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Abstract

Summary: Experimental structure probing data has been shown to improve thermodynamics-

based RNA secondary structure prediction. To this end, chemical reactivity information (as pro-

vided e.g. by SHAPE) is incorporated, which encodes whether or not individual nucleotides are

involved in intra-molecular structure. Since inter-molecular RNA–RNA interactions are often con-

fined to unpaired RNA regions, SHAPE data is even more promising to improve interaction predic-

tion. Here, we show how such experimental data can be incorporated seamlessly into accessibility-

based RNA–RNA interaction prediction approaches, as implemented in IntaRNA. This is possible

via the computation and use of unpaired probabilities that incorporate the structure probing infor-

mation. We show that experimental SHAPE data can significantly improve RNA–RNA interaction

prediction. We evaluate our approach by investigating interactions of a spliceosomal U1 snRNA

transcript with its target splice sites. When SHAPE data is incorporated, known target sites are pre-

dicted with increased precision and specificity.

Availability and implementation: https://github.com/BackofenLab/IntaRNA

Contact: backofen@informatik.uni-freiburg.de or mmann@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

The function of many if not most non-coding (nc)RNA molecules is

to act as platforms for inter-molecular interaction, which depends

on their structure and sequence. A large number of ncRNAs regulate

their target RNA molecules via base-pairing. For instance, small

(s)RNAs regulate the translation of their target genes by direct

RNA–RNA interactions with the respective messenger (m)RNAs

(Backofen and Hess, 2010). To predict such interactions, regions

not involved in intra-molecular base pairing have to be identified.

This ‘free-to-interact’ potential of a region, i.e. its unpaired prob-

ability, is computed by assessing the fraction of structures where the

region is free (unpaired) within the overall structure ensemble of an

RNA [(Raden et al., 2018) for a detailed introduction]. The prob-

ability are used by state-of-the-art prediction tools like IntaRNA

(Mann et al., 2017) to account for the regions’ accessibility. While

correct within their thermodynamic models, such probabilities do

not incorporate all cellular constraints and dynamics that define ac-

cessible regions and thus the likelihood for interaction.

The accuracy of RNA structure prediction improves when experi-

mental structure probing data, such as SHAPE (Wilkinson et al.,

2006), is incorporated (Hajdin et al., 2013). This is done by converting

the chemically sensed reactivity values to pseudo-energy terms. Pseudo-

energies are combined with structure formation energies from thermo-

dynamic models, that are used for RNA structure prediction (Lorenz

et al., 2016; Montaseri et al., 2017; Spasic et al., 2018). As SHAPE

[For simplicity, SHAPE refers to any structure probing experiment (e.g.

SHAPE, DMS)] reactivity is associated with the accessibility of nucleo-

tides, the use of such experimental data is even more promising to im-

prove the accuracy of RNA–RNA interaction prediction methods. For

that reason, we introduce a seamless incorporation of SHAPE data

into accessibility-based prediction approaches such as IntaRNA.
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Recently, structure probing has been complemented by next-

generation sequencing techniques to efficiently obtain

transcriptome-wide reactivity information (Choudhary et al., 2017;

Kutchko and Laederach, 2017). This produces large datasets that

demand for fast methods incorporating the probing data, which is

met by our extension of IntaRNA introduced in the following.

For a given RNA–RNA interaction I (see Supplementary

Material for detailed formalisms), its accessibility-based free energy

is defined by EðIÞ ¼ EhybðIÞ þ ED1ðIÞ þ ED2ðIÞ. Therein, EhybðIÞ
provides the hybridization energy from intermolecular base pairing

while the ED1;2 terms represent the energy (penalty) needed to make

the respective interacting subsequences unpaired/accessible

(Mückstein et al., 2006). ED terms are defined by unpaired proba-

bilities Prss of the subsequences via EDðIÞ ¼ �RT logðPrssÞ, where R

is the gas constant and T the temperature. Detailed introductions on

ED computation are provided e.g. in (Raden et al., 2018; Wright

et al., 2018). Computation of unpaired probabilities can be guided

by SHAPE data (Lorenz et al., 2016). While SHAPE-guided energy

evaluations cannot be compared to unconstrained energy values

(due to the introduced pseudo-energy terms), unpaired probabilities

are compatible, since they are reflecting the accessible structure

space rather than individual structures. Thus, SHAPE-constrained

Prss
SHAPE values can be directly used for ED and thus E computation

while preserving comparability of the resulting energies.

Now, we show that SHAPE-guided accessibility prediction

improves RNA–RNA interaction prediction. To this end, we study

the probabilities of U1 small nuclear (sn)RNA interacting with

pre-mRNA target sites, which is an established example of inter-

molecular RNA interaction essential for RNA-splicing in eukar-

yotes. U1 is involved in pre-mRNA splicing by recognizing the 5’

site of introns via inter-molecular base pairing (Hertel and Graveley,

2005). Due to the dynamics and constraints imposed by the spliceo-

some, it is generally challenging to avoid false positive interaction

predictions, which are either predictions of U1’s recognition site

with random regions of the mRNA or predicted interactions of other

U1 accessible regions with the mRNA. For that reason, we used U1

as an example to show that in vivo probing data effectively reduces

false positive predictions in RNA–RNA interaction prediction.

SHAPE data for U1 was obtained from in vivo DMS-seq RNA

structure probing of Arabidopsis thaliana (Ding et al., 2014). We

selected the U1 homolog transcript bearing the largest secondary

structure distance between the unconstrained and SHAPE-

constrained structure prediction. The pre-mRNA sequences for five

genes were extracted, which have been previously validated to per-

form U1-dependent splicing (Yeh et al., 2017). Figure 1a and b ex-

emplify the effect of SHAPE-constrained predictions for ACT1

mRNA. Without SHAPE constraints, the splice site is predicted to

interact with various regions of U1 with high probability; see

Supplementary Material for formalisms. In contrast, the splice site’s

interaction with U1’s recognition site is dominant with high specifi-

city in SHAPE-guided IntaRNA predictions. Furthermore, SHAPE-

guided prediction has a higher precision. Among all predicted inter-

actions of U1 with the ACT1 mRNA, the ranking of the known

interaction is improved from 9 to 3 in SHAPE-guided mode. When

investigating the accessibility profile of U1 (Supplementary

Material), this mainly results from an increased SHAPE-guided un-

paired probability Prss
SHAPE of U1’s recognition site and thus reduced

ED penalties.

The interaction probability of U1’s recognition site with all three

5’ splice sites of ACT1’s coding sequence are increased when

SHAPE data are incorporated (Fig. 1c). This effect results from a

decreased number of false positive predictions (Fig. 1a and b).

Following this trend, the probabilities of splice site recognition are

improved among all the mRNAs and are on average 3.08 times

higher (SHAPE/STD). Further details about data, evaluation and

analyses are provided in the Supplementary Material.
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sequence mRNA using (a) unconstrained (STD) and (b) SHAPE-constrained

accessibility estimates for U1. The dotted lines enclose U1 interactions with

exon 2. (c) Spot probabilities of U1 recognition site (spot index ¼ 8) interact-

ing with the 5’ splice sites of ACT1 (spot ¼ 1st intron index), with SHAPE con-

straints (orange) and without (blue) (Color version of this figure is available at

Bioinformatics online.)
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