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Abstract

Background: The secondary structure of RNA molecules is intimately related to their function and often more

conserved than the sequence. Hence, the important task of searching databases for RNAs requires to match

sequence-structure patterns. Unfortunately, current tools for this task have, in the best case, a running time

that is only linear in the size of sequence databases. Furthermore, established index data structures for fast

sequence matching, like suffix trees or arrays, cannot benefit from the complementarity constraints introduced

by the secondary structure of RNAs.

Results: We present a novel method and readily applicable software for time efficient matching of RNA

sequence-structure patterns in sequence databases. Our approach is based on affix arrays, a recently introduced

index data structure, preprocessed from the target database. Affix arrays support bidirectional pattern search,

which is required for efficiently handling the structural constraints of the pattern. Structural patterns like

stem-loops can be matched inside out, such that the loop region is matched first and then the pairing bases on

the boundaries are matched consecutively. This allows to exploit base pairing information for search space

reduction and leads to an expected running time that is sublinear in the size of the sequence database. The

incorporation of a new chaining approach in the search of RNA sequence-structure patterns enables the

description of molecules folding into complex secondary structures with multiple ordered patterns. The chaining

approach removes spurious matches from the set of intermediate results, in particular of patterns with little
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specificity. In benchmark experiments on the Rfam database, our method runs up to two orders of magnitude

faster than previous methods.

Conclusions: The presented method’s sublinear expected running time makes it well suited for RNA

sequence-structure pattern matching in large sequence databases. RNA molecules containing several stem-loop

substructures can be described by multiple sequence-structure patterns and their matches are efficiently handled

by a novel chaining method. Beyond our algorithmic contributions, we provide with Structator a complete and

robust open-source software solution for index-based search of RNA sequence-structure patterns. The Structator

software is available at http://www.zbh.uni-hamburg.de/Structator.

Background

The discovery of new roles of non-coding RNAs (ncRNAs) has made them of central research interest in

molecular biology [1,2]. Like proteins, ncRNA sequences that have evolved from a common ancestor can be

grouped into families. For instance, the Rfam database [3, 4] release 10.0 compiles 1,446 such families.

Members of a family share, to different degrees, sequence and structure similarity. In many cases, however,

the members of a family share only few sequence features, but share by far more specific structural and

functional properties. Prominent examples of such cases are tRNAs and microRNA precursors.

In this paper, we consider the problem of searching nucleotide databases for occurrences of RNA family

members. As sequence similarity is often remote even within well-established RNA families, we cannot rely

on pure sequence alignment and related techniques for this task. Indeed, it has been shown that sequence

alignments of structured RNAs fail at pairwise sequence identities below about 60% [5]. Therefore, we

briefly review nucleotide database search methods that make use of sequence and structure information.

There are general sequence-structure alignment tools, which determine structural similarities and derive

consensus structure patterns for RNAs that are too diverse to be alignable at sequence level. We identify

two classes of such tools. The first class, with RNAforrester [6] and MARNA [7] being the main

representatives, require a known or predicted secondary structure for both sequences as input. However,

they suffer from the low quality of secondary structure prediction, especially if the boundary of the RNA

elements are not exactly known. The second class of methods are derivatives of the Sankoff algorithm [8],
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which provides a general solution to the problem of simultaneously computing an alignment and the

common secondary structure of the two aligned sequences. Due to its high complexity (O
(

n6
)

time and

O
(

n4
)

memory) several variants of this approach have been introduced such as foldalign [9, 10],

dynalign [11] and LocaRNA [12]. Still, these tools have a time complexity that is generally too high for a

rapid database search. Thus, more specialized tools for searching RNA families in nucleotide databases

have been introduced. Tools like RNAMotif [13], RNAMOT [14], RNABOB [15], RNAMST [16],

PatScan [17], and PatSearch [18] are based on motif descriptors defining primary and secondary structure

properties of the families to be searched for. They provide a language for defining descriptors and a method

to search with these in large nucleotide databases. For these tools, the motif descriptor for a family has to

be extracted externally from other information (such as a multiple sequence-structure alignment) about the

specific RNA family. There are also tools that automatically derive descriptors from structure-annotated

sequences or a multiple sequence alignment of related RNA sequences such as Infernal [19, 20],

RSEARCH [21], and PHMMTS [22]. They use variants of stochastic context-free grammars as descriptors,

whereas ERPIN [23] uses sequential and structural profiles. Despite being fast compared to other methods,

descriptor-based tools available today have a running time that is, in the best case, linear in the size of the

target sequence database. This makes their application challenging when it comes to large sequence

databases. A solution with sublinear running time would require index data structures. However, widely

used index structures like suffix trees [24] or arrays [25] or the FM-index [26] perform badly on typical

RNA sequence-structure patterns, because they cannot take advantage of the RNA structure information.

Here, we present a fast descriptor-based method and software for RNA sequence-structure pattern

matching. The method consists of initially building an affix array [27], i.e. an index data structure of the

target database. Affix arrays cope well with structural pattern constraints by allowing for an efficient

matching order of the bases constituting the pattern. Structurally symmetric patterns like stem-loops can

be matched inside out, such that first the loop region is matched and, in subsequent extensions, pairing

positions on the boundaries are matched consecutively. Because the matched substring is extended to the

left and to the right, this pattern matching scheme is known as bidirectional search. Unlike traditional

left-to-right search where the two substrings constituting the stem region of the pattern are matched

sequentially, in bidirectional search, base complementarity constraints are checked as early as possible.

This leads to a significant reduction of the search space that has to be explored and in turn to a reduced

running time. We note that bidirectional search for RNA sequence-structure patterns was also presented

by Mauri et al. in [28]. However, their method uses affix trees [29] instead of the more memory efficient
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affix arrays. Affix trees require with approximately 45 bytes per input symbol more than twice the memory

of affix arrays (18 bytes per input symbol), making their application infeasible on a large scale. Moreover,

their method traverses the affix tree in a breadth-first manner, leading to a space requirement that grows

exponentially with increasing reading depth. We instead employ a depth-first search algorithm whose space

requirement is only proportional to the length of the searched substring.

The affix array directly supports the search for sequence-structure patterns that describe

sequence-structure motifs with non-branching structure, for example stem-loops. In contrast, e.g. the

search for stems closing a multi-loop is not directly supported. Nevertheless, even for RNA containing

multi-loops, the affix array can still speed up the search. Our general approach for finding RNA families

with branching structure is to describe each stem-loop substructure by a sequence-structure pattern. Each

of these patterns is matched independently using the affix array. Then, with a new efficient chaining

algorithm, we compute chains of matches such that the chained matches reflect the order of occurrence of

the respective patterns in the molecule. Note that complex structures containing one or more multi-loops

can be expected to contain sufficiently many non-branching patterns, such that the proposed chaining

strategy identifies true matches with high specificity.

For a better understanding of the concepts underlying our method, we begin with formalizing RNA

structural motifs. We then describe the concepts and ideas of affix arrays and show how to use them in an

algorithm for fast bidirectional search for sequence-structure patterns. After presenting a detailed

complexity analysis of the algorithm, we proceed with a detailed description and analysis of a novel

method for computing chains of sequence-structure pattern matches. Finally, we benchmark and validate

our method in several experiments.

Results
Preliminaries

A sequence S of length n = |S| over an alphabet A is a juxtaposition of n elements (characters) from the

set A. S[i], 0 ≤ i < n denotes the character of S at position i. Let ε denote the empty sequence, the only

sequence of length 0. By An we denote the set of sequences of length n ≥ 0 over A. The set of all possible

sequences over A including the empty sequence ε is denoted by A∗.

For a sequence S = S[0]S[1] . . . S[n− 1] and 0 ≤ i ≤ j < n, S[i..j] denotes the substring S[i]S[i+ 1] . . . S[j]

of S. We denote the reverse sequence of S with S−1 = S[n− 1]S[n− 2] . . . S[0]. For S = uv, u and v ∈ A∗,

u is a prefix of S, and v is a suffix of S. The k–th suffix of S starts at position k, while the k–th prefix of S
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ends at k. Note that the 0-th suffix of S is S itself and that S[0] is the 0-th prefix of S. The k–th reverse

prefix of S is the k–th suffix of S−1. For 0 ≤ k < n, Sk denotes the k–th suffix of S, and S−1
k = (S−1)k,

denotes the k–th reverse prefix of S.

Let A denote the RNA alphabet {A,C,G,U}. Its characters code for the nucleotides adenine (A), cytosine

(C), guanine (G), and uracil (U). In the following we fix a sequence S over the RNA alphabet A. For

stating the space requirements of our index structures, we assume that |S| < 232, such that sequence

positions and lengths can be stored in 4 bytes.

RNA structural motifs

RNA molecules can form complex secondary structures consisting of different structural elements like

stem-loops with or without bulges or internal loops. See Figure 1 for an overview of some secondary

structure elements. Such elements are often important for the function of the molecule and are structurally

conserved throughout evolution. The secondary structure is formed by Watson-Crick pairing of

complementary bases and also by the slightly weaker wobble pairs. We say that two bases (c, d) ∈ A×A

are complementary and can form a base pair if and only if

(c, d) ∈ C = {(A,U), (U,A), (C,G), (G,C), (G,U), (U,G)}. A non-crossing RNA structure R of length m is

a set of base pairs (i, j), 0 ≤ i < j < m, stating that the base at position i pairs with the base at position j,

such that for all (i, j), (i′, j′) ∈ R: i < i′ < j′ < j or i′ < i < j < j′ or i < j < i′ < j′ or i′ < j′ < i < j. For

the algorithms and methods presented in this paper we only consider this class of structures. For an

example of such an RNA secondary structure see Figure 1. An important structural motif occurring in

many RNA molecules is the stem-loop structure. We call R a stem-loop RNA structure if and only if for all

(i, j), (i′, j′) ∈ R : i < i′ < j′ < j or i′ < i < j < j′. Note that due to our definition a stem-loop can contain

bulges and interior loops (see Figure 1). We equivalently call such a structure non-branching. In Figure 1,

such stem-loop structures occur as substructures.

A structure string H is a sequence over the alphabet {..., (((, )))} with an equal number of characters ((( and ))).

There is a bijection between the set of (non-crossing) RNA structures R and the set of structure strings H ,

both of length m, such that for each base pair (i, j) ∈ R, H [i] = ((( and H [j] = ))), and H [r] = ... for positions

r, 0 ≤ r < m, that do not occur in any base pair of R, i.e. r 6= i ∧ r 6= j for all (i, j) ∈ R. Due to this

equivalence we identify both representations.

Let Φ = {R, Y, M, K, W, S, B, D, H, V, N} be a set of characters. The IUPAC nucleotide base code

introduces the characters in Φ to code nucleotide ambiguity and assigns a specific character class ϕ(x) ⊆ A
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to each x ∈ Φ ⊎A. In particular, for x ∈ A : ϕ(x) = {x} and ϕ(N) = A. A sequence pattern is a sequence

P ∈ (A ∪ Φ)∗. Let m denote its length |P |. An occurrence of P in a sequence S is a position i, 0 ≤ i < n,

such that P [k] = S[i+ k] with S[i+ k] ∈ ϕ(P [k]) for all 0 ≤ k < m. An RNA sequence-structure pattern

(RSSP) Q = (P,R) of length m is a pair of a sequence pattern P and a structure string R, both of length

m. A match or occurrence of Q of length m in an RNA sequence S is an occurrence i of P in S, such that

for all base pairs (l, r) ∈ R: S[i+ l] and S[i+ r] are complementary. Furthermore, define CS as a mapping

of a character c ∈ Φ ∪ A to the set of its complementary characters in A, i.e.

CS(c) = {d ∈ A| ∃e ∈ ϕ(c) : d and e are complementary}.

In this paper, structures described by RSSPs are non-branching.

The affix array data structure

In [27] the theoretical concept of an index data structure called affix array is described. This index

structure supports efficient unidirectional as well as bidirectional searches and is more space efficient than

the affix tree [29, 30]. The term unidirectional search refers to the search for occurrences of a sequence

pattern where the pattern characters are compared with sequence characters in a left-to-right (right-to-left)

order, i.e. the already compared (matched) prefix (suffix), of the pattern is extended to the right (left).

Notably, a change of the direction is not possible.

When searching for occurrences of sequence-structure patterns, however, unidirectional search cannot

exploit the complementarity condition on base paired pattern positions. To utilize this condition as

effectively as possible, both positions of a base pair need to be accessed immediately after each other. This

is enabled by bidirectional search, which refers to methods where the direction of the match extension can

be changed freely. Figure 2 illustrates the order of the character comparisons of a sequence-structure

pattern in the unidirectional and bidirectional searches.

Until now, affix arrays have received little attention in bioinformatics. Presumably, this has been due to

the lack of an open and robust implementation. As a consequence, their potential for efficient database

search with RSSPs has hardly been recognized and the details of this data structure are not widely known

in the field. Therefore, we briefly recall the basic ideas of the affix array, which constitutes the central

component of our Structator approach.

For notational convenience, we define SF = S and SR = S−1. We use SX for statements that apply to SF

and SR. The subscript X is used for other notions depending on SF and SR in an analogous way.

Furthermore, we introduce the notation F = R and R = F. We reserve a character $ 6∈ A, called terminator
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symbol, for marking the end of a sequence. $ is lexicographically larger than all the characters in A.

The affix array data structure of a sequence S is composed of six tables, namely sufF and sufR, lcpF and

lcpR, and aflkF and aflkR. They are called suffix, longest common prefix, and affix link arrays of SF and SR,

respectively. Table sufR is also known as reverse prefix array. sufX is an array of integers in the range 0 to

n specifying the lexicographic order of the n+ 1 suffixes of the string SX$. That is,

SX
sufX [0], S

X
sufX [1], ..., S

X
sufX [n] is the sequence of suffixes of SX$ in ascending lexicographic order. Each of the

tables sufF and sufR requires 4n bytes and can be constructed in O (n) time and space [31]. In practice

non-linear time [32, 33] construction algorithms are often used as they are faster and require less space.

lcpX is a table in the range 0 to n such that lcpX [0] = 0, and lcpX [i] is the length of the longest common

prefix between SX
sufX [i−1] and SX

sufX [i] for 1 ≤ i ≤ n. Each of the tables lcpF and lcpR requires n bytes and

store entries with value up to 255, whereas occasional larger entries are stored in an exception table using 8

bytes per entry [34]. More space efficient representations of the lcp table are possible (see [35]). The

construction of lcpF and lcpR can be accomplished in O (n) time and space given sufF and sufR [36]. In

contrast to [27] where affix arrays were described using a terminology derived from tree-like data

structures, we explain the underlying concepts of this data structure in terms of intervals in the suffix array

sufX . Two important concepts of affix arrays are suffix-intervals and lcp-intervals. An interval [i..j]

representing the set of suffixes SX
sufX [i], ..., S

X
sufX [j], 0 ≤ i ≤ j ≤ n, of width j − i+ 1, is a suffix-interval in

sufX with depth (prefix length) ℓ ∈ {0, . . . , n}, or ℓ-suffix-interval, denoted ℓ− [i..j], if and only if the

following three conditions hold:

1. lcpX [i] < ℓ;

2. lcpX [j + 1] < ℓ; and

3. lcpX [k] ≥ ℓ for all k ∈ {i+ 1, . . . , j}.

We call a suffix-interval ℓ− [i..j] in sufX lcp-interval in sufX with lcp-value ℓ ∈ {0, . . . , n}, or ℓ-interval, if

and only if i < j and lcpX [k] = ℓ for at least one k ∈ {i+ 1, . . . , j}.

For a suffix-interval ℓ− [i..j] in sufX , we denote the common prefix of length ℓ of its suffixes

SX
sufX [i], . . . , S

X
sufX [j] by δX(ℓ− [i..j]) = SX [sufX [i]..sufX [i] + ℓ− 1]. In case of an lcp-interval ℓ− [i..j] in

sufX , δX(ℓ− [i..j]) is the longest common prefix of all suffixes in this interval.

In summary, a suffix-interval ℓ− [i..j] in sufX describes simultaneously:

• A location in the index structure sufX by interval borders i and j and depth ℓ. For an example, see
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the yellow marked region in Figure 3 which corresponds to the suffix-interval 4− [4..6] in sufF.

• A (lexicographically ordered) sequence of suffixes SX
sufX [i], . . . , S

X
sufX [j]. For an example, consider the

lexicographically ordered sequence SF
sufF[4]

= CUGCA, . . . , SF
sufF[6]

= CUGCUGCUGCA of suffixes in

the suffix-interval 4− [4..6] in sufF in Figure 3.

• A substring of SX of length ℓ, namely δX(ℓ− [i..j]). That is, for the suffix-interval 4− [4..6] in sufF in

Figure 3, δF(4− [4..6]) = CUGC.

• The occurrences of this substring in SX , namely at positions sufX [i], . . . , sufX [j]. To give an

example, consider Figure 3 and observe that substring CUGC occurs at positions sufF[4] = 10,

sufF[5] = 7, and sufF[6] = 4 in SF = AUAGCUGCUGCUGCA.

For unidirectional left-to-right search of some pattern in S it is sufficient to process lcp-intervals only in

sufF. For bidirectional pattern search using affix arrays, described in detail in the next section, we employ

information from table sufF as well as sufR. Therefore, we need to associate information of one table to the

other. This is done by linking intervals via tables aflkF and aflkR. We observe that there exists a mapping

between lcp-intervals in sufF and sufR. This is stated by the following proven lemma [27].

Lemma 1 For every lcp-interval q = ℓ− [i..j] in table sufX there is exactly one lcp-interval

q−1 = ℓ′ − [i′..j′] in table sufX called reverse lcp-interval of q, such that ℓ′ ≥ ℓ and the ℓ− 1-th prefix of

δX(q−1) equals (δX(q))−1. The number of suffixes (prefixes) represented by q and q−1 are the same, i.e.,

j − i = j′ − i′.

We note that the equivalence q = (q−1)−1 is not necessarily true. This is stated by the next lemma.

Lemma 2 If the lcp-interval q−1 with depth ℓ′ in sufX is the reverse of the lcp-interval q with depth ℓ in

sufX and ℓ = ℓ′, then q = (q−1)−1. Otherwise, if ℓ′ > ℓ, then q 6= (q−1)−1.

The mapping between intervals in SF and SR is encoded in tables aflkF and aflkR as follows. Tables aflkF

and aflkR store, for each lcp-interval in sufF and sufR respectively, a pointer to the reverse interval in the

reverse tables sufF and sufR. The position in the tables where the pointers are stored is determined by the

function homeX , defined as

homeX ([i..j]) =

{

i, if lcpX [i] ≥ lcpX [j + 1],
j, otherwise,

(1)
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where ℓ− [i..j] is an lcp-interval in sufX . Hence, the home position is one of two boundary positions.

Strothmann [27] shows that homeX ([i..j]) 6= homeX ([i′..j′]) for different lcp-intervals ℓ− [i..j] and

ℓ′ − [i′..j′].

Table aflkX of string SX$ with total length n+ 1 can now be defined as a table in the range 0 to n such

that aflkX [homeX (q)] = i′, where q is an lcp-interval in sufX and i′ is the left border of the reverse interval

q−1 = [i′..j′] in sufX . We refer to the entries in table aflkX as affix links. Tables aflkF and aflkR occupy 4n

bytes each. They can be computed by traversing the lcp-intervals in sufX while simultaneously looking for

the corresponding reverse lcp-intervals in sufX . Locating reverse lcp-intervals can be accelerated by

skp-tables. These tables, introduced in Beckstette et al. [37] and hereinafter referred to as skpF and skpR,

can be constructed in linear time [38] and allow one to quickly skip intervals in sufX (for details, see [37]).

The construction of tables aflkF and aflkR takes O
(

n2
)

time. Although the use of skp-tables requires

additional 2× 4n bytes of memory, they considerably reduce the construction times of tables aflkR and

aflkR in practice. We note that Strothmann [27] describes a linear time construction algorithm for tables

aflkF and aflkR, which employs suffix link and child-tables [34] and an additional table. Altogether these

tables require together at least additional 7n bytes of space. Moreover, even without applying the skp-table

based acceleration, Strothmann states that the quadratic time construction algorithm is fast in practice.

An example of the affix array for sequence S = AUAGCUGCUGCUGCA highlighted with some of its

lcp-intervals connected to the respective reverse interval via the aflkX table is shown in Figure 3.

Because affix links in table aflkX are only defined for lcp-intervals but not suffix-intervals in general, which

we require in bidirectional search, we introduce the concept of affix-intervals. Affix-intervals are similar to

affix nodes as defined in [27]. An affix-interval in sufX is a triple v = 〈k, q,X 〉, where k is an integer

designated context of v and q is a suffix-interval in sufX .

An affix-interval v = 〈k, q,X 〉 in sufX , with q = ℓ− [i..j], ℓ > 0, −m < k < ℓ, describes a substring ωX(v)

of SX of length ℓ− k, defined as the k-th suffix of δX(q), i.e. ωX(v) = SX [sufX [i] + k..sufX [i] + ℓ− 1]. At

the same time v identifies all occurrences of ωX(v) in SX , namely the positions sufX [i] + k, . . . , sufX [j] + k.

For v = 〈k, q,X 〉, we therefore also use the notation −→v = ωF (v) if X = F and −→v = ωR(v)
−1 if X = R. As

an example, consider the affix-interval v = 〈1, 4− [4..6],F〉 in sufF of the affix array shown in Figure 3. In

this case, k = 1, q = 4− [4..6], and X = F. v identifies all occurrences of substring −→v = UGC in SF at

positions sufF[4] + 1 = 11, sufF[5] + 1 = 8, and sufF[6] + 1 = 5. Observe that −→v = UGC is the first suffix of

δF(q) = CUGC due to context k = 1.
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Searching RNA databases for RSSPs with affix arrays

Pattern matching using affix arrays means the sequential processing of characters in the pattern guiding

the traversal of the data structure. This can be performed in either a traditional left-to-right order

resulting in a unidirectional search or in a bidirectional way where character comparison is started at any

position of the pattern extending the already matched substring of the pattern to the left or to the right.

We will see that bidirectional search using alternating series of left and right extensions is very well suited

for fast database search with RNA sequence-structure patterns (RSSPs) containing both paired and

unpaired bases. In the following we will explain the two different traversal strategies underlying

unidirectional and bidirectional search using affix arrays.

Unidirectional traversal

Let P = P [0] . . . P [m− 1] ∈ (A ∪Φ)m be a sequence pattern to be searched in S in a unidirectional

left-to-right way using information from table sufF only. To search for P , we call the procedure

unidir-search of Figure 4 by unidir-search([0..|S|], P, 0). Therefore, in step 0 we start searching for the

characters in ϕ(P [0]) in the suffix-interval q0 = 0− [0..n] in sufF, which represents all suffixes of S$. In

each step k, k ≥ 0, we locate the k + 1-suffix-intervals qk of maximal width, such that P [0..k − 1]d matches

δF(qk). For each d ∈ ϕ(P [k]), this step is performed by a binary search in the suffix-interval

qk−1 = ℓ− [i..j] for qk = (ℓ+ 1)− [i′..j′], i ≤ i′ ≤ j′ ≤ j, j′ − i′ maximal, and S[sufF[i
′] + k] = d.

After m steps, if all qk could be located, δF(qm), qm = m− [r..s], matches the pattern P and the

occurrences sufF[r], sufF[r + 1], . . . , sufF[s] of δF(qm) are reported as occurrences of P in S. Note that in

this approach the matched substring of S is extended only to the right and at each step k the occurrences

of the already matched prefix are represented by a suffix-interval.

Bidirectional traversal

For the bidirectional search, we start at some position in P ∈ (A ∪ Φ)m and then compare the pattern P

character by character to the text, where we can freely switch between extending to the left or to the right.

Note that as in the case of unidirectional search, ambiguous nucleotides x in the pattern can be handled by

enumerating all characters c in the corresponding character class ϕ(x). We can focus on the situation in

the search, where

• a range r..r′ (0 ≤ r ≤ r′ < m) of the pattern P is already compared,
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• the occurrences of a substring u ∈ Am of S matching P [r..r′] are represented by an affix-interval

v = 〈k, ℓ − [i..j],X 〉 in sufX , and

• we want to extend −→v either to the left or to the right by a sequence character c ∈ A (that matches

the respective pattern character P [r − 1] or P [r′ + 1]). This will result in a new, extended

affix-interval vx.

Switch of the search direction. Like its suffix-interval, an affix-interval directly supports extension of the

represented substring in only one direction, namely searching to the left for X = F and to the right for

X = R. However, there are “corresponding” affix-intervals representing the same substring of S but

allowing extension to the opposite direction.

If the new search direction differs from the supported search direction of v, this switch of the search

direction requires determining the corresponding affix-interval v′ in sufX unless i = j or v has non-empty

context k 6= 0. There are these two exceptions, since first if i = j, independently of the value of k, ωX(v) is

already a unique substring of SX . Second, for a non-empty context k 6= 0, all occurrences of substring

ωX(v) in SX are followed (if k > 0) or preceded (if k < 0) by the same substring u ∈ Ak.

Let k = 0 and i < j. The affix-interval v′ = 〈k′, ℓ′ − [i′..j′],X 〉 in sufX is called the reverse affix-interval of

v = 〈k, ℓ− [i..j],X 〉 if and only if j′ − i′ = j − i, ℓ′ ≥ ℓ, and ωX(v)−1 = ωX(v′). The interval boundaries i′

and j′ of v′ are determined via a lookup in table aflkX . We set i′ = aflkX [homeX ([i..j])] and

j′ = i′ + (j − i). Observe that ℓ is not necessarily the length of the longest common prefix of all suffixes in

[i..j]. For this reason we define ℓlcp = min{lcpX [k] | i < k ≤ j} ≥ ℓ and compute the context of v′ as

k′ = ℓlcp − ℓ. Further, we set ℓ′ = ℓlcp. Hence the reverse affix-interval v′ = 〈k′, ℓ′ − [i′..j′],X 〉 is well

defined and v′ is the required corresponding interval of v.

Right/left c-extension of an affix-interval In our situation, −→v = u represents the occurrences of a substring u

of S matching P [r..r′].

The right (left) extension of v by a character c ∈ A, also called c-extension of v, is an operation that

computes the affix-interval vx representing all occurrences of a substring uc (cu). It fails, if there is no such

substring. We elaborate the cases for right extension. The cases for left extension are symmetric and

therefore omitted. For right c-extension of v = 〈k, ℓ− [i..j],X 〉, we determine the interval

vx = 〈kx, ℓx − [ix..jx],Xx〉 with
−→vx = −→v c. The first two cases do not require switching the search direction.

• Case X = F and i = j. u is a unique substring −→v of S. If S[sufF[i] + ℓ] = c, then

vx = 〈k, (ℓ + 1)− [i..j],F〉.
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• Case X = F and i < j. We determine the minimal ix ≥ i and maximal jx ≤ j in sufF such that

S[sufF[ix] + ℓ] = c and S[sufF[jx] + ℓ] = c by binary search in the suffix-interval ℓ− [i..j]. If ix and jx

exist, we set vx = 〈k, (ℓ+ 1)− [ix..jx],F〉.

The following cases require switching the search direction.

• Case X = R, i = j. We evaluate SR[sufR[i] + k − 1]. If SR[sufR[i] + k − 1] = c, set

vx = 〈k − 1, ℓ− [i..j],R〉.

• Case X = R, i < j, and k = 0. We first determine the reverse affix-interval v′ = 〈k′, ℓ′ − [i′..j′],F〉 of v

via a switch of the search direction as described above. Then we compute the minimal ix ≥ i′ and

maximal jx ≤ j′ via binary search, such that S[sufF[ix] + ℓ′] = c and S[sufF[jx] + ℓ′] = c. If ix and jx

exist, we set vx = 〈k′, (ℓ′ + 1)− [ix..jx],F〉.

• Case X = R, i < j, and k > 0. We evaluate the (k − 1)–th character of δR(ℓ − [i..j]). That is, if

δR(ℓ− [i..j])[k − 1] = c, then we consume the context k by setting vx = 〈k − 1, ℓ− [i..j],R〉.

The operation fails if vx cannot be determined.

RSSP matching using affix arrays

Searching a sequence S with an RNA sequence-structure pattern (RSSP) Q = (P,R) means to find the

occurrences of P in S under the complementarity constraints imposed by the structure string R (cf. our

definition of RSSP-occurrence). We introduce a search algorithm that checks for complementarity

constraints as early as possible in bidirectional search to maximally reduce the search time due to this

restriction.

For further considerations, we will assume a special ‘canonical’ form for RSSPs, which we define in the

following. Independently of a sequence S, each RSSP describes a set of pattern instances, i.e. the set of

potential subsequences matching the pattern. Often, there are several patterns that describe the same set

of instances. For example, the pattern (UNUACACGNR, (((....)))) describes the same set of instances

as (UNUACACGNR, ((......))) since the additional base pair (2, 7) in (((....))) does not make the

pattern more specific. We will define a pattern to be structure minimal if there is no, in this sense,

equivalent pattern containing a true subset of the base pairs. An RSSP Q = (P,R) is structure minimal if
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and only if for all base pairs (i, j) ∈ R it holds that

ϕ(P [i]) ∩ CS(P [j])× ϕ(P [j]) ∩ CS(P [i]) 6=

ϕ(d)× ϕ(e), for all d, e ∈ (A ∪ Φ).

Furthermore, a general pattern is called inconsistent if it does not have any instance. Formally, a pattern is

consistent if and only if for each base pair (i, j) it holds that ϕ(P [i]) ∩ CS(P [j]) 6= ∅ and

ϕ(P [j]) ∩ CS(P [i]) 6= ∅. An example of an inconsistent RSSP is Q = (P,R) with P = UAUACACGAN and

R = ((......)). Q is not consistent because there is a base pair (1, 8) ∈ R but the bases P [1] = A and

P [8] = A are not complementary. An example of a structure minimal and consistent RSSP is

(UNUACACGNR, ((......))). Note that a pattern can be transformed into an equivalent structure

minimal pattern and checked for consistency in O (m) time. For complexity considerations, we can

therefore safely assume that patterns are consistent and structure minimal.

In this case, one can restrict the search space by comparing the two positions of each base pair immediately

after each other. Due to this, the enumeration of characters matching the pattern symbols at each base

pair can be restricted to the smaller number of complementary ones. In the search for a sequence-structure

pattern this can reduce the number of enumerated combinations of matching characters exponentially.

Thus, for structure minimal patterns (P,R), the non-branching structure R suggests a search strategy, i.e.

an order of left and right extensions, which requires switching the search direction at every base pair but

makes optimal use of the complementarity constraints due to the base pairs.

Following this idea, Mauri and Pavesi [28] presented an algorithm for matching RNA stem-loop structures

using affix trees. This algorithm explores the search space in a breadth-first manner, so memory use grows

exponentially with increasing depth. Instead of an affix tree, we employ the more space efficient affix array

data structure and use a depth-first search algorithm which only requires space for the search proportional

to the length of the substring searched. The depth-first search for all occurrences of a stem-loop RSSP

Q = (P,R) is performed by calling procedure bidir-search of Algorithm 2 (see Figure 5). Note that we

explicitly support bulges and internal loops in the stem-loop pattern, i.e. we do not require perfect stacking

of the base pairs but allow general non-branching structures.

In our algorithm, we switch the search direction only once per base pair when matching the stem region of

the pattern, thus halving the number of lookups in the affix link tables compared to a naive algorithm

without this optimization. This was also observed by Strothmann [27] whose algorithm did not support

RSSPs containing bulges and internal loops.

13



To match Q we call procedure bidir-search initially as bidir-search(〈0, 0− [0..n],F〉, r0 − 1, r0), where

〈0, 0− [0..n],F〉 is an affix-interval and r0 is any position in the loop region of the RSSP or any position of

a completely unpaired pattern. Then, the procedure traverses the affix-intervals by performing right and

left extensions, while at the same time checking base complementarity of paired positions. This verification

takes constant time by using a binary table of size |A| × |A| containing all valid base pairings. Matching

positions are reported whenever the boundaries of the RSSP are reached.

In principle, we are free to choose any loop position r0 (or any position if R is empty) for starting our

bidirectional search algorithm. However, in order to reduce the combinatorial explosion of the search space

due to ambiguous IUPAC characters, it is preferable to match non-ambiguous pattern characters first. To

keep the selection simple, we set r0 to the position of the first character c in the possible range such that

|ϕ(c)| is minimal. That is, we start the search with the most specific (least ambiguous) character.

A detailed example of bidirectional RSSP search along with the underlying affix array traversal is provided

in Section 1 of Additional file 1. We remark that procedure bidir-search can be extended to support

variable-length RSSPs. Such an extended version of bidir-search is provided in Section 3 of Additional file 1.

Analysis

We analyze the complexity for searching in a sequence S of length n for an RSSP Q of length m < n,

where the index structures for S are already computed.

The bidirectional search algorithm requires tables sufF and sufR, lcpF and lcpR, and aflkF and aflkR. Under

our assumption that n < 232, each of the four tables sufX and aflkX consumes 4n bytes, and the two tables

lcpX are each stored in n bytes (X ∈ {F,R}). This amounts to a space consumption of 18n bytes for the

index structures. The algorithm performs a depth first search, where the depth is limited by m, and

therefore requires O(m) space. The total space complexity is therefore O(n).

We assume that Q = (P,R) is structure minimal. Such a pattern Q without ambiguity, i.e. P ∈ Am, does

not contain base pairs and the search for Q does not profit from bidirectional search. Although such a

pattern is processed by Algorithm 2, it can be handled by Algorithm 1 using only a suffix array and saving

some overhead.

Algorithm 1 accomplishes the search for a non-ambiguous pattern Q on the suffix array sufF using binary

search for locating intervals in O (m logn+ z) time, where z is the number of occurrences of P in S. We

remark that this time bound can be lowered at the price of higher memory consumption to

O (m+ logn+ z) [25] or even O (m+ z) [34, 39] time by using additional precomputed information.
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Notably, if there is ambiguity but no base pair in Q, bidirectional search can still be beneficial in practice.

This is the case when searching for a pattern in which a string of unambiguous characters is surrounded on

both sides by ambiguous IUPAC characters, because the comparison can start at the most specific part of

the pattern. The time complexities for searching ambiguous patterns with Algorithm 1 can be estimated as

O (n logn) in the worst case of searching for the sequence pattern P consisting only of Ns. Furthermore,

note that our Algorithm 2 behaves exactly like Algorithm 1 on patterns without base pairs if we invoke the

search procedure with r = −1 and r′ = 0.

For a pattern Q = (P,R) of length m, let p ≥ 0 be the number of base pairs in R. In the worst case P

consists only of Ns. Moreover, all possible strings of length m satisfying the complementarity constraints

specified in R occur in the text S. Recall that, since we allow (G, U) pairs, there are |C|=6 possible

complementary base pairs. Thus, there are |A|m−2p|C|p such strings and Algorithm 2 spans a virtual tree

with Em,p = |A|m−2p|C|p paths from the root to a leaf. At each leaf, it reports the occurrences of the

respective matched substring.

On each path from the root to the leaf the algorithm performs m− 2p c-extensions and at most one switch

of the search direction for matching the m− 2p unpaired characters. Then, it performs 2p c-extensions and

p switches of the direction for matching the base paired positions. Therefore, we count the total number of

c-extensions as

m−2p
∑

i=1

|A|i + |A|m−2p

2p
∑

j=1

2|C|j =

|A|m−2p+1 − |A|

|A| − 1
+ 2|A|m−2p |C|

p+1 − |C|

|C| − 1
,

which is in O (Em,p).

The cost of each c-extension consists of the cost of locating the suffix-interval of the new affix-interval,

which is performed by binary search in O (logn), and the cost for potentially computing the reverse

affix-interval when switching the search direction.

Instead of performing the binary search over the suffix tables, one can use the child-tables introduced by

Abouelhoda et al. in [34] to determine the child intervals and switch the search direction in constant time.

The child-tables, however, add at least 2n bytes to the index and require additional involved index

construction. As the child-tables improve the worst case behavior but, on the other hand, require more

space, we analyze the complexity with and without these tables (i.e. with tables sufX , lcpX , and aflkX

only).
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First, we analyze the time required for performing a single switch of the search direction. Therefore we

assume that the current affix-interval is v = 〈k, ℓ− [i..j],X 〉. Consider the following two cases.

(1) Case i = j or k 6= 0. If i = j, −→v represents a unique substring of S, or, if k 6= 0, all occurrences of

substring −→v in S are followed (if k > 0) or preceded (if k < 0) by the same substring of length |k|

(known as context). Switching the search direction does not require locating the reverse interval of v,

because the algorithm can perform the c-extension in the new search direction by consuming context.

Therefore, this case requires constant time.

(2) Case i < j and k = 0. The algorithm needs to locate the reverse affix-interval v′ = 〈k′, ℓ′ − [i′..j′],X 〉 of

v. Interval boundaries i′ = aflkX [homeX ([i..j])] and j′ = i′+(j− i) of v′ are computed in constant time.

By definition, computing the reverse affix-interval of v requires knowing ℓlcp. Then, ℓ
′ = ℓlcp and

k′ = ℓ′ − ℓ. Without child-tables, we determine ℓlcp by computing the length of the longest common

prefix between SX
sufX [i] and SX

sufX [j]. It suffices to perform ℓlcp − ℓ+ 1 = k′ + 1 character comparisons

only, since both suffixes SX
sufX [i] and SX

sufX [j] share a common prefix of at least length ℓ. With the help

of child-tables, ℓlcp is determined in constant time [34].

Due to the following lemma, the computation of all reverse affix-intervals on one path of our virtual tree is

in O (n) if child-tables are not used.

Lemma 3 Using tables sufX , lcpX , and aflkX , the computation of all contexts on a path in the recursion

of Algorithm 2 is in O (n).

Proof. Let v1, v2, vt . . . , vC be the sequence of reverse intervals processed when matching Q, and let kt

denote the context of vt for 1 ≤ t ≤ C.

To show
∑C

t=1 kt ≤ n, let v = 〈k, ℓ− [i..j],X 〉, with k = 0, i < j, and X = F (X = R), be the current

affix-interval. We assume without loss of generality that we perform a left (right) c-extension of v and thus

locate the reverse interval vt = 〈kt, ℓt − [it..jt],X 〉. Then the following statements hold: kt ≥ 0, ℓt = ℓ+ kt,

and jt − it = j − i (see Lemma 1). Observe that kt = 0 implies ωX(vt) = δX(ℓt − [it..jt]) and kt > 0 implies

that substring δX(ℓt − [it..jt]) has a non-empty prefix of length kt, namely SX [sufX [it]..sufX [it] + kt − 1].

Note that vt is only located if k = 0, otherwise the context k has to be consumed. Hence there is no reverse

interval vs = 〈ks, ℓs − [is..js],X 〉, with 1 ≤ s ≤ C, s 6= t, and ks > 0, such that the (ks − 1)-th prefix of

δX(ℓs − [is..js]) overlaps with SX [sufX [it]..sufX [it] + kt − 1] for the same positions in SX . From this,
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∑C

t=1 kt ≤ n follows. Since a single context kt can be determined by performing exactly kt + 1 character

comparisons, this implies O (n) time to compute all these contexts. With this, we conclude that all

switches of the search direction performed while finding one substring w in S that matches Q take up to

O (n) time. �

Therefore, when searching for Q without child-tables, the total time for switching search directions is

coarsely estimated by multiplying the complexity for one path with the number of paths as O (Em,pn).

The use of child-tables removes the linear factor.

For the worst case that all strings matching the pattern actually occur as substrings in S, the sequence S

must have a certain minimal length. In the case of p = 0, the possible matches are the words in Am and a

sequence that contains all these matches is called |A|-ary de Bruijn sequence of order m [40] without

wrap-around, i.e. a de Bruijn sequence with its first m− 1 characters concatenated to its end. Such a

sequence was shown to have a length of n0 = |A|m +m− 1. As a consequence, the worst case requires

n ≥ n0.

We summarize the worst-case time complexities for Algorithm 2 as follows. 1.) From determining new

suffix-intervals, we get a contribution of O (Em,p logn). For n ≥ n0, this is in O (n logn). Child-tables

reduce this time further to O (n). 2.) Switching directions without child-tables is in O (Em,pn) worst-case

time, which is reduced to O (Em,p) when using child-tables. For n ≥ n0, Em,p is in O (n). Finally,

Algorithm 2 runs in O (Em,p(n+ logn)), which is reduced to O (Em,p) using child-tables (i.e. O (n) for

n ≥ n0).

One should note that the worst-case time complexity of bidirectional search for sequence-structure pattern

is only in the order of online search algorithms. In our implementation, we use a minimal set of tables in

order to keep the implementation simple and save space.

However, it can be clearly seen from this analysis that the worst case is based on extremely pessimistic

assumptions that are almost contrary to the expected application. 1.) It is assumed that a pattern consists

of wildcards N only. In the expected application, however, patterns will often specify bases in the loop

region, which is of particular benefit for our algorithm. 2.) Sequences, like the de Bruijn sequence, that

contain all possible matches of an average sized pattern will be rare in practice. E.g. it could be assumed

that a sequence that contains all possible matches of a pattern Q with p base pairs (and P =N. . .N) is at

least as long as the |A|-ary de Bruijn sequence of order m, since one expects no significant bias for the

specific complementarity due to R over all substrings of length m. However,
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Em,p = |A|m−p|C|p = 4m−2p6p = 4m/(16/6)p is even for small p much smaller than n0 = 4m +m− 1. For

example, four base pairs (i.e., p = 4) reduce the time bound by a factor of (16/6)4 ≈ 50 and eight base

pairs reduce time by a factor of about 2500.

RNA secondary structure descriptors based on multiple ordered RSSPs

Obviously RNAs with complex, branching structures cannot be described completely by a single RSSP.

Describing an RNA by only a single unbranched fragment is often inappropriate, since searching a large

sequence database or a complete genome for structurally conserved RNAs (RNA homology search) with a

single RSSP will likely generate many spurious matches. However, larger RNAs can often adequately be

described by a sequence of RSSPs. This holds for 1,247 out of 1,446 RNA families in Rfam 10.0 which have

a structure containing several stem-loops but no multi-loop. Only 199 out of 1,446 (13.76%) RNA families

in Rfam 10.0 containing multi-loops cannot be modeled completely this way. Still, the consensus structures

of these 199 families contain on average 4.06 stem-loops (standard deviation 2.08, median 3) which can be

modeled as RSSPs. In consequence, we can use a sequence of RSSPs that consist of at least one pattern

per stem-loop (and potentially also unstructured patterns) for the description of those families. This allows

to accurately identify members even of those families containing multi-loops.

We address search for complex structured RNA families with the new concept of RNA secondary structure

descriptors (SSD for short). SSDs use the information of multiple ordered RSSPs derived from the

decomposition of an RNA’s secondary structure or from the consensus secondary structure of a multiple

sequence-structure alignment of related RNAs into stem-loop-like structural elements. Such consensus

secondary structures for multiple RNAs can be computed with a variety of programs following one of the

three strategies introduced in [41]. Namely: (A) alignment of the sequences followed by joint

folding [42–45], (B) Sankoff style [8] simultaneous alignment and folding [10, 12, 46, 47], and (C) individual

folding of the sequences followed by alignment of their structures [7, 48, 49]. In the following we make the

concept of SSDs more precise. Let A = A1, A2, . . . , AL be a sequence of non-overlapping alignment blocks.

These alignment blocks are excised from a multiple sequence(-structure) alignment and represent regions of

the molecule that fold into stem-loop-like structures or remain unfolded. The indexing from 1 to L reflects

their order of occurrence in the alignment. Hence A represents a sequential decomposition of the molecule’s

secondary structure (in 5′ → 3′ direction) into regions, each of which can be described by an RSSP. See

Figure 6 (A) for an example.

An SSD R of length L is a sequence of L RSSPs R = Q1,Q2, . . . ,QL where Qi denotes the RSSP
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describing Ai, i ∈ [1,L]. The order ≪ of the RSSPs in R is imposed by the order of the corresponding

alignment blocks. By li and ri we denote the start and end positions of Ai in the multiple alignment,

respectively. In practice, R can be obtained from multiple sequence-structure alignments of related RNA

sequences (i.e., of an RNA family) as they are available in databases like Rfam [3, 4]. A match to R is a

non-overlapping sequence of matches for some or all of the RSSPs in R in their specified order. We will

now make this more precise.

Consider an RNA SSD R with total order ≪. Let MS be the set of all matches for all RSSP from R in

sequence S of length n. A match is represented by a pair (Q, p) such that Q matches at position p in S.

With each Q in R we associate a positive weight α(Q) which can be defined by the user. This weight

allows to quantify the expressiveness of Q and/or its significance. For example, α(Q) can be the length of

Q or it might be derived from the number of non-ambiguous nucleotides in Q or the probability of

obtaining a match for Q just by chance assuming a certain (mono-)nucleotide background distribution.

We say that matches (Q, p) and (Q′, p′) are collinear, written as (Q, p) ≪ (Q′, p′) if Q ≪ Q′ and

p+ |Q| − 1 < p′. A chain C for an SSD R is a sequence of matches

C = 〈(Qj1 , p1), (Qj2 , p2), . . . , (Qjk , pk)〉,

all from MS, such that (Qji , pi) ≪ (Qji+1
, pi+1) for all i, 1 ≤ i ≤ k − 1.

There are two modes to score chains, depending on the nature of the search problem. If the multiple

sequence-structure alignment our SSD is derived from and the searched sequences have comparable length,

we want the chain to cover as much as possible of the sequence and we define the global chain score for

chain C as follows:

gcsc (C) =
k

∑

i=1

α(Qji). (2)

Then, the global chaining problem is to find a chain C with maximum global chain score.

If we are searching in a whole genome or chromosome for a relatively short structural RNA, we are

interested in local chains covering only parts of the genome or chromosome. Then we have to penalize gaps

using a penalty function g and thus the local chain score is defined by

lcsc (C) =
k−1
∑

i=1

(α(Qji )−

g
(

(Qji , pi), (Qji+1
, pi+1)

)

) + α(Qjk ) (3)
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where

g
(

(Qji , pi), (Qji+1
, pi+1)

)

=

∣

∣(pi+1 − pi)− (lji+1
− rji )

∣

∣ . (4)

To solve the local chaining problem we use our own implementation of a fast local chaining algorithm

described in [50] with modified gap costs. While the algorithm of [50] penalizes gaps by the sum of their

lengths, our solution is based on the difference between their observed lengths (in the chain of matches)

and their expected lengths (as given by the multiple alignment of the family), confer Equation 4. This

algorithm runs in O(q log q) time where q is the size of MS.

To solve the global chaining problem we have developed a new efficient chaining algorithm described next.

An improved method for global RSSP match chaining

So far our description was based on a single sequence. However, the results described below are based on a

large set of sequences S1, . . . , Sk as it occurs when searching a large sequence database. I.e. in case of

databases like Rfam k can be in the range of millions. To handle these, we concatenate the single sequences

with separator symbols and construct the affix array for the concatenation. For a given SSD

R = Q1,Q2, . . . ,QL, all RSSPs Qi, 1 ≤ i ≤ L, are matched one after the other using fast bidirectional

search on the affix array. This results in match sets MS(Qi) for RSSP Qi. L is typically in the range of

tens while the number of RSSP matches for a particular sequence Sj is in the order of hundreds to

thousands if Sj is an mRNA or complete genome sequence. For each match f the following information is

recorded:

• The ordinal number i of the RSSP Qi involved in f . This is denoted by f.rssp.

• The length of the RSSP involved in f . This is denoted by f.length.

• The number j of the sequence Sj f occurs in. This is denoted by f.seqnum.

• The starting position of f in Sj . This is denoted by f.pos .

• The weight α(Qf.rssp) of f . The weight of f is denoted by f.weight .

In an initial sorting step the union MS of all match sets MS(Qi), 1 ≤ i ≤ L, is sorted in ascending order

of f.seqnum. Matches with identical sequence numbers are sorted in ascending order of the ordinal number

of the RSSP, i.e., by f.rssp. Suppose that b∗ is the size of MS. As there are at most b∗ sequences with at
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least one RSSP match, the sorting according to the sequence numbers can be done in O (k∗ + b∗) time and

O (k∗) space using the counting sort algorithm [51]. Here, k∗ is the number of sequences with at least one

RSSP match. As k∗ ≤ b∗, the sorting requires O (b∗) time and space. We obtain disjoint subsets MS(Sj),

1 ≤ j ≤ k, where MS(Sj) is the set of all matches in MS matching a substring of Sj . As MS is ordered

by the ordinal number of the RSSP and the counting sort algorithm is stable, the sets MS(Sj) are also

sorted by the ordinal number of the RSSPs. Let MS(Sj ,Qi) denote the matches f ∈ MS(Sj) such that

f.rssp = i. In a second sorting step, each MS(Sj ,Qi) is sorted according to the starting position of the

matches. As this is a typical integer sorting problem, it requires O (bj,i log bj,i) time, where bj,i is the size

of MS(Sj ,Qi). Altogether, the two initial sorting steps can be performed in

O
(

b∗ +
∑k

j=1

∑L

i=1 bj,i log bj,i

)

time.

For all S1, S2, . . . , Sk one now solves independent chaining problems for sets MS(Sj), 1 ≤ j ≤ k, of

matches sorted according to the ordinal number of the RSSP and the starting position of the matches in

Sj . Let j be fixed, but arbitrary. For each match f ∈ MS(Sj), the weight f.weight is positive. Hence, an

optimal chain ends with a match f such that there is no match f ′ satisfying f ≪ f ′. Similarly, an optimal

chain begins with a match f ′ such that there is no match f satisfying f ≪ f ′.

The chaining problem is solved by a dynamic programming algorithm which tabulates for all matches

f ′ ∈ MS(Sj) the maximum score f ′.score of all chains ending with f ′. In addition, it computes the

predecessor f ′.prec of f ′ in a chain with maximum score ending with f ′. To obtain f ′.score, one has to

maximize over all matches f such that f.rssp < f ′.rssp and f.pos + f.length − 1 < f ′.pos . This is a two

dimensional search problem. As the matches in MS(Sj) are already sorted according to the first dimension

(i.e., by the ordinal number of the RSSP), one can reduce it to a one dimensional sorting problem. This

has already been observed in [50], and led to the development of an algorithm solving the chaining problem

in O (b log b), where b is the number of matches in MS(Sj). However, the algorithm of [50] was developed

for chaining pairwise sequence matches. The RSSP chaining problem is a special instance of this problem:

the first “sequence” consists of the positions 1, . . . , L, and a match for RSSP Qi is a match of length one to

position i. Moreover, matches at position i in the first sequence can be treated as being of equal length

because they are matches to the same RSSP Qi. In addition to this, our initial sorting step delivers, for all

i, 1 ≤ i ≤ L, the matches in MS(Sj ,Qi) in sorted order according to the starting position in Sj . All these

properties allow us to simplify and improve the algorithm of [50] in the following aspects:

• While the algorithm of [50] requires a dictionary data structure with insert, delete, predecessor, and
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successor operations running in logarithmic time (e.g., an AVL-tree or a red-black tree [51]), our

approach only needs a linear list, which is much easier to implement and requires less space.

• While the algorithm of [50] requires an initial sorting step using O (b∗ log b∗) time, our method only

needs O
(

b∗ +
∑k

j=1

∑L

i=1 bj,i log bj,i

)

time for this step. Note that the bj,i satisfy

∑k

j=1

∑L

i=1 bj,i = b∗.

• While the algorithm of [50] solves the chaining problem for MS(Sj) in O (b log b) time, our approach

runs in O (b · L) time. If L is considered to be a constant, the running time becomes linear in b,

where b = |MS(Sj)|.

To explain our algorithm, let i, 1 ≤ i ≤ L be arbitrary but fixed and assume that all match sets

MS(Sj ,Qi′), i
′ < i have been processed. In a first loop over the sorted matches in MS(Sj ,Qi) one

determines the score of the matches. In a second loop, one inserts them into a linear list if necessary. The

linear list contains a subset of the previously processed and scored matches. This split of the computation

into two loops is different from the algorithm of [50] where the scoring and insertions are interweaved in

one loop, requiring an extra array of length 2b containing references to the matches. The separation into

two loops allows us to get rid of this extra array.

Now consider the first loop over all elements in MS(Sj ,Qi) in sorted order of the match position in Sj .

Let f ′ be the current element. At this point, all matches f such that f.rssp < f ′.rssp have been processed

already. In particular, the score f.score and the previous match (if any) in an optimal chain ending with f

has been determined. Among the processed matches we only have to consider those matches f satisfying

f.pos + f.length − 1 < f ′.pos . If there is such a match, one takes the one with maximal score, say f . Then,

the optimal chain ending with f ′ contains the previous match f , and the score is

f ′.score = f ′.weight + f.score. If there is no such match, then the optimal chain ending with f ′ only

consists of f ′ and f ′.score = f ′.weight .

Now consider the second loop over all elements in MS(Sj ,Qi) for which the scores and predecessor

matches (if any) are already determined. Let f ′ be the current element to be inserted. As explained in the

previous case, one has to make sure that, among the processed matches, one can efficiently determine the

match f with the maximum score such that f.pos + f.length − 1 is smaller than some value depending on

f ′. The processed matches are stored in a linear list which is sorted in ascending order of the position of

the matches in Sj . Let ≺pos denote this order, that is f ≺pos f
′′ if and only if

f.pos + f.length < f ′′.pos + f ′′.length for any matches f and f ′′. If for two processed matches f and f ′′ one
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has f.pos < f ′′.pos and f.score > f ′′.score, then an optimal chain does not include f ′′. Each chain that

uses f ′′ can also use f and increase the chain score. As a consequence, one has to take care that f ′′ is not

inserted into the linear list or it is deleted if it was inserted earlier. In this way, f ≺pos f
′′ always implies

f.score ≤ f ′′.score for two matches f and f ′′ in the linear list. As the elements to be scored in the first

loop and to be inserted in the second loop are ordered in the same way as the elements in the linear list,

one can perform the scoring and the insertion loop (which also may involve deletions) by merging two lists

of length l1 and l2 in O (l1 + l2) time where l1 is the number of matches to be scored and inserted and l2 is

the length of the linear list involved. Let b = |MS(Sj)|. As l1 + l2 ≤ b, one obtains a running time of O (b)

for each set MS(Sj ,Qi). As there are L such sets, the running time is O (b · L).

Implementation and computational results

We implemented (1) the algorithms necessary for affix array construction, (2) the fast bidirectional search

of RSSPs using affix arrays as sketched in Algorithm 2 (hereinafter called BIDsearch), (3) an online variant

operating on the plain sequence (hereinafter called ONLsearch) for validation of BIDsearch and reference

benchmarking, and (4) the efficient global and local chaining algorithms. Algorithm ONLsearch shifts a

window of length m = |RSSP | along the sequence of length n to be searched and compares the substring

inside the window with the RSSP from left to right until a mismatch occurs. Hence, it runs in O (nm) time

in the worst and O (n) time in the best case. Algorithms BIDsearch and ONLsearch were implemented in

the program afsearch. The afconstruct program makes use of routines from the libdivsufsort2 library (see

http://code.google.com/p/libdivsufsort/) for computing the sufF and sufR tables in O (n logn) time. For

the construction of the lcpF and lcpR tables we employ our own implementation of the linear time

algorithm of [36]. Tables aflkF and aflkR are constructed in O
(

n2
)

worst-case time with fast practical

construction time due to the use of the skip tables skpF and skpR [37]. The programs were compiled with

the GNU C compiler (version 4.3.2, optimization option -O3) and all measurements were performed on a

Quad Core Xeon E5410 CPU running at 2.33 GHz, with 64 GB main memory (using only one CPU core).

To minimize the influence of disk subsystem performance the reported running times are user times

averaged over 10 runs. Allowed base pairs were canonical Watson-Crick (A, U), (U, A), (C, G), (G, C),

and wobble (G, U), (U, G), unless stated otherwise.
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Affix array construction times

In a first experiment we constructed the affix array for genomes of selected model organisms of different

sizes and stored it on disk. We measured the total running times needed by afconstruct to construct each

table comprising the affix array. See Figure 7 for the results of this experiment. The total size for each

table is given in Table 2 of Additional file 1. Construction times were in the range of 25 minutes for the

C.elegans genome containing ∼ 100 megabases to 15.7 hours for the ∼ 2 gigabase genome of the megabat

P.vampyrus.

We also measured the running time of afconstruct to construct the affix array for a set of 3,192,599 RNA

sequences with a total length of ∼ 622 MB compiled from the full alignments of all Rfam release 10.0

families. The construction and storage on disk required 126 minutes. In the following we refer to this

dataset as RFAM10 for short.

Influence of loop length on search performance

In a second experiment we investigated the influence of the loop length and the number of non-ambiguous

characters in the loop of an RSSP on the running time of BIDsearch and ONLsearch. For this experiment

we constructed artificial RSSPs with a fixed stem length of 7 and a loop length l varying from 3 to 20. For

each loop length, we also varied the number of consecutive non-ambiguous characters q from 0 to 4. For

q = 0 this means that the RSSP contains structural constraints only. That is, for q = 0 and l = 5 the used

RSSP matches all substrings that are able to fold into a stem-loop structure with loop length 5 and stem

length 7. Such a pattern is written in dot-bracket notation as (((((((.....))))))). Allowed base pairs

were (A, U), (U, A), (C, G), and (G, C). We measured the time needed by BIDsearch and ONLsearch to

search for these patterns in the RFAM10 dataset. Results are given in Figure 8. In this experiment

BIDsearch performed very well and was faster than ONLsearch for all parameter combinations. We also

investigated the influence of different stem length (data not shown here) and found that the impact on the

total running time is negligible. We observe that the advantage of BIDsearch over ONLsearch decreases

with increasing loop length l for fixed q. We explain this behavior with the increasing number of

affix-intervals that have to be processed for finding all different substrings of the sequences that match the

RSSP. However, even for an RSSP with loop length l = 20 containing only structural constraints (q = 0),

BIDsearch is still faster than ONLsearch. We further notice that the number of non-ambiguous characters

in the loop region has a strong influence on the running time of BIDsearch. That is, by specifying only a

few conserved nucleotides in the RSSP’s loop region, the running time of BIDsearch is reduced
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dramatically. For an example of this effect, see the running times of BIDsearch in Figure 8 for parameters

l = 15 and q ∈ {2, 3, 4}. This renders BIDsearch in particular useful for searching with RSSPs with

moderate loop length or existing sequence conservation in the loop region. The speedup factors measured

in this experiment were in the range from 1.001 to 78.1 for q = 0 and from 9.28 to 11× 103 for q = 4. Table

1 gives more details on the speedups of BIDsearch over ONLsearch for all investigated combinations of q

and l.

Searching large sequence databases

To measure the performance of BIDsearch for non-artificial real-world RSSPs, we manually compiled a set

of 397 RSSPs describing 42 highly structured RNA families taken from the RFAM10 database. These were

all families with a consensus secondary structure containing at least 5 stem-loop substructures. We

measured the running time needed by BIDsearch, ONLsearch, and the widely used tools RNAMotif [13]

and RNABOB [15] to search for these 397 RSSPs in the RFAM10 dataset. As expected, all tools delivered

identical results. However, while it took BIDsearch less than 50 seconds to search for the 397 patterns as

shown in Table 2, RNABOB and RNAMotif needed more than 2.5 and 3.2 hours respectively to complete

the same task. This made for a speedup factor of 196.5 (254.7) for BIDsearch over RNABOB (RNAMotif ).

Even if we include the time needed for affix array construction, BIDsearch is still faster than RNABOB

and RNAMotif .

We also investigated the distribution of speedup factors obtained by BIDsearch when searching for the 397

RSSPs. We observed that BIDsearch is more than 50,000 times faster than RNABOB and RNAMotif for

the majority of the patterns and that the total search time required by BIDsearch is dominated by only a

small number of patterns. These patterns describe large unconserved loop regions. See Figure 3 of

Additional file 1 for a graphical visualization of the distribution of speedup factors.

Scaling behavior of bidirectional pattern search using affix arrays

In a further experiment we investigated the scaling behavior of BIDsearch and ONLsearch for an increasing

size of sequences to be searched. For this, we searched with different RSSPs on random subsets of RFAM10

of different sizes and measured the running time for both algorithms. The results are given in Figure 9.

Here pattern1 is an RSSP containing only structural constraints. It describes a stem-loop with loop length

4, stem length 10 and no specified nucleotides in the loop region. The RSSP pattern2 (pattern3) only differ

from pattern1 by containing one (two consecutively) non-ambiguous nucleotides in the loop region.
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In this experiment BIDsearch clearly showed a sublinear scaling behavior, whereas ONLsearch scaled only

linearly. It took BIDsearch only 566.8 (pattern1), 133.8 (pattern2), and 37.1 (pattern3) milliseconds to

search the whole RFAM10 dataset. The obtained speedups of BIDsearch over ONLsearch were in the range

from 4.63 (1MB subset) to 104.79 (full RFAM10) for pattern1, from 12.23 (1MB subset) to 223.18 (full

RFAM10) for pattern2, and from 35.0 (1MB subset) to 618.37 (full RFAM10) for pattern3. We observe again

that the specification of only one or two nucleotides in an RSSP’s loop region considerably reduces the

running time of the BIDsearch algorithm.

RNA family classification by global chaining of RSSP matches

To demonstrate the effect of global chaining of RSSP matches, we searched with an SSD built for the Rfam

family of OxyS RNAs (Acc.: RF00035). OxyS is a small 109-nucleotide long non-coding RNA which is

included in response to oxidative stress in E.coli [52]. Members of this family fold into a characteristic

secondary structure consisting of three stem-loop substructures, referred to as HP1, HP2, and HP3 in

Figure 10 (C). From the three stem-loops we derived three descriptors called RSSP1, RSSP2, and RSSP3,

which constitute the SSD describing this family. We note that in this experiment the RSSPs were

constructed to guarantee high specificity and thus to minimize the number of false positives. For the SSD

specified in Structator syntax, see Figure 10 (A). Searching for this SSD in RFAM10, Structator delivers

8,619 matches for RSSP1, 1,699 matches for RSSP2, and 142,219 matches for RSSP3. Instead of reporting

these matches, Structator computes high-scoring global chains for each sequence containing matches to all

three RSSPs. The chains and the sequences they occur in are reported in descending order of the chain

score. This procedure resulted in 61 sequences, all belonging to the OxyS family which contains 115

members in total. Hence, by considering only high-scoring chains all the spurious RSSP matches were

eliminated. We also described the same three stem-loops in a format compatible with RNAMotif (see

Figure 10 (B)). A search on RFAM10 with this descriptor returned exactly the same 61 sequences.

However, Structator operating in BIDsearch (ONLsearch) mode with subsequent global chaining of RSSP

matches needed only 3.9 (122.5) seconds to identify all family members, whereas RNAMotif needed 84.7

seconds. The search times for Structator include 0.05 seconds required for the chaining.

We also employed global chaining to detect members of the structurally more complex family of Citrus

tristeza virus replication signal (Rfam Acc.: RF00193). Therefore we built an SSD comprising 8 RSSPs,

describing 8 of 10 stem-loops the molecule is predicted to fold into. For more information on the molecule’s

secondary structure and the used descriptor, see Figure 4 of Additional file 1. Using Structator operating

26



in BIDsearch (ONLsearch) mode and global chaining of RSSP matches it took only 1.3 (138.7) seconds to

search RFAM10 with this SSD, where 0.06 seconds were required for the chaining. The computed global

chains with a minimum length of 5, computed from the 184,199 single RSSP matches, were ranked

according to their global chain score. We observe that the sequences containing the 37 highest scoring

chains are exactly all 37 members of the family.

In addition we measured the performance of Structator using global chaining for RNA family classification

with manually compiled SSDs for 42 Rfam families. For the results of this experiment see Table 4 of

Additional file 1.

Searching whole genomes using local chains of RSSP matches

As an example of searching a complete genome or whole chromosomes for non-coding RNAs, we searched

for the RNA gene Human accelerated region 1F (HAR1F) on both strands of the human genome sequence.

HAR1F is one of 49 regions in the human genome that differ significantly from highly conserved regions of

the chimpanzee [53]. The consensus structure of the HAR1F family in Rfam (Acc.: RF00635) contains

three stem-loop regions, denoted HP1, HP2, and HP3 in Figure 11 (A). From these regions, we built an

SSD for the family with RSSPs RSSP1, RSSP2, and RSSP3, shown in Figure 11 (B). Since we were

searching on complete chromosomes, we only wanted to consider RSSP matches that occurred at a similar

distance to each other w.r.t. to the distances of the corresponding descriptors in the SSD. Therefore, unlike

in the previous experiment where we searched for global chains of RSSP matches, we now computed

high-scoring local chains. Gap costs were computed according to Equation (4) and we used an RSSP

weight α(RSSPi) = 10, for 1 ≤ i ≤ 3. Affix array construction for all human chromosomes was

accomplished in 12.6 hours by afconstruct . We searched with Structator for the three RSSPs and found

15,090, 1,578, and 14,491 matches for RSSP1, RSSP2, and RSSP3, respectively. For these RSSP matches we

computed local high-scoring chains (see Figure 11 (D)). Chains C were ranked according to their local chain

score lcsc (C). We observed that the highest-scoring chain corresponds to the correct location of the gene

on chromosome 20. Using BIDsearch (ONLsearch) this task needed 3.1 (633.4) seconds only, including 0.02

seconds for the chaining. RNAMotif also found a single match corresponding to the correct location of the

gene, but needed 274.7 seconds. See Figure 5 of Additional file 1 for the used RNAMotif descriptor.
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Comparison of implementations of bidirectional pattern search

In the last experiments we compared Structator ’s running time using using BIDsearch with the time

needed by a recently published bidirectional pattern search implementation for the same task. The

implementation of [54], to which we refer as BWI , uses a compressed data structure called bidirectional

wavelet index. We remark that BWI can only search with a small set of hard-coded patterns, i.e., the user

cannot use it to search with his/her own patterns. Moreover, unlike Structator , which provides a full

command line interface with many configurable options (see section about the software package), BWI

reports neither matching substrings nor matching positions (which is known to be the most time

consuming part when querying compressed index structures [26]). It only outputs the search time of

individual patterns and the number of matches. Thus, it serves rather as a prototype implementation of

the concepts introduced in [54]. Nevertheless, since it also makes use of bidirectional search, we compared

BWI with Structator using BWI ’s hard-coded patterns. See Table 3 for the results. Details of the

database and patterns are as previously described [54]. We noticed that BIDsearch was faster than BWI

for matching all patterns by up to factor 2, hence making it preferable when speed is most important.

However, we note that BWI ’s compressed wavelet index consumes significantly less memory than

Structator ’s affix array index, which would make BWI preferable in cases where space consumption is

critical. See Table 3 of Additional file 1 for the memory required by BWI ’s index for different genomes.

We also measured the speedup of Structator running in BIDsearch mode over ONLsearch and compared

the results with previously reported measurements [27]. Because the implementation used there is not

available (personal communication with the author), we calculated relative speedups based on the reported

absolute running times. Details on this experiment are given in Section 2 of Additional file 1.

Structator software package

Structator is an open-source software package for fast database search with RNA structural patterns

implementing the algorithms and ideas presented in this work. It consists of the command line programs

afconstruct and afsearch.

afconstruct implements all algorithms necessary for affix array construction, namely a lightweight suffix

sorting algorithm for construction of the suffix arrays sufF and sufR, the algorithm for construction of

tables lcpF and lcpR [36], and the algorithm for computation of the affix link tables aflkF and aflkR. The

program constructs all or if necessary only some of the tables of the affix array for a target database

provided in FASTA format and stores them on disk. Therefore the program can also be used to compute
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only the tables needed for a traditional enhanced suffix array [34]. afconstruct can handle RNA as well as

DNA sequences. Moreover, it supports the transformation of input sequences according to user-defined

(reduced) alphabets and allows the index construction for transformed sequences. Such personalized

alphabets are easily specified in a text file.

afsearch is the program for performing structural pattern matching. That is, it searches (ribo)nucleic acid

sequence databases for entries that can adopt a particular secondary structure. For an overview of the

supported RNA sequence-structure patterns (RSSPs), see Figure 12. The simplest RSSP describes a

single-stranded region, where ambiguous (not well-conserved) nucleotides can be specified with IUPAC

characters. All ambiguous IUPAC characters are hard-coded in afsearch, e.g. N standing for nucleotides A,

C, G, and U (and T) and R standing for A and G. Besides fixed-length RSSPs with or without ambiguous

characters (Figure 12 (A) until (D)), also RSSPs describing loop or stem regions of variable size (Figure 12

(E) until (H)) are supported. More precisely, one can specify with parameters maxleftloopextent (mllex)

and maxrightloopextent (mrlex) a variable number of allowed extensions to the left (nucleotides marked in

yellow in Figure 12 (E)) and/or to the right (nucleotides marked in blue in Figure 12 (F)) for the specified

loop pattern. Variable stem sizes can be addressed with parameter maxstemlength (msl) (see regions

marked in pink in Figure 12 (G)). Also supported is the combination of variable loop and stem size (see

Figure 12 (H)) and a maximal number of allowed mispairings in the stem region. All these different RSSPs

can be specified by the user in a text file which use, as shown in Figure 12, an expressive but easy to

understand pattern syntax. For additional details on the supported patterns see the corresponding section

in the Structator user manual. afsearch also permits user-defined base pairing rules. That is, the user can

define an arbitrary subset from A×A as valid pairings. This ensures a maximum of flexibility. For

example, the standard canonical Watson-Crick pairings as well as non-standard pairings such as G-U can

be specified.

The search is performed efficiently on a pre-computed affix array. afsearch implements the bidirectional

index-based search algorithms BIDsearch and the online algorithm ONLsearch operating on the plain

sequence, both extended to support patterns with variable loop size and/or stem length. Further, it

implements the methods for fast global and local chaining of RSSP matches. The search with RSSPs can

be performed on the forward and, in case of nucleotide sequences, also on the reverse strand. Searching on

the reverse strand is implemented by reversal of the RSSP and transformation according to Watson-Crick

base pairing. Hence it is sufficient to build the affix array for one strand only.

RSSP matches can be reported directly by afsearch or can be used as input for the computation of
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high-scoring global or local chains of matches. Computed chains resemble the order of the RSSPs given in

the pattern file and are reported in descending order of their chain score. This allows the description of

complex secondary structures with our new concept of secondary structure descriptors (SSDs). This is

done by simply specifying a series of RSSPs in the pattern file describing the stem-loop substructures the

RNA molecule is composed of in the order of their occurrence in 5’ to 3’ direction. To incorporate different

levels of importance or significance of an RSSP into SSD models and subsequently in the computation of

chain scores, RSSP specific weights can be defined in the pattern file. This is particularly useful in the

context of RNA family classification where the used SSD may be derived from a multiple

sequence-structure alignment or a consensus structure-annotated multiple sequence alignment. Here, it

permits the assignment of higher weights to RSSPs describing highly conserved functionally important

structural elements occurring in a family of RNAs, and lower weights to RSSPs describing less conserved

substructures that occur only in certain members of the family.

The output format of afsearch contains all available information of a match or chain of matches, either in a

human-readable, or a tab-delimited format. Moreover, afsearch can also report matches in BED format.

This allows a direct visualization of the results in e.g. the UCSC genome browser.

Conclusions

We have presented a method for fast index-based search of RNA sequence-structure patterns (RSSPs),

implemented in the Structator software. As part of the software, we give the first publicly available

implementation of bidirectional pattern search using the affix array data structure. For the majority of

biologically relevant RSSPs, our implementation of BIDsearch shows superior performance over previous

programs. In a benchmark experiment on the Rfam database, BIDsearch was faster than RNAMotif and

RNABOB by up to two orders of magnitude. Furthermore, in a comparison between BIDsearch and the

program of [54], which works on compressed index data structures, BIDsearch was faster by up to 2 times.

We observed that for RSSPs with long unconserved loop regions, the advantage of BIDsearch over

ONLsearch decreases. For such cases, Structator can also employ ONLsearch on the plain sequence data.

As a further contribution, we presented for the first time a detailed complexity analysis of bidirectional

search using affix arrays. While bidirectional search does not does not improve the worst-case time

complexity compared to online search, in practice it runs much faster than online search algorithms and

the running time scales sublinearly with the length n of the searched sequences.

Our implementation of the affix array data structure requires only 18n bytes of space. This is a significant
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space reduction compared to the ∼ 45n bytes needed for the affix tree. With the program afconstruct we

present for the first time a command line tool for the efficient construction and persistent storage of affix

arrays that can also be used as a stand-alone program for index construction.

With the new concept of RNA secondary structure descriptors (SSDs) combined with fast global and local

chaining algorithms, all integrated into Structator , we also introduce a powerful technique to describe

RNAs with complex secondary structures. This even allows to effectively describe RNA families containing

branching substructures like multi-loops, by decomposition into sequences of non-branching substructures

that can be described with RSSPs. Compared to programs like RNAMotif , Structator ’s pattern

description language for RSSP formulation is simple but powerful, in particular in combination with the

SSD concept. Beyond the algorithmic contributions, we provide with the Structator software distribution a

robust, well-documented, and easy-to-use software package implementing the ideas and algorithms

presented in this manuscript.

Availability

The Structator software package including documentation is available in binary format for different

operating systems and architectures and as source code under the GNU General Public License Version 3.

See http://www.zbh.uni-hamburg.de/Structator for details.
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Figures
Figure 1

Secondary structure elements of an RNA molecule represented by a base-pair graph (left) and as

arc-annotated sequence (right). The depicted structure contains three stem-loop substructures. Observe

that all arcs representing base pairings are non-crossing and stem-loop substructures can contain interior

loops and bulges. Hence this molecule forms a non-crossing secondary structure that does not contain

higher order structural elements like pseudoknots. Secondary structure drawings were generated with the

VARNA program [55].

Figure 2

Unidirectional (left) and bidirectional (right) searches for the RNA sequence-structure pattern (RSSP)

Q = (P,R) with P = NNNUGCUNNN and R = (((....))), which represents a stem-loop structure of

length m = 10. The numbers indicate the order in which the pattern characters are matched against the

target sequence. In the unidirectional search, the characters are matched in a single direction, beginning

(ending) with a character in ϕ(P [0]) (ϕ(P [m− 1])). In the bidirectional search, the loop region of the

pattern can be matched first. Then, pairing bases are matched consecutively by switching the search

direction, represented by the red arrows.

Figure 3

Affix array for S = AUAGCUGCUGCUGCA. Some lcp-intervals are marked by rectangles and the affix

links from an lcp-interval to its reverse interval are represented by arcs. The solid arc points in two

directions, from the the lcp-interval q = 5− [8..10] in sufF (on the left-hand side) to its reverse interval

q−1 = 5− [4..6] in sufR (on the right-hand side) and vice versa. That is, q = (q−1)−1 (see Lemma 2). The
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dotted arc points in only one direction, from the lcp-interval q = 4− [4..6] in sufF to its reverse interval

q−1 = 5− [4..6] in sufR. In this case, the reverse of q−1 is (q−1)−1 = 5− [8..10], and q 6= (q−1)−1.

Figure 4

Unidirectional search algorithm for searching for a sequence pattern P ∈ (A ∪Φ)∗. Given the suffix array

sufF of S, the procedure enumerates all occurrences of P in S when called by unidir-search([0..|S|], P, 0). In

line 5, the suffix-interval q′ is located by binary search in O (logn).

Figure 5

Bidirectional recursive RSSP matching using an affix array. Procedure bidir-search finds all matches of a

given RSSP (P,R), beginning the pattern extensions from any position in the loop region or any position

in a completely unpaired pattern. In each call, parameter v denotes the affix-interval representing matches

of the pattern substring P [r + 1..r′ − 1], 0 ≤ r ≤ r′ < m satisfying the structural constraints imposed by

R[r + 1..r′ − 1]. The procedure takes care to change the search direction only as often as necessary, in

particular it changes the direction only once per base pair.

Figure 6

(A) Non-overlapping alignment blocks of stem-loop regions excised from a multiple sequence-structure

alignment and derived sequence-structure patterns. Since li ≤ ri < lj ≤ rj and sequence regions S[li . . . ri]

fold into stem-loop structures for 1 ≤ i ≤ j ≤ 7, A = A1, A2, A3, A4, A5, A6, A7 is an ordered sequence of

non-overlapping alignment blocks suitable to construct an RNA secondary structure descriptor

R = Q1,Q2,Q3,Q4,Q5,Q6,Q7. The sequence-structure patterns Qi, i ∈ [1, 7] of R given on top of their

underlying alignment blocks describe the seven marked stem-loops shown in the RNA secondary structure

(B) of the Citrus tristeza virus replication signal (Rfam: RF00193). (C) Matches of RSSPs Qi, i ∈ [1, 7], on

sequence S, sorted in ascending order of their start position. (D) Graph-based representation of the

matches of Qi, i ∈ [1, 7]. An optimal chain of collinear non-overlapping matches is determined by

computing an optimal path in the directed acyclic graph. Observe that not all edges in the graph are

shown in this example and that the optimal chain (indicated here by their red marked members) is not

necessarily the longest possible chain.
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Figure 7

Experiment 1: Running times for affix array construction for genomes of different model organisms.

Genome sizes are given for each organism in megabases in brackets. We measured the running time in

seconds for all tables the affix array consists of (y-axis, log10 scale). Total construction times were in the

range of ∼ 25 minutes for C.elegans up to 15.7 hours for P.vampyrus.

Figure 8

Experiment 2: Influence of loop length and number of non-ambiguous characters in loop region on total

running time of BIDsearch and ONLsearch. We measured the running time in milliseconds to search with

artificial RSSPs with loops of varying length l ∈ {3, . . . , 20} on ∼ 622MB of RNA sequence data. For each

loop length l we also varied the number q ∈ {0, . . . , 4} of non-ambiguous nucleotides in the loop. The used

RSSPs had a fixed stem length of 7. For more details on this experiment see corresponding text.

Figure 9

Scaling behavior BIDsearch (left) and ONLsearch (right). We measured the running time needed to search

with three different patterns on random subsets of RFAM10 of different sizes. For details, see main text.

Figure 10

(A) Secondary structure descriptor for the family of OxyS RNAs in Structator syntax. The SSD consists of

RSSPs RSSP1, RSSP2, and RSSP3 describing the three stem-loop structures (HP1, HP2, and HP3, see (C))

of this small non-coding RNA. (B) RNAMotif descriptor for the same structural elements. (C) Consensus

secondary structure of the OxyS RNA family as drawn by VARNA [55]. Sequence information

(non-wildcard nucleotides) used in both descriptors are marked with an asterisk. Observe that both

descriptors use predominantly structure and very little sequence information.

Figure 11

(A) Consensus secondary structure visualized with the VARNA program of the HAR1F RNA family

showing stem-loops HP1, HP2, and HP3. (B) SSD consisting of RSSP1, RSSP2, and RSSP3 in Structator

syntax describing the three stem-loop regions of HAR1F. (C) Regions of HAR1F described by the RSSPs,

including distances li+1 − ri, 1 ≤ i < 3, between neighbored RSSPs and RSSP weights α(RSSPi), 1 ≤ i ≤ 3.

(D) Examples of local chains Ci, 1 ≤ i ≤ 4 found with the SSD, showing, in each chain, the distance

36



between RSSP matches and their local chain score lcsc (Ci). Gap cost computation according to

Equation (4) is shown exemplary for the two RSSP matches of chain C3.

Figure 12

Supported structural patterns and corresponding pattern definitions in Structator syntax. Non-ambiguous

nucleotides are marked in red. Positions containing ambiguous nucleotides, denoted here with character N,

are marked in green and can contain any nucleotide from A. Maximal allowed left and right extensions of

the loop region of a pattern as specified by parameters maxleftloopextent (mllex) and maxrightloopextent

(mrlex) are marked in yellow and blue, respectively. Allowed possible extensions of a pattern’s stem region

as specified by parameter maxstemlength (msl) are marked in purple. As an example for the semantics of

the parameter msl consider pattern (G): it matches all substrings of the searched sequence that are able to

fold into a stem-loop structure with loop length 6 and stem length between 3 and 8. For further details see

corresponding text.

Tables
Table 1

Table 1: Experiment 2: Obtained speedup of BIDsearch over ONLsearch for different loop length

l ∈ {3, . . . , 20} and number of non-ambiguous characters in the loop region q ∈ {0, . . . , 4}. For the

parameter combination l = 3, q = 4 also one character of the stem was specified.

l 3 4 5 6 7 8 9 10 11

q = 0 78.10 48.64 35.42 23.55 16.35 11.01 7.31 4.89 3.48

q = 1 329.81 180.45 105.67 57.41 33.75 19.20 11.30 7.14 4.81

q = 2 749.94 418.65 227.45 121.80 67.81 36.99 21.44 12.73 8.41

q = 3 2,345.17 1,169.53 653.31 353.49 188.34 103.34 56.59 33.08 20.79

q = 4 11,045.75 3,638.14 2,144.8 1,132.53 610.63 338.77 184.56 106.11 64.93

l 12 13 14 15 16 17 18 19 20

q = 0 2.67 2.15 1.79 1.51 1.37 1.20 1.13 1.07 1.00

q = 1 3.58 3.13 2.28 1.89 1.68 1.46 1.35 1.27 1.12

q = 2 5.96 4.88 3.64 2.94 2.57 2.19 2.02 1.82 1.63

q = 3 14.27 11.88 8.25 6.50 5.53 4.74 4.19 3.76 3.34

q = 4 43.09 35.23 25.74 19.52 15.91 13.25 11.75 10.32 9.28

Table 2

Table 2: Experiment 3 (A): Running times in seconds needed by the programs to search for 397 RSSPs

describing 42 RFAM10 families in ∼ 622 megabases of RNA sequence data. For each program the speedup

factor of BIDsearch over the particular program is given in brackets.
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BIDsearch ONLsearch RNAMotif RNABOB
46.1(1) 6,203(134.5) 11,745(254.7) 9,061(196.5)

Table 3

Table 3: Search time comparison between Structator ’s BIDsearch and an implementation, here called

BWI , of bidirectional search using the wavelet tree data structure described in [54]. Search times are in

milliseconds. The last row shows the speedup of BIDsearch over BWI .

hairpin1 hairpin2 hairpin4 hloop(5) acloop(5) acloop(10)
BWI 10,484 64 612 26,413 896 420

BIDsearch 8,325 32 330 16,768 511 295

BIDsearch vs. BWI 1.26 2 1.85 1.58 1.75 1.42

Additional Files
Additional file 1 — Supplemental material

Additional file 1 contains additional examples, algorithms, experiments, figures, and tables as listed below.

• Section 1 of Additional file 1: An example of bidirectional RSSP search

• Section 2 of Additional file 1: Comparison of two implementations of bidirectional pattern search

• Section 3 of Additional file 1: A bidirectional search algorithm supporting variable-length RSSPs

• Figure 1 of Additional file 1: An algorithm for bidirectional recursive matching of the loop region of a

variable-length RSSP using an affix array

• Figure 2 of Additional file 1: An algorithm for bidirectional recursive matching of the stem region of

a variable-length RSSP using an affix array

• Figure 3 of Additional file 1: Distribution of speedup factors of BIDsearch over RNABOB and

RNAMotif when searching for 397 RSSPs in RFAM10

• Figure 4 of Additional file 1: Consensus secondary structure of the CTV rep sig family (RFAM Acc.:

RF00193) and SSD in Structator syntax describing this family

• Figure 5 of Additional file 1: SSD for HAR1F RNA family in Structator syntax, RNAMotif descriptor

for the same structural elements composing the SSD, and secondary structure drawing of the family

• Table 1 of Additional file 1: Comparison of speedup of Structator ’s BIDsearch over ONLsearch and

the speedup of affix array based search over searching on the plain text as reported in [27]
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• Table 2 of Additional file 1: Sizes in megabytes of the different tables the affix array consists of for

the genomes used in Experiment 1

• Table 3 of Additional file 1: Size in megabytes of the bidirectional wavelet index [54] for different

genomes

• Table 4 of Additional file 1: Results of Structator searches on RFAM10 (1,446 families; 3,192,599

sequences) using SSDs describing 42 Rfam families
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