximations of the suboptimal energies.

Evaluation of real ncRNAs

The described evaluation procedure was repeated for the set of RNA sequences obtained from
the RNAstrand database (sequence length [30-200] nucleotides, entries without ambiguous or
spurious characters). Figure 2 shows the distribution of the rank correlation evaluation of
the sequences.

To inspect the model agreements in details, we visualized the output on a sample
tRNA transcript of RNAstrand (ID: SPR_00633) in Figure 3. An evaluation for the top
500 suboptimal structures of lowest free energies is shown. As can be seen in Figure 3,

WABI 2019
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Figure 3 Evaluation of the agreement between the structure probabilistic and scoring models
with the reference energies for a tRNA transcript. Each dot corresponds to a suboptimal structure
of the tRNA. The structures are sorted according to reference free energy in the x-axis, computed by
Vienna package RNAsubopt tool. The probabilities and scores are scaled to the energy dimension
(Eq. 3). Annotated correlations of each panel are the Spearman’s correlation coefficients between
the x and y axes. Each correlation corresponds to an individual entry within the corresponding
distributions that are shown as violin plots in Figure 2.

the Pankov’s in-loop-probability-based models (bottom row of Figure 3) perform best in
preserving the reference free energy ranks. It is also notable that the energy scaled values
are precisely scaling back to the range of reference free energies.

The scatter plot for Pankov energy (ML-min) in Figure 3 confirms the relation for the
probability of multiloops that was presented in the methods section (Eq. 13), PPankov with
a ML-min approximation is bounded by the exact probability of the structure such that the
approximated energies are always less than or equal to the reference energies.

3.2 Alignment performance evaluation
We evaluated our implementation of Pankov alignment algorithm on the pairwise alignment
benchmark set, Bralibase 2.1 [23]. For the evaluated methods, the sparsification probability
thresholds were set similar. Namely, LocARNA, SPARSE and Pankov with the minimum
base-pair probability θ to 0.001 (option -p). For SPARSE and Pankov the in-loop probability
threshold θ′ was set to 0.0001 (option –prob-basepair-in-loop). The sequence-structure
balance term β of Pankov’s score (Eq. 17) was set to 1.5, the chosen among the values 1, 1.5,
2 and 2.5 posing a fair balance for the average of sequence and structure scores. The Matthews
Correlation Coefficient (MCC) performance was stable for β of 1.5 and larger values.

Figure 4(A,B) show the performance comparison in term of sequence alignment quality
sum-of-pairs-score (SPS) and structure prediction quality by Matthews Correlation Coefficient
(MCC)[7]. To mediate the Bralibase curve “dent” effect [12], the visualization was done for
sequence pairs of sequence identity (SI) between 30 to 80% to avoid a curve dent around SI-80
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Figure 4 Comparison of the alignment performance on the Bralibase 2.1 pairwise benchmark
set K2. (A) The sequence-level quality is measured as sum-of-pairs-score (SPS) by comparing the
alignment edges of the reference and predicted alignments. (B) The structure prediction quality is
measured as Matthews Correlation Coefficient (MCC) by comparing the base-pairs of the reference
structure with the predicted structures. The solid lines depict all families and the dashed lines depict
the subset without tRNA and the two rRNA families.

that seems to be mainly caused by enforcing a continuous curve over a quasi-heterogeneous
distribution. Entries with a higher SI are not of particular interest, as they mostly perform
fine also using the structure-unaware alignment algorithms. Furthermore, the dashed curves
in Figure 4 correspond to the subset of the benchmark by excluding the three ribosomal
and tRNAs families. These families are shown to be moderately overrepresented in the
Braliabase and could overweight in the overall performance, especially on lower sequence
identity range [12].

In the aspect of execution time, Pankov is overall faster than LocARNA and slower than
SPARSE since Pankov implements the exact loop-closing track of the alignment recursions
(see methods). Our implementation of Pankov had an average run time of 1.8 seconds
on Bralibase K2 instances, when running on a AMD Opteron 2.1 GHz processor; this
compares to respective average run times of 3.9 and 0.7 seconds of LocARNA and SPARSE.
As can be seen in Figure 4, Pankov considerably improves structure prediction over both
SPARSE and LocARNA. Compared to its predecessor SPARSE, it even improves the sequence
alignment quality.

4 Conclusion

Sankoff’s algorithm is the reference standard for simultaneous alignment and folding (SA&F)
of RNAs. While the theoretical work integrates the full loop-based nearest-neighbor energy
model, the derived algorithms mostly implement a simplified or limited structure energy
models or restrict on the alignment and structure formation possibilities, to reduce the high
computational complexity. PMcomp proposed a probabilistic light-weight energy model.
This empowers the PMcomp-like methods to strongly reduce the computational overhead of
the exact thermodynamic folding details and allows further algorithmic optimizations and
sparsification based on the equilibrium probability of the base-pairs.
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Here we showed that PMcomp’s energy model assumes a level of independence between
the base-pairing events, which violates the underlying nearest neighbor energy model. To
solve this issue, we demonstrated an exact way to compute the probability of an RNA
secondary structure from the decomposed loop-probabilities. To circumvent the computational
complexity of multi-loop cases, we introduced an energy model to accurately approximate
this loop decomposition in an efficient way using the precomputed in-loop probabilities. Our
proposed energy model takes care of the nearest-neighbor thermodynamic rule. It was further
empirically validated that the novel model has a much closer agreement with the full-loop
energy model, based on the dataset of real non-coding RNAs. Using this energy model, we
proposed the Pankov algorithm for pairwise simultaneous alignment and folding of RNAs.
Benchmark results show that the implementation of Pankov outperforms its predecessors on
predicting the secondary structure from the pairs of homologous RNAs.

The concept of conditional and joint in-loop probabilities has some parallels to the
production rules of Stochastic Context-Free Grammars (SCFG) that can encode base-pair
relations differently [5], they have also been used to solve the SA&F problem [4]. The
overhead of treating various nucleotides separately during the alignment procedure is similar
to the invocation of the full loop-based energy model, which restrains the implementation
towards using simplified grammars that may not benefit from the power of thermodynamic
rules. In our proposed model, the probabilistic terms are obtained from the thermodynamic
partition function, so the probabilistic transition rules are straightforward and do not need
to deal with individual types and combinations of nucleotides separately.

Pankov, to the best of authors’ knowledge, is the first SA&F method that dissociates the
loop computation details from the alignment and prediction step to efficiently solve the target
problem without substantially compromising the power of underlying thermodynamic rules.
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