
Sequence analysis

RNAscClust: clustering RNA sequences using

structure conservation and graph based motifs

Milad Miladi1,†, Alexander Junge2,3,†, Fabrizio Costa1,

Stefan E. Seemann2,3, Jakob Hull Havgaard2,3, Jan Gorodkin2,3,* and

Rolf Backofen1,2,4,*

1Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany,
2Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark,
3Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark and 4Center

for Biological Signalling Studies (BIOSS), Cluster of Excellence, University of Freiburg, Freiburg im Breisgau, Germany

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Cenk Sahinalp

Received on June 6, 2016; revised on December 22, 2016; editorial decision on February 21, 2017; accepted on February 23, 2017

Abstract

Motivation: Clustering RNA sequences with common secondary structure is an essential step to-

wards studying RNA function. Whereas structural RNA alignment strategies typically identify com-

mon structure for orthologous structured RNAs, clustering seeks to group paralogous RNAs based

on structural similarities. However, existing approaches for clustering paralogous RNAs, do not

take the compensatory base pair changes obtained from structure conservation in orthologous se-

quences into account.

Results: Here, we present RNAscClust, the implementation of a new algorithm to cluster a set of

structured RNAs taking their respective structural conservation into account. For a set of multiple

structural alignments of RNA sequences, each containing a paralog sequence included in a struc-

tural alignment of its orthologs, RNAscClust computes minimum free-energy structures for each

sequence using conserved base pairs as prior information for the folding. The paralogs are then

clustered using a graph kernel-based strategy, which identifies common structural features. We

show that the clustering accuracy clearly benefits from an increasing degree of compensatory base

pair changes in the alignments.

Availability and Implementation: RNAscClust is available at http://www.bioinf.uni-freiburg.de/

Software/RNAscClust.

Contact: gorodkin@rth.dk or backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The structure of an RNA molecule or non-coding RNA (ncRNA) is

often crucial to its function. A main characteristic is that evolution-

ary changes in the primary sequence are often compensatory such

that, e.g. an A-U base pair in human may correspond to a G-C base

pair in mouse, thus preserving a functional RNA structure while

(partly) erasing sequence similarity.

In silico genome-wide screens for structured RNAs have there-

fore focused on finding RNAs with evolutionarily conserved second-

ary structure (see Backofen and Hess, 2010; Gorodkin et al., 2010;

for reviews). A main reason is that it is not feasible to search for

structured RNAs on single sequences only, as their secondary struc-

ture is not significantly more stable compared to that of random se-

quences (Rivas and Eddy, 2000). Although all screens take outset in
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corresponding or syntenic sequences, two lines of strategies have

been employed, one searching for structured RNAs in sequence

based alignments and one conducting structural alignments.

Whereas the former has the advantage of faster screenings, the latter

is able to handle sequence identities below about 60 to 70%. In this

identity range sequence based alignments are no longer accurate

enough to represent RNA structure conservation (Gardner and

Giegerich, 2004; Washietl and Hofacker, 2004). Examples of meth-

ods working on sequence based alignments include RNAz (Gruber

et al., 2010) and EvoFold (Pedersen et al., 2006). Programs for

structural alignment applied to genomic screens includes

Foldalign, Dynalign, LocaRNA and CMfinder (Havgaard

et al., 2007; Fu et al., 2014; Will et al., 2013a; Yao et al., 2006).

Corresponding screens for structure RNAs range from prokaryotes

(Uzilov et al., 2006; Weinberg et al., 2010) to fly (Will et al., 2013b)

to vertebrates (Smith et al., 2013; Torarinsson et al., 2006, 2008).

The output of each screen for conserved RNA secondary struc-

tures is a set of multiple alignments containing orthologous RNAs

predicted to adapt a common secondary structure. These sets are

largely unannotated and the road to obtain functional evidence for

these putative ncRNAs is tedious. One of the most promising anno-

tation strategies would be to detect paralogs in form of RNA fami-

lies or classes. Whereas members of RNA families originate from a

common ancestor, members of an RNA class share the same func-

tional structure without evolutionary relationship (Stadler, 2014). A

prominent example for such an RNA class are microRNAs.

An attractive strategy to detect RNA families and classes in com-

putational ncRNA screens is to cluster the RNA candidates based

on sequence and structure. Early approaches directly clustered RNA

sequences based on their sequence-structure alignment scores

(Havgaard et al., 2007; Will et al., 2007), despite the high complex-

ity of at least Oðn4Þ for aligning two sequences. Albeit recent

sequence-structure alignment tools are able to compute the align-

ment in time quadratic in sequence length (Otto et al., 2014; Will

et al., 2015), the overall approach still does not scale to large data-

sets since it remains quadratic in the number of sequences clustered.

For this reason, alignment-free RNA clustering approaches have

been introduced (Heyne et al., 2012; Middleton and Kim, 2014).

In this paper, we boost the alignment-free clustering pipeline

GraphClust (Heyne et al., 2012) by employing information about

covariation contained in the alignments. The GraphClust pipeline

works on single sequences and clusters paralogs. Work extending

over single sequence clustering has been introduced by EvoFam to

cluster EvoFold predictions (Parker et al., 2011). However, these

predictions are grounded in sequence based alignments with limited

degree of sequence variation. Here, we are interested in uncovering

the full potential to search for paralogs including less sequentially

conserved structured RNAs that may only be found through the

structural alignment strategy. Thus, in contrast to previous work,

we here focus on measuring the clustering performance as a function

of the degree of compensatory base changes, or equivalently the de-

gree of sequence similarity, in the structural alignments.

We develop RNAscClust, which clusters sequences from an or-

ganism of interest that are aligned to their orthologs found in differ-

ent species. Firstly, RNAscClust represents the sequence stemming

from the species of interest in each input alignment as a secondary

structure that is obtained by constraining highly conserved base

pairs. The pipeline then compares these structures using a graph ker-

nel (Costa and De Grave, 2010). The graph kernel decomposes each

structure into several substructures and can be regarded as an exten-

sion of k-mer decompositions from sequences to graphs. Comparing

these substructures finally induces a similarity measure used to

cluster the structures. The usage of locality sensitive hashing tech-

niques (Broder, 1997) enables a complexity linear in the size of the

dataset, considerably lower than the quadratic time performance of

clustering approaches relying on all-vs-all comparisons.

We compare the performance of RNAscClust to GraphClust

using benchmark datasets derived from the Rfam database

(Nawrocki et al., 2014). RNAscClust is benchmarked with sets of

RNA sequence alignments restricted to specific ranges of sequence

identity. Each RNAscClust clustering is compared to a correspond-

ing GraphClust result obtained by clustering human sequences

contained in each alignment.

We demonstrate a considerable positive effect of incorporating

structure conservation in alignments of orthologous sequences when

clustering paralogous RNA sequences from an organism of interest.

This results in a beneficial accuracy compared to clustering of single

sequences alone, especially for datasets with low to medium se-

quence identity.

2 Materials and methods

2.1 Clustering approach
This section describes the RNAscClust pipeline and analyzes its

computational complexity. RNAscClust accepts a set of multiple

alignments as input where each alignment contains a sequence from

the organism of interest structurally aligned to its orthologs. Our ap-

proach first predicts the secondary structure for the sequence from

the organism of interest in each alignment using information about

conserved base pairs. The secondary structure is then encoded as a

sparse feature vector. Candidate clusters are iteratively selected in

linear time and refined in a final post-processing step. Figure 1 com-

pares this structure conservation-aware clustering to single sequence

clustering. We furthermore introduce classification and clustering

performance measures used in this work.

2.1.1 Representing a multiple sequence alignment as an

RNA secondary structure

Let M be the set of structural alignments of RNA sequences to be

clustered by RNAscClust. In the first step, we predict the consensus

structure Sm of each alignment m 2M to identify conserved base

pairs. We chose PETfold (Seemann et al., 2008) in this step as it is

shown to perform well for predicting the consensus structure from a

set of aligned sequences (Puton et al., 2013). PETfold predicts a

consensus structure by taking evolutionary and thermodynamic in-

formation into account and assigns a reliability r 2 ½0;1� to each

base pair. For a given alignment m and reliability threshold s, a base

pair (i, j) is considered conserved if its reliability rij � s. Conserved

base pairs are used as constraints for predicting the secondary struc-

ture of the sequence from the species of interest using RNAfold

(Lorenz et al., 2011). This allows to project conserved base pairs

from the alignments onto the sequence, while tolerating variations

in less structurally conserved alignment columns.

Additionally, we use the recently proposed R-scape (Rivas et al.,

2016) to identify base pairs with statistically significant

(E-value<0.05) covariation. R-scape assesses the statistical signifi-

cance of the observed covariation by simulating alignments under the

null hypothesis that nucleotide substitutions appear independently in

each column under a phylogenetic model. This allows to put further

emphasis on covarying base pairs, independent of sequence informa-

tion, in the clustering process by adding decorated graphs (see Section

2.1.2) whenever at least 20% of the base pairs are supported by co-

variation. The outcome of this first step, illustrated in Figure 2a, is a
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secondary structure representing the alignment m in the remaining

part of the RNAscClust pipeline.

2.1.2 Efficient encoding of the RNA secondary structure

RNAscClust follows the approach implemented by Heyne et al.

(2012) and represents each secondary structure as a graph where

nucleotides are encoded as vertices with discrete labels A, C, G, U

while the backbone and the base pair relations are encoded as

edges. Auxiliary vertices adjacent to four nucleotides forming

stacked base pairs are added (see Fig. 2b, top) to emphasize base

pair stacks. We define the graph Gm as the secondary structure

graph associated with the alignment m 2M. Our framework

allows to add path graphs to Gm to include sequence information.

Path graphs are graphs that only contain the backbone (i.e. the

ribose-phosphate bond) as edges. Adding a path graph to Gm allows

to consider sequence similarities in addition to similarities at the sec-

ondary structure level. Decorated graphs, according to R-scape, are

created by representing significantly covarying base pairs as generic

N-N pairs. Thus sequence information for these base pairs is removed

allowing to match corresponding features between alignments with-

out requiring the exact base pairs to be matched.

In RNAscClust sparse feature vectors are extracted from Gm

using the Neighborhood Subgraph Pairwise Distance Kernel

(NSPDK) (Costa and De Grave, 2010), a convolutional graph ker-

nel. A graph kernel allows to compute the similarity of two graphs

using the dot product in the induced feature space. While graph

(a) (b)

Fig. 2. Representing the constrained folded secondary structure as a graph and feature extraction. (a) Base pairs with a reliability greater than t are set as structure

constraints (blue boxes) derived from the alignment consensus structure. A constrained secondary structure prediction is performed for the human sequence,

the organism of interest in this example. Plain and, if enough covarying base pairs are found, decorated secondary structure are represented as graphs.

(b) Auxiliary vertices (gray) are added to the secondary structure graph to emphasize stacked base pairs. The secondary structure is decomposed into substruc-

tures using a graph kernel. Here, only neighborhood subgraphs for Nv
1 and v ¼ 1; . . . ; 6 are shown and d¼0 which results in the extraction of single root vertices

instead of root vertex pairs. The hashing function H encodes each subgraph as an integer which in turn becomes the index of the subgraph in the sparse feature

vector counting subgraph occurrences. Since N4
1 ¼ N6

1 , the feature is counted twice while the other neighborhood subgraphs are unique. The feature extraction

for N-N decorated structures is implemented the same way
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Fig. 1. Hypothetical example to illustrate the difference between single sequence clustering and clustering using conserved structure. Assume the indicated G-U

base pair between the first and last nucleotide in the left-most blue human sequence is part of its correct secondary structure. While single sequence structure

prediction (a) fails to predict the G-U pair, information about covariation contained in the alignment (b) yields the correct secondary structure for the human se-

quence and allows to emphasize covarying base pairs. Taking covariation and conserved structures into account may thus yield an improved clustering
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kernels commonly define a feature space only implicitly and com-

pute directly the resulting dot product, NSPDK explicitly enumer-

ates the features and stores them in a sparse feature vector that

remains of manageable size. More precisely, the NSPDK defines as

feature all small subgraph-pairs at short distance from each other as

defined in the following.

NSPDK considers neighborhood subgraphs: a neighborhood

subgraph Nv
r ðGmÞ is defined as the subgraph induced by all vertices

that are reachable from a given root vertex v in not more than r

hops along the edges of Gm. The distance d between a pair of neigh-

borhood subgraphs is defined as the distance between the respect-

ive root vertices. Finally, a feature in NSPDK is a pair Nu
r ðGmÞ and

Nv
r ðGmÞ with root vertices u, v that are at distance d. The complete

feature set is generated by considering all possible pairs of neigh-

borhood subgraphs for all values of the parameters r and d such that

r 2 f0; . . . ; rmaxg and d 2 f0; . . . ; dmaxg. Each pair of neighborhood

subgraphs is then encoded as an integer using a fast hashing proced-

ure (see Fig. 2b; Costa and De Grave, 2010 for details) that yields a

low number of hash collisions. One crucial advantage of NSPDK is

that given a graph G ¼ ðV;EÞ with vertex set V and edge set E, the

size of the associated sparse feature vector (i.e. number of non-zero

features) is bounded to a factor of jVj, allowing fast computations in

subsequent steps. While other graph kernels commonly yield a num-

ber of features (i.e. subgraphs) that is exponential in the size of V,

NSPDK generates a number of subgraphs that is linear in jVj (Costa

and De Grave, 2010).

2.1.3 Similarity notion between RNA alignments

The similarity between two alignments is defined as the dot product

of the corresponding sparse feature vectors. As larger values of ra-

dius r and distance d tend to generate a larger number of highly spe-

cific features, the feature vectors are normalized such that each

combination of r and d contributes equally to the final vector encod-

ing. That is, each feature vector /r;dðGÞ, generated by neighborhood

subgraph pairs of radius r at distance d, is normalized to unit length:
b/r;dðGÞ ¼ /r;dðGÞ=jj/r;dðGÞjj and then assembled into the final fea-

ture vector /ðGÞ ¼
P

r2R;d2D
b/r;dðGÞ:

2.1.4 Clustering secondary structures

To avoid the quadratic complexity arising from an all-vs-all compari-

sons of all secondary structures, RNAscClust performs approximate

nearest neighbor queries to identify candidate clusters. More pre-

cisely, we build an inverse index based on a compact signature (ob-

tained using the min-hash approach (Broder, 1997)) of the feature

vectors which can be used to retrieve similar instances with a lookup

operation in constant time. See Heyne et al. (2012) for further details.

Running the approximate nearest neighbor query on each instance

yields candidate clusters each consisting of a set of sequences. All can-

didate clusters are ranked by their mean pairwise similarity and are

accepted or rejected, in rank order, using a greedy procedure. The

procedure discards a cluster if it does not contain at least fraction q of

unseen sequences, i.e. if the candidate cluster overlaps too much with

the union of all previously accepted clusters. To further improve the

consistency of the retrieved clusters, we post-process each cluster by

computing the sequence-structure alignment tree of the clustered se-

quences using LocARNA (Will et al., 2007, 2012). Sequences belong-

ing to the subtree with the highest average pairwise alignment score

are then used to fit a covariance model using Infernal (Nawrocki

and Eddy, 2013). The covariance model ultimately decides cluster

membership by scanning the entire dataset and populating the cluster

with all the instances that score above a bit-score threshold.

2.1.5 Runtime complexity of RNAscClust

For the input set of alignments M of size N ¼ jMj, let L denote the

maximum sequence length in the alignments, let S ¼ maxm2MðjmjÞ de-

note an upper bound on the number of sequences per alignment. The

initial consensus structure prediction using PETfold and constrained

folding using RNAfold have complexity OðS � L3Þ per alignment there-

foreOðN � S � L3Þ for the complete dataset.

Let m be an alignment with the maximal number of vertices and

edges. Generating its encoded graph Gm ¼ ðVm;EmÞ has complexity

OðjVmj þ jEmjÞ and complexity OðN � ðjVmj þ jEmjÞÞ for the whole

dataset. As outlined in Section 2.1.2, generating the sparse feature

vectors from Gm has complexity OðjVmjÞ;OðN � jVmjÞ for the whole

dataset M, by hashing feature vectors to integer codes. Finally, both

clustering steps using approximate nearest neighbors queries and

post-processing have complexity OðNÞ (see Costa and De Grave,

2010; Heyne et al., 2012 for further details). Since in realistic scen-

arios N � L and N � S, the overall runtime of RNAscClust is

OðNÞ. The runtime of RNAscClust is thus linear in the number of

input alignments. Figure 3 depicts the complete RNAscClust pipe-

line and indicates pipeline steps that are executed in parallel.

2.2 Evaluation metrics
Classification: Consider a binary classification problem. A true posi-

tive (TP) is an object correctly classified as positive, a false positive

(FP) is an object wrongly classified as positive. Similarly, we define

true and false negatives (TN and FN). We use the following meas-

ures to assess the performance of a binary classifier:

Precision (also known as positive predictive value) is the fraction

of correctly classified positives out of all objects classified as posi-

tive, i.e. TP=(TPþFP).

Recall (also known as sensitivity) is the fraction of correctly

classified positives out of all positives, i.e. TP=(TPþFN). Finally,

F1-Score (van Rijsbergen, 1979) is the harmonic mean of Precision

and Recall:

F1� Score ¼ 2 � Precision � Recall

Precisionþ Recall

In a multi-class scenario, as presented below, the F1-Score is the

mean of the class-wise F1-Score weighted by the class size.

Clustering: The Rand Index (Rand, 1971) measures the fraction

of object pairs that are grouped in the same way in a predicted clus-

tering and the true class assignment. Let a be the number of object

pairs that are in the same class and in the same cluster and let b be

the number of pairs that are in different classes and in different clus-

ters, then the Rand Index is defined as (aþb)=(jMj� (jMj- 1)=2). The

Adjusted Rand Index (Hubert and Arabie, 1985), a version of the

Rand Index adjusted for chance, is defined as:

Adjusted Rand Index ¼ Rand Index� E½Rand Index �
1� E½Rand Index �

Here, the E½Rand Index � is the expected Rand Index. The Adjusted

Rand Index has an upper bound of 1 and higher values indicate

a better agreement between the clustering and the true class

assignment.

2.3 Materials
To the best of our knowledge no dataset is available that can be dir-

ectly used to benchmark RNAscClust. We thus created benchmark

datasets following two different approaches to assess the perform-

ance of RNAscClust. These benchmarks are named the Rfam-ome

and Rfam-cliques datasets. All benchmark sets were derived from
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the Rfam database (Nawrocki et al., 2014). The central design idea

is to split each Rfam family seed alignment into subalignments and

assess how well the clustering pipeline retrieves the Rfam families.

Here a subalignment is considered to be a subset of an Rfam seed

alignment. Human is the organism of interest in our benchmark.

Each subalignment must hence contain a human sequence. The qual-

ity of a cluster assignment is measured by rating how well it agrees

with the true Rfam family assignment.

2.3.1 Rfam-ome benchmark dataset

The Rfam-ome dataset was designed to collect orthologs of a particular

human RNA in one subalignment. On the other hand, human paralogs

of the same Rfam family are assigned to different subalignments. The

Rfam-ome benchmark is generated by processing each Rfam family in-

dividually. In the first step, human sequences are extracted from the

family seed alignment. The genomic locations of these human se-

quences are then identified by a sequence search against the human

genome using BLAST (Altschul et al., 1997) while only accepting exact

sequence matches. To extend these genomic locations to their genomic

neighborhood, context of the same length as the hit is appended in up-

and downstream of each hit. Regions syntenic to these extended hits

are identified in 26 other species using LiftOver (Kent et al., 2003).

For each species other than human, exact matches of the organism’s se-

quences contained in the input Rfam seed alignment are searched in

the regions orthologous to the human neighborhood. This step yields

sequences trusted to be orthologous to the original human sequence

hit. Finally a subalignment containing each human (paralog) sequence

along with its orthologous sequences is built.

Collecting the subalignments for all Rfam families yields the com-

plete dataset named Rfam-ome. Note that all alignments in the Rfam-

ome benchmark set are created by extracting the respective rows from

Rfam seed alignments, while LiftOver is solely used to assign

orthologous sequences to each human paralog. All genomes as well as

chain files used by LiftOver were downloaded from the UCSC gen-

ome browser (Rosenbloom et al., 2015). Information about the gen-

omes used are listed in the Supplementary Section S1 along with

further details about the Rfam-ome pipeline.

2.3.2 Rfam-cliques benchmark datasets

The Rfam-ome dataset contains only few alignments with mean

pairwise sequence identity (PSI) below 70% (Supplementary Section

S1.2). Using constraints on the PSI of sequences added to the same

alignment, the Rfam-cliques sets control the mean PSI and hence the

amount of covariation captured in each alignment.

To generate the Rfam-cliques benchmark dataset, each Rfam fam-

ily seed alignment is processed separately and depicted as a graph.

Each sequence in the alignment is a vertex. Two vertices are connected

by an edge if they originate from different species. More precisely, for

an Rfam family F an undirected graph G is defined such that

G ¼ ðV;EÞ;

V ¼ fsijsi is a sequence in the seed alignment of Fg;

E ¼ ffsi; sjgjsi and sj belong to different species g:

We then generate subgraphs of G where vertices are connected

only if their PSI is in a specific range. For PSI thresholds l 2 ½0;1�
and h 2 ½0;1� such that l<h, we define Gh

l , a subgraph of G:

Gh
l ¼ ðV;Eh

l Þ;

Eh
l ¼ ffsi; sjgjfsi; sjg 2 E and l < PSI ðsi; sjÞ � hg;

where PSI(si, sj) is the PSI of the sequences si and sj. Gh
l contains the

same vertices as G but only those edges whose corresponding pairs

of sequences have a PSI in the range ½l; h�.
The Algorithm generating the Rfam-cliques set for an individual fam-

ily is outlined below. Subalignments are selected to be maximal cliques

with maximum mean PSI in each iteration. A clique is a subset of the

vertices of a graph in which each pair of vertices is connected by an

edge. A clique is maximal if it is not a subset of a larger clique. Extracted

cliques must have at least five vertices/sequences, one of human origin.

The Algorithm considers different PSI ranges in descending order. It

starts with a graph containing vertices in V and the edge set E0:95
0:9 . After

extracting subalignments as maximal cliques, additional edge sets

C ¼ fE0:9
0:8;E

0:8
0:7; . . . ;E0:5

0:4g

are added iteratively to G and additional subalignments extracted. This

iterative approach extracts cliques with homogeneous similarities first

and allows remaining edges to form cliques in subsequent iterations

thus yielding a broader PSI distribution in the alignments. Note that C
contains non-overlapping edge sets selected according to the PSI of the

adjacent sequences. The described procedure is performed for each

Rfam family separately and the resulting subalignments are combined

to create the dataset named Rfam-cliques High. Further details about

the dataset generation can be found in Supplementary Section S2.
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ity hashing (step 4), candidate clusters are extracted in the fifth step. Then a series of post-processing steps as implemented in GraphClust are invoked (steps 6–

8): sequences of each cluster are aligned using LocARNA and only well aligning sequences are retained. A covariance model is generated with Infernal to ex-
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2.3.3 Rfam-cliques variants

Besides the Rfam-cliques High set, we generated two additional

variants of the Rfam-cliques dataset. The Rfam-cliques Medium

benchmark set was generated by modifying Line 3 of the Algorithm

as follows:

ðh; lÞ 2 fð0:8;0:7Þ; . . . ; ð0:5;0:4Þg

The Rfam-cliques Low benchmark was generated by setting Line 3 as:

ðh; lÞ 2 fð0:7;0:6Þ; . . . ; ð0:5;0:4Þg

This means that each pair of sequences assigned to one subalignment

of the Rfam-cliques Medium dataset has a PSI of at most 0.80 while

each sequence pair contained in a subalignment of the Rfam-cliques

Low dataset has a PSI of at most 0.70.

Our motivation for creating the Rfam-cliques Medium and

Rfam-cliques Low datasets in addition to the Rfam-cliques High

benchmark was to test RNAscClust on benchmark sets with vary-

ing degrees of mean PSI of the alignments. This in turn allows us to

assess the clustering performance of RNAscClust for different

amounts of covariation (see Supplementary Section S3.3 for an R-

scape covariation analysis). Table 1 lists the mean of the

subalignment-wise mean PSI, referred to as mean PSI from here on,

in each dataset together with the respective number of subalign-

ments and Rfam families. All families comprising less than three

alignments were removed from the datasets prior to benchmarking.

2.3.4 Single-sequence datasets

By design, each subalignment in the Rfam-ome and Rfam-cliques

benchmarks contains a human sequence. This enables the compari-

son of RNAscClust and GraphClust by measuring the degree to

which Rfam families are reconstructed using human sequences alone

and comparing the outcome to an RNAscClust result harnessing

covariance information contained in the structural alignments.

3 Results

3.1 Similarity metric evaluation through classification
First, we assess the quality of the similarity metric, based on dot

products of sparse feature vectors, induced by RNAscClust without

performing a clustering. An established approach (Videm et al.,

2014) is to test the performance of a classifier only depending on the

pairwise similarities of all objects in the dataset. Here, pairwise simi-

larities based on RNAscClust sparse feature vectors are compared

to those similarities generated by GraphClust using a k-Nearest-

Neighbor (k-NN) classifier. RNAscClust default parameters are

used in all subsequent analyses (RNAscClust’s pipeline default val-

ues are: s ¼ 0:9 (see Supplementary Section S3.4), rmax ¼ dmax ¼ 3;

q ¼ 50%; / ¼ 20 bits and the size of the feature space is 230.

GraphClust was run with default parameters except that no

sequence windowing was performed to obtain a clustering of full-

length sequences. Up to 15 rounds of iterative clustering was per-

formed for both tools.).

The evaluation was performed by computing sparse feature vec-

tors for the Rfam-ome and Rfam-cliques benchmark datasets. The

similarity of each pair of alignments was then computed as detailed in

Section 2.1.3. A k-Nearest Neighbor classifier combined with 3-fold

stratified cross-validation was used to rate the accuracy of the pair-

wise similarities for the benchmark sets. Stratified cross-validation en-

sures that each fold contains roughly the same distribution of class

labels as the entire dataset. The classifier’s parameter k was fixed to 1

and cross-validation was solely used to measure the classification per-

formance. Precision, recall and F1-Score obtained by the k-NN classi-

fier after cross-validation are depicted in Table 2 for k¼1. The k-NN

classifier based on RNAscClust similarities outperformed the classi-

fier based on GraphClust similarities under all metrics and bench-

marks considered. This indicates that the structure conservation-

based similarities generated by RNAscClust reflect the Rfam family

structure in the Rfam-ome and Rfam-cliques datasets more accurately

than sequence-based similarities produced by GraphClust. We ob-

tained similar results for the 3-NN classifier of both RNAscClust

and GraphClust (Supplementary Table S1).

Note that both RNAscClust and GraphClust use sparse fea-

ture vectors to iteratively extract clusters from the dataset. These

clustering and post-processing steps were not taken into account in

the above evaluation and are thus considered next.

3.2 Clustering evaluation
We compared the clustering accuracy of RNAscClust and

GraphClust for all benchmark datasets. Both RNAscClust and

GraphClust use an iterative clustering procedure, however

RNAscClust has the advantage of generating more accurate

feature vectors as demonstrated in the previous section. We hence

addressed the question to which extent these more accurate fea-

ture vectors translate into beneficial clusterings. All RNAscClust

and GraphClust clusterings were compared to the Rfam family

labels of each benchmark dataset serving as the ground truth cluster-

ing. Instances that were not assigned to a cluster by GraphClust or

RNAscClust were assigned to singleton clusters.

Figure 4A depicts the Adjusted Rand Index of RNAscClust and

GraphClust for the Rfam-cliques datasets, Figure 4B shows clustering

Algorithm generating the Rfam-cliques benchmark set for a

single family.

1: G ¼ ðV;EÞ ¼ ðV;1Þ
2: Rfam-cliques ¼1
3: for ðh; lÞ 2 fð0:95; 0:9Þ; ð0:9; 0:8Þ; . . . ; ð0:5; 0:4Þg do

4: E ¼ E [ Eh
l

5: while G has a maximal clique of size� 5 that contains

a human sequence do:

6: C ¼ argmax
c 2 maximal-cliquesðGÞ;
c has human sequence ;

kck � 5

meanPSIðcÞ

7: Rfam-cliques ¼ Rfam-cliques [ C

8: V ¼ VnC " remove vertices in C from G

9: end while

10: end for

11: return Rfam-cliques

Table 1. Benchmark dataset statistics: Mean of the subalignment-

wise mean PSI (mean PSI), number of subalignments and Rfam

families in the benchmark datasets. Only Rfam families with at

least three subalignments are counted

Dataset Mean PSI Subalignments Families

Rfam-ome 0.78 118 28

Rfam-cliques High 0.73 234 48

Rfam-cliques Medium 0.63 166 26

Rfam-cliques Low 0.50 92 10

6 M.Miladi et al.



results for Rfam-ome set. The Rand Index is depicted in Supplementary

Figure S1. Three alternative configurations of the graph encoder are

also proposed in Supplementary Section S3 with an overall evaluation

depicted in Supplementary Figure S8. These experiments confirmed that

RNAscClust yields better clustering results than GraphClust for all

benchmarks. Furthermore, RNAscClust performed best for the Rfam-

cliques Low set while the performance decreased for Rfam-cliques

Medium and Rfam-cliques High sets. Recall that the mean PSI of the

Rfam-cliques Low dataset is lower than the mean PSI in the Rfam-cli-

ques Medium set while the Rfam-cliques High has the highest mean

PSI. We hypothesize that the performance increase achieved by

RNAscClust is a result of the larger covariation captured in the Rfam-

cliques Medium and, even larger, in the Rfam-cliques Low set, when

compared to the Rfam-cliques High set. Additional covariation may

yield more accurate structure predictions in each alignment and hence

an improved clustering performance.

An example for the largely improved performance of

RNAscClust compared to GraphClust is the SECIS-1

(RF00031) Rfam family in the Rfam-cliques Medium set with a

mean PSI of 39%. RNAscClust correctly clusters all seven

human sequences into one cluster consisting only of SECIS-1 se-

quences; GraphClust wrongly places them into multiple clusters

mixed with sequences from other families. The same difference is

observed in the Rfam-cliques High set. For the Rfam-cliques Low

set, RNAscClust outperforms GraphClust by, for example,

predicting more homogeneous and complete clusters for the well-

known structurally conserved tRNA family (RF00005) with a

mean PSI of 43%.

4 Discussion

We presented RNAscClust, a pipeline for clustering a set of mul-

tiple alignments of structured RNAs each containing a sequence

from an organism of interest that is aligned to orthologous se-

quences. RNAscClust is geared towards clustering RNA structures

by taking structural conservation into account. RNAscClust har-

nesses evolutionarily conserved secondary structure in the clustering

process by maintaining conserved base pairs in a constrained fold-

ing. This emphasizes the core secondary structure of each alignment

while allowing flexibility in the structure arising due to insertions,

deletions and non-compensatory mutations. RNA structures are

encoded as graphs and a graph kernel is used to generate sparse fea-

ture vectors inducing a pairwise similarity notion. RNAscClust has

a runtime linear in the number of input alignments making it amen-

able to cluster large datasets.

Employing structure conservation yielded a more accurate pair-

wise similarity measure and improved the clustering performance.

The largest improvements in clustering accuracy were observed for

benchmark datasets with low to medium sequence identities. We hy-

pothesize this happens for two reasons: Firstly, evolutionary informa-

tion contained in the alignments can yield better secondary structure

predictions than single sequence folding, explaining the increased

clustering performance. Secondly, since RNAscClust focuses on evo-

lutionarily conserved base pairs when comparing secondary structures

between alignments, identifying these conserved base pairs enables a

better estimation of the ncRNA transcript boundaries within the

alignment. This helps further improving the secondary structure pre-

diction accuracy in comparison with single sequence clustering.

Table 2. 1-Nearest-Neighbor classification performance based on pairwise similarities computed by RNAscClust and GraphClust

Dataset Precision Recall F1-Score

RNAscClust GraphClust RNAscClust GraphClust RNAscClust GraphClust

Rfam-cliques Low 0.93 6 0.04 0.79 6 0.06 0.95 6 0.01 0.78 6 0.09 0.93 6 0.03 0.76 6 0.09

Rfam-cliques Medium 0.92 6 0.03 0.83 6 0.02 0.93 6 0.01 0.85 6 0.01 0.92 6 0.02 0.83 6 0.02

Rfam-cliques High 0.92 6 0.01 0.88 6 0.02 0.91 6 0.00 0.87 6 0.00 0.90 6 0.00 0.86 6 0.00

Rfam-ome 0.96 6 0.03 0.88 6 0.03 0.97 6 0.02 0.92 6 0.02 0.96 6 0.03 0.90 6 0.03

Mean 6 standard deviation of Recall, Precision and F1-Score for 3-fold stratified cross validation are depicted.

A B

Fig. 4. RNAscClust and GraphClust clustering performances, measured by the Adjusted Rand Index, depending on the mean of the alignment-wise mean pair-

wise sequence identity (mean PSI) of the Rfam-cliques Low, Medium and High (A) as well as Rfam-ome (B) benchmark sets

RNAscClust 7



RNAscClust could be extended by an improved post-processing

step. For instance, a novel post-processing step based on CMcompare

(Höner zu Siederdissen and Hofacker, 2010) could be used to improve

the clustering performance. The approach would be based on covari-

ance models trained for each alignment which are afterwards com-

pared using the Link score as computed by CMcompare. The graph

kernel could be extended to allow for vectors of real numbers as node

and edge labels. This way, both nucleotide and base pair distributions

in the input alignments could be encoded after defining an appropri-

ate similarity function for subgraphs.

RNAscClust produces accurate clusterings while running in linear

time. This will facilitate the interpretation of currently available and fu-

ture large scale genomic screens for structured RNAs potentially con-

taining millions of instances to be clustered (e.g. Smith et al., 2013).

Pipeline availability: RNAscClust is available as source code

and as a Docker container (Merkel, 2014) making it possible to run

the pipeline without the need to install individual dependencies.

Furthermore the container allows to reproduce all Figures and

Tables shown in Section 3.
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