
GraphClust2: annotation and discovery of

structured RNAs with scalable and accessible

integrative clustering

–

Supplementary document

Milad Miladi1, Eteri Sokhoyan1, Torsten Houwaart2, Steffen Heyne3,
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S1 Supplementary methods

S1.1 NSPDK graph kernel

Graph kernels can be used to compute the similarity between two graph in-
stances. Here we use the decomposition graph kernel, Neighborhood Sub-
graph Pairwise Distance Kernel(NSPDK), to evaluate the similarity between
the graph-encoded secondary structures. NSPDK defines pairs of subgraphs as
neighborhood subgraphs [1, 2]:

Definition 1. For a given graph G = (V,E) and an integer r ≥ 0 the neigh-
borhood subgraph is a subgraph of G with root vertex v and induced by the set of
vertices at distance d ≤ r. Such subgraph is denoted as Nv

r (G).

When the distance between the roots of two neighborhood subgraphs of
radius r is equal to d the neighborhood-pair relation Rr,d holds. Decomposition
kernel on that relation Rr,d is defined as

kr,d(G,G′) =
∑

A,B∈R−1
r,d(G)

A′,B′∈R−1
r,d(G

′)

1(A ∼= B′)1(B ∼= B′) (1)

where the inverse relation R−1r,d indicates all possible pairs of neighborhood sub-
graphs of radius r with root verticies at distance d in the given graph G. 1
represents the indicator function and ∼= stands for isomorphism between the
graphs. NSPDK is defined as the sum of all kernels for all radii and all dis-
tances.

K(G,G′) =

rmax∑
r=0

dmax∑
d=0

kr,d(G,G′) (2)

An efficient graph serialization procedure is applied to reduce two isomorphic
graphs to an identical string to efficiently check for isomorphisms. In the end,
an iterative hashing procedure is used to map the string encoding into an integer
code. [1] Thus, the isomorphism test between to graphs is reduced to the equality
check between their integer codes.

In RNA secondary structure encoded-graphs, for the typically used rmax and
dmax values of range 3-5, the neighborhood-subgraphs would result in sparse
features in a high dimensional space. As is detailed in the below section, a local
sensitivity hashing scheme is applied to rapidly identify candidate clusters.

S1.2 MinHash technique

MinHash [3] is a technique for rapid evaluation of similarity between two sets
and also dimensionally reduction. This technique has been successfully applied
for large scale clustering and very recently has gained interests from several
bioinformatics domains where a rapid evaluation of similarities in large datasets
or under high error rates are needed [4]. MinHash is an unbiased estimator
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with a determinable expected error for the Jaccard similarity coefficient, which
is defined as:

J(A,B) =
|A ∩B|
|A ∪B|

(3)

, for the two sets A and B.
For feature vector X of m dimension X = {xj |1 ≤ i ≤ m}, and K hash

functions hi, the min-hash hmini is defined such that:

hmini = arg min
xj∈X

hi(xj) (4)

MinHash function returns the first feature indicator under a random permu-
tation of the features. Using K hash functions for two feature vectors X and X ′,
by comparing their min-hash values we get K estimators of their similarity. If
the two instances have l common min-hash values out of the maximum possible
K, the Jaccard similarity is estimated to be l/K.

To obtain an efficient neighbor search procedure, at first all results from the
set of MinHash functions are collected in so-called instance sketch to form a
signature-like tuple ((hmin1(X), ..., hminK(X))). An inverse-index is built for
each of K hash-functions, to efficiently with a constant time complexity obtain
all the instances that have the same min-hash value. Formally saying, for a
given i-th hash function and a value h̄ = hmini(X), the set of returned instances
will be Zi(h̄) = {z ∈ P |hi(z) = h̄}. Finally, the approximated neighborhood
Z is induced from the multi-set Z = {Zi}N1 . In the end, the elements in Z
are sorted according to their occurrence frequency. So k-neighborhood of the
instance X is the set of k closest elements: Nk(X). Candidate clusters are finally
obtained from the densest neighborhoods. The density of the neighborhood for
the instance X is defined by the average pairwise similarity between X and all
the elements in its k-neighborhood.
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S2 Supplementary Tables

RNAshapes RNAfold

Dataset #Rounds E-val bitscore E-val bitscore

Rfam-cliques-low
1 0.974 0.883 0.974 0.919
2 0.977 0.887 0.975 0.922

Rfam-cliques-high
1 0.659 0.641 0.715 0.662
2 0.674 0.657 0.725 0.675

Table S1: Clustering performance for the two benchmarking datasets [5] mea-
sured by Adjusted Rand Index. Comparison between two alternative meth-
ods for generating secondary structure graphs, RNAshapes (version 2.1) and
RNAfold (version 2.2), and two Infernal cmsearch hit criteria. GraphClust1
applies RNAshapes with bitscore and GraphClust2 supports all combinations.

cluster size size(+pre-clusters) major class

2877 6053 large subunit ribosomal (LSU) rRNA
3395 5104 microRNA mir-598
535 4120 signal recognition particle (SRP) RNA
347 445 5S-rRNA
111 142 tRNA

Table S2: Clustering of exemplary marine metatranscriptome dataset, statistics
of the clusters containing non-coding RNAs annotated by Rfam. GraphClust2
identified 28 large clusters of minimum size of 100 in one round of clustering.
The second column contain the number of sequences, including the pre-clustered
highly similar CD-HIT clusters. Rfam annotations were identified as hit by
cmscan against Rfam 14.1 CMs. Only the clusters are listed that were composed
of 50% or more ncRNAs.

4



experiment GraphClust2 runtime (hours)

NEAT1 0.9
MALAT1 4.7
HOTAIR 5.0

XIST 4.6
FTL 4.4

Roquin1 0.8
SLBP 0.6

Table S3: Runtimes of the local conservation + CLIP experiments on European
Galaxy server. It should be noted that the European server is a public resource
and the allocation of computation capacity resources is dynamic and depends
on the usage load.

RNA family and clan #sequences

tRNA 36

U2 18

Intron gpII 16

U3 10

U6 9

U1, SRP 8

U4, snoRD29 clan, snoRD14 4

snoRD39 clan, snoR80 3

U12, snoZ152, snoU31b , snoRD77 clan,
snoRD25 clan, snoRD24, snoR75, snoR134,
snoR11

2

snoZ43, snoZ279 R105 R108,
snoZ221 snoR21b, snoZ199, snoZ159,
snoZ155, snoZ122, snoZ105, snoRD74 clan,
snoRD62 clan, snoRD60 clan, snoRD44 clan,
snoR8a, snoR37-2, snoR135, snoR125,
snoR111, MIR414, MIR398, MIR169,
MIR163, MIR156

1

Table S4: Statistics of the ncRNA transcripts extracted from Arabidopsis
Thaliana structure probing DMS-seq.
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S3 Supplementary Figures

number of sequences

Figure S1: Clustering of exemplary marine metatranscriptome dataset, Graph-
Clust2 runtimes measured on the European Galaxy server. The initial dataset
contained 3,594,198 sequences, which were pre-clustered by CD-HIT into
912,675 representative sequences of sequence similarity at most 90%. The
913,000 sequences were iteratively and randomly sub-sampled to obtain the
smaller subsets. Using GraphClust2 on the European Galaxy server, each sub-
set was independently clustered in one round, once at a time. It should be
noted that the European server is a public resource and the computation ca-
pacity resources is dynamically depending on the user load. The linear trend of
GraphClust-2 runtime is discernible.
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Figure S2: Statistics for the studied long RNAs of all the predicted clus-
ters(Top). For the annotated candidates (Bottom), i.e. the subset of predicted
clusters that are annotated with at least one of the three conservation analysis
methods (Evofold2, RNAz and R-scape), that are shown in Figures 4 and S3.
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Figure S3: Locally conserved structured elements in XIST lncRNA. Sequences
are obtained from 100way vertebrates genomic alignments. Clusters with struc-
ture alignments of depth at least 50 and passing one of the three integrated
conservation analysis methods. Location of the human sequence of candidate
clusters of XIST on the human genome. Paralog-like candidates where multiple
human sequences exist in one cluster are suffixed with -p. It must be noted
that Evofold predictions are not reliable since the tool is not designed to detect
paralog conservation.
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Figure S4: The distribution of predicted SLBP motifs from clustering eCLIP
data over eCLIP binding scores. The motif is strongly enriched in the top 100
binding sites.

Figure S5: Color legend for LocARNA and RNAalifold alignment visualizations
in Figures S6-S11 below. “Compatible base pairs are colored, where the hue
shows the number of different types C-G, G-C, A-U, U-A, G-U or U-G of com-
patible base pairs in the corresponding columns. In this way the hue shows
sequence conservation of the base pair. The saturation decreases with the num-
ber of incompatible base pairs. Thus, it indicates the structural conservation of
the base pair.“ [6]
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Figure S6: Alignment of cluster FTL-C6
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Figure S7: Alignment of cluster NEAT1-C2
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Figure S8: Alignment of cluster MALAT1-C5
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Figure S9: Alignment of cluster MALAT1-C29
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Figure S10: Alignment of cluster HOTAIR-C3
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Figure S11: Alignment of cluster HOTAIR-C29
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Conservation Covariation One− sided Invalid Unpaired Gap

Figure S12: Genomic alignment overview of BCOR CDE-like element for the
available species extracted from the 100way Multiz alignment, corresponding to
Figure 6D. Alignment and compensatory mutations are visualized with R-chie
package.
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S4 Supplementary tabular files

• Tabular file T1: Structure conservation metrics, statistics, and genomic
coordinates for the candidates from the long RNA orthologous analysis,
corresponding to Figure 4.

• Tabular file T2: Gene names, stem-loop coordinates, conservation info of
the CDE-like motifs in 3’UTR by clustering Roquin-1 PAR-CLIP data [7],
corresponding to Figures 5 and 6.
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