
Vol. 28 no. 23 2012, pages 3034–3041
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts574

Sequence analysis Advance Access publication October 10, 2012

Navigating the unexplored seascape of pre-miRNA candidates in

single-genome approaches
Nuno D. Mendes1,2,3,4, Steffen Heyne5, Ana T. Freitas2, Marie-France Sagot1,3 and
Rolf Backofen5,6,7,*
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ABSTRACT

Motivation: The computational search for novel microRNA (miRNA)

precursors often involves some sort of structural analysis with the aim

of identifying which type of structures are prone to being recognized

and processed by the cellular miRNA-maturation machinery. A natural

way to tackle this problem is to perform clustering over the candidate

structures along with known miRNA precursor structures. Mixed clus-

ters allow then the identification of candidates that are similar to

known precursors. Given the large number of pre-miRNA candidates

that can be identified in single-genome approaches, even after apply-

ing several filters for precursor robustness and stability, a conventional

structural clustering approach is unfeasible.

Results: We propose a method to represent candidate structures in a

feature space, which summarizes key sequence/structure character-

istics of each candidate. We demonstrate that proximity in this feature

space is related to sequence/structure similarity, and we select can-

didates that have a high similarity to known precursors. Additional

filtering steps are then applied to further reduce the number of candi-

dates to those with greater transcriptional potential. Our method

is compared with another single-genome method (TripletSVM) in

two datasets, showing better performance in one and comparable

performance in the other, for larger training sets. Additionally, we

show that our approach allows for a better interpretation of the results.

Availability and Implementation: The MinDist method is imple-

mented using Perl scripts and is freely available at http://www.cra-

vela.org/?mindist¼1.

Contact: backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

MicroRNAs (miRNAs) constitute one of several classes of small

RNAs found in plant and animal branches of Eukaryota.

Since the discovery of the first miRNAs inCaenorhabditis elegans

(Lee et al., 1993), an abundant number of these regulatory RNAs

(ranging from 18 to 25 nt in length) have been discovered and

their underlying mechanisms investigated [for an overview see

e.g. Bartel (2009)]. MiRNAs originate from the maturation of

larger precursors of approximately 70 nt called pre-miRNAs.
An important feature of pre-miRNAs that elicits their recog-

nition by the miRNA-processing machinery is their secondary

structure. Pre-miRNAs typically exhibit a stem-loop structure

with few internal loops or asymmetric bulges but the variety of

structures that are efficiently recognized has escaped any strict

characterization (Lindow and Gorodkin, 2007). Previously, we

proposed a combination of measures that distinguishes true

pre-miRNAs from the large number of stem-loops that can be

found in metazoan genomes (Mendes et al., 2010). However, the

number of precursor candidates (in the order of a few hundred

thousand) obtained above the optimal cutoff of the score, which

combines measures of stability and robustness, is still impractic-

ally large to be subjected to experimental confirmation (see the

CRAVELA framework website for further details: http:///www.

cravela.org). Despite the fact that all these candidates consist of

or contain stem-loops, the details of their secondary structure

have not been subjected to a thorough analysis.

The most immediate approach to analyzing the variety of

pre-miRNAs in our candidate set is to seek the identification

of structural families amongst the precursor candidates.

Although miRNAs have been grouped into families according

to their sequence similarity in the miRBase database

(Griffiths-Jones et al., 2003), this approach does not give

enough insight as to the structural features that are important

for the recognition by the miRNA-processing machinery. Hence,

the grouping has to be performed according to sequence and

structure. Various algorithmic approaches have been introduced

to determine structural similarities and to derive consensus struc-

ture patterns for structural RNAs with low sequence identity

(Bompfunewerer et al., 2008; Bradley et al., 2008; Gorodkin

et al., 1997; Havgaard et al., 2005; Heyne et al., 2009;

Höchsmann et al., 2003; Hofacker et al., 2004; Mathews

and Turner, 2002; Sankoff, 1985; Siebert and Backofen, 2005;

Will et al., 2007). A first approach toward the clustering of

miRNAs has been achieved in Kaczkowski et al. (2009), where*To whom correspondence should be addressed.
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a sequence–structure alignment was used to cluster 220 miRNAs

into structural classes. However, all these approaches suffer from

a high computational complexity, with a time requirement typ-

ically betweenO(n4) andO(n6). It is thus computationally unfeas-

ible to cluster hundreds of thousands of candidates using this

approach.
Thus, instead of trying to cluster the candidate set, we sum-

marize the structural and sequence features of each candidate

using a vectorial representation and attempt to identify the

region of the feature space most likely to contain hairpins

recognized by the cellular miRNA-processing machinery.

Furthermore, using samples of the candidate set, we show that

the relative positions of the representations of the candidates in

the feature space are reminiscent of the partitions derived from a

conventional clustering performed with the state-of-the-art se-

quence/structure alignment tool LocARNA (Will et al., 2007).

And, most importantly, we observe that known precursors are

represented in a limited portion of the feature space.
We use this approach to analyse a set of robust and stable

hairpins extracted from a genome-wide scan (Mendes et al.,

2010) of Anopheles gambiae and Drosophila melanogaster, greatly

reducing the number of candidates. A further reduction is

achieved by assessing the transcriptional potential of each re-

maining candidate and, by additionally restricting our analysis

to candidates with the potential of being part of miRNA gen-

omic clusters, we obtain a dataset which is small enough to be

subjected to experimental verification.

2 MATERIALS AND METHODS

In this work, we present an approach to evaluating the sequence and

structure similarity of a very large number of hairpins with an application

to the identification of pre-miRNA candidates. In a first step, we

demonstrate that our vectorial representation of RNA structures and

the Euclidian distance in the multidimensional space consequently

defined is comparable with the sequence/structure similarities identified

by LocARNA—a conventional structural clustering method. In a second

step, we observe that known pre-miRNAs tend to populate a specific

region of the multidimensional space defined by the principal components

of a vectorial representation of all candidate structures. We therefore

use the position of known precursors in this multidimensional

space to identify the region of interest and select the candidates

populating it.

2.1 Vectorial representation of sequence and structure

We use a vectorial representation for candidate precursors which sum-

marizes key features of the primary/secondary structure of a given

stem-loop. The representation we chose, after considering several options

and selecting the one that best matched the results of conventional clus-

tering (Supplementary Materials), consists of a vector of normalized

counts. To build this vector, we use a sliding window of length 3 (a triplet)

that scans the precursor candidate (Fig. 1). At each step, a position in the

vector is incremented. The appropriate vector position is mapped con-

sidering whether each nucleotide within the window and with respect to

the minimum free energy (MFE) structure is the left/right-hand side of a

base-pair, an unpaired nucleotide on the stem, or part of the terminal

loop, and, additionally, which base is present at the midpoint of the

window. We have, thus, a vector with 256 positions. After scanning the

entire precursor, each position in the vector is normalized by dividing its

counts by the length of the sequence.

A similar representation has already been used to represent feature

vectors of RNA stem-loops in the context of training a support vector

machine (SVM) (Xue et al., 2005) and was amongst the representations

we have considered (Supplementary Materials). The representation we

use here is richer than the one proposed by these authors in the sense

that it distinguishes the situation where a given position is the left or

right-hand side of a base-pair instead of simply being a paired position

and it also represents unpaired nucleotides in the stem region or the

terminal loop differently. In this way, information about asymmetrical

loops and bulges in the stem is captured by the vector counts.

2.2 Conventional structural clustering

To identify clusters of high sequence-structure similarity, we apply a clus-

tering procedure based on RNA sequence-structure alignment. For this

purpose, we used LocARNA, which is one of the fastest and most accurate

tools for multiple RNA sequence alignment (Will et al., 2007). LocARNA

performs Sankoff-style simultaneous alignment and folding (Sankoff,

1985). This approach generates high-quality alignments that take struc-

tural similarity into account. Notably, the structural information is not

required a priori but can be inferred, in parallel to the alignment process,

based on an RNA free energy model. LocARNA achieves its short

run-times for pairwise alignment because it needs to consider only sig-

nificant base pairs. The associated cluster pipeline generates a hierarchical

cluster tree by applying an average-linkage clustering (unweighted pair

group method with arithmetic mean—UPGMA) to the matrix of pair-

wise LocARNA distances. This pipeline was validated by a re-clustering of

Rfam and could reproduce Rfam families with good precision at high

average recall.

In the case of clustering miRNA candidates, we do not have any prior

knowledge of clusters. Therefore, we need to define a reasonable parti-

tioning of the cluster tree into an optimal number of clusters. For this

purpose, we apply a variant of the Duda rule (Duda et al., 2001) imple-

mented in the tool RNAsoup (http://www.bioinf.uni-leipzig.de/�kristin/

Software/RNAsoup/). To this purpose, a subtree is reported as an opti-

mal cluster if the sum-of-squared errors for two clusters is not signifi-

cantly smaller than what is expected by chance (Kaczkowski et al., 2009).

The significance level can be controlled by k. The larger is the value of k,

the larger the difference of squared error allowed before a subtree is split

into two clusters. In our case, the error of a cluster is determined via the

free energy of its consensus structure and the MFEs of its individual

sequences. The MFE of single sequences is calculated by RNAfold

(Hofacker et al., 1994). The consensus structure and energy are calculated

by RNAalifold (Hofacker et al., 2002) based on a multiple LocARNA

alignment of the subtree.

(a)

(b)

(c)

Fig. 1. Example of a vectorial representation. (a) The characteristics of a

single position are determined, which include the nucleotide and whether

the previous, current and following positions in the secondary structure

are unpaired (0), left/right paired (1/2), or located in the terminal loop (3).

(b) Portions of the final vector illustrating the counts. Each vector pos-

ition refers to a particular nucleotide type and the neighboring pairing

status, from (A, 0, 0, 0) to (G, 3, 3, 3). (c) Portions of the normalized

vector obtained from (b), each position is divided by a constant such that

the sum of all components is 1
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2.3 Principal component analysis of vectorial

representations

The vectorial representation of the stem-loop structures used in this

work captures information about sequence/structure features but, in gen-

eral, the dimensions of these feature vectors are not independent.

Furthermore, all vectors will always have zero values in some dimension

as some combinations of left-/right-hand paired and unpaired nucleotides

are not possible in actual RNA structures. To reduce the number of

dimensions and to ensure we represent our structures in a space with

independent dimensions, we readily eliminate dimensions with zero vari-

ance. In practice, for a sufficiently large dataset, this will only eliminate

dimensions for which all vectors have a value of zero. Over the remaining

dimensions, we perform a PCA thus obtaining a space of linearly inde-

pendent coordinates. Additionally, each dimension of the vectorial rep-

resentation is scaled to unit variance before performing the PCA.

2.4 Evaluation

2.4.1 Randomization procedure A randomization procedure is

used to compare our approach to the results obtained for samples of

the datasets using conventional structural clustering in terms of the pro-

portion of correctly assigned cluster members. This procedure allows us

to estimate the likelihood that our values were obtained by chance or as a

result of the way our candidates are spatially distributed in the principal

components space. To obtain the proportion of correctly assigned cluster

members in the randomized version of the samples, we keep each candi-

date in the same position of the principal components space but we shuf-

fle their identities, i.e. we randomly select two candidates and we swap

their coordinates, repeating the process until all candidates have had their

coordinates swapped. After having performed the random swapping of

candidates, we calculate the centroids of each cluster in the shuffled space

and the resulting proportion of correctly assigned cluster members.

A similar procedure is used to obtain random samples of the median

distance of known precursors to their centroid.

2.4.2 Sampling the datasets for performance evaluation To

assess the performance of both our method and TripletSVM, four

groups of samples of different sizes were prepared for each dataset.

Each sample group was divided in training sets and testing sets, both

with the same number of positive and negative examples. Each sample

group is made of 1000 samples. The positive examples in the training set

of each sample are a random subset of a pool of known miRNAs, with a

single representative per miRNA family (5%, 10%, 20% or 50% of the

pool) and the remaining pre-miRNAs in the pool make up the positive

examples of the corresponding testing set. The negative examples in both

the training and testing sets of each sample are random subsets of the

candidates having the same size of the corresponding positive examples.

Our method uses only the positive examples in the training set as a ref-

erence from which to compute the distance to the elements in the testing

set, whereas TripletSVM, for each sample, is trained using both the posi-

tive and negative examples of the training set and is evaluated against the

testing set.

3 DISCUSSION

3.1 Vector representation reflects structural clustering

To assess the adequacy of our approach with respect to its ability
to identify regions of structural similarity in a way that resembles
conventional sequence/structure clustering, we adopt the follow-

ing procedure. We use LocARNA to perform hierarchical struc-
tural clustering over 100 samples of 1000 randomly chosen
stem-loops drawn from the D.melanogaster and A.gambiae data-

sets, always including the entire set of known miRNAs for each

organism, and we determine the optimal partition into clusters
applying a tree node evaluation rule for various significance
levels called k-levels (the details of this procedure are described

in Section 2). For low values of k, the procedure produces clus-
ters with highly similar structures. An increasing value of k
allows for more dissimilar structures to be included in the

same cluster, therefore producing a lower number of clusters
with an increasing number of structures.
We then represent each structure from the samples using a

vectorial representation summarizing sequence/structural fea-
tures, in an effort to capture the key elements distinguishing

the various hairpins. These feature vectors contain, however,
both interdependent dimensions and dimensions with different
variance. To obtain a linearly independent set of dimensions, we

perform a principal components analysis (PCA) over the vector-
ial representations mapping them to their principal components
representation (feature space).

To determine whether our representation of the candidates in
the principal components space reflects the structural clusters

found by LocARNA for the different k levels, we calculate the
proportion of correct assignments, which measures the ratio of
cluster members that are closer to their assigned cluster centroid

as opposed to a centroid of another cluster. The cluster centroid
is calculated by determining the average position of the cluster
members each dimension at a time. The distribution of this meas-

ure in our 100 samples is then compared with its distribution in a
randomized version of our spatial representation of the candi-

dates, where candidate positions are kept but candidate identities
are shuffled.
The comparison with the randomized version of the spatial

distribution of candidates allows us to address the fact that the
significance of the absolute distances of each candidate to its
cluster centroid in the feature space can only be determined com-

paratively. For instance, some clusters may have only one
member, in which case it will always coincide with its cluster
centroid and, more generally, it may happen that variations in

distance of a candidate to its assigned cluster centroid for differ-
ent k-levels, or even different vectorial representations, may par-

tially reflect the overall density of the candidates rather than a
better evaluation of structural similarity.
Table 1 shows that, for both datasets, a large proportion of

cluster members are found closer to their cluster centroid than to
the centroid of any other cluster. For the most heterogeneous
clusters that are obtained at k-level 0.90 the proportion of cor-

rectly assigned cluster members is about two-thirds, and it rises
more than 80% for the structurally more homogeneous clusters

obtained at k-level 0.00. The comparison with the randomized
datasets shows that the results are statistically significant, i.e.
these results are well above what one would hope to obtain

by chance or simply due to the way candidates are spatially
distributed.

3.2 Known precursors are clustered together

Using the same samples from the datasets presented in the pre-

vious section, we can observe that despite the fact that not all
known precursors are grouped together in the same cluster
by LocARNA at any k-level (data not shown), they are however

significantly close and restricted to a limited portion of the
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feature space. In fact, if we take the centroid of the known
precursors and calculate the median distance of each known
precursor to the centroid, we obtain a value which is

much smaller than what would be expected by chance
(P-value¼ 8.00� 10�60 for A.gambiae, P-value¼ 8.94� 10�71

for D.melanogaster, estimated using the randomization proced-
ure described in Section 2.4.1).

3.3 Distance to known precursors is good predictor

The results shown in the previous section suggest that known
precursors tend to concentrate in a particular region of the fea-

ture space. This region, however, is also densely populated by
other precursor candidates. Because the region where known
precursors are found is inserted in an area of great density, it

cannot be identified by a purely unsupervised approach.
Therefore, we take the coordinates of all known precursors

and use them to identify the closest candidates. This method
has the advantage of allowing for different pre-miRNA struc-
tural clusters to emerge around subsets of known precursors. The

number of candidates that are included in the acceptance region
is controlled by the maximum distance allowed to the closest
pre-miRNA.

The larger the permitted distance, the greater the chance of
selecting a region that includes all interesting candidates, but at

the expense of enlarging the number of false positives. The
Youden index (Youden, 1950), J, defined as maxc{TPR(c)�
FPR(c)}, i.e. the maximum difference between the true positive

rate (TPR) and the false positive rate (FPR) over all cutoff
values, c, is a standard method to select the best compromise

in such a trade-off. The optimal cutoff value, c*, is the cutoff for
which J¼TPR (c*)�FPR (c*).
To estimate the optimal cutoff, we consider subsets of known

precursors as reference and calculate the true/false positive rate
with respect to the remaining known precursors and other
candidates (see detailed description in Section 2). Figure 2

shows the receiver-operating characteristic (ROC) curves

for A.gambiae and D.melanogaster when using samples of
5%, 10%, 20% and 50% of known precursors as reference
and computing the trade-off between the true/false positive

rates with respect to the remaining precursors and an equal
number of sampled candidates. Each figure shows the ROC

curves of 1000 such samples as well as the average curve, com-
puted as the average performance over all samples across the full
range of cutoff values. Additionally, the figures also show the

average performance of our method, computed as the average
TPR and FPR across all samples for the optimal cutoff on each

sample (note that this may be significantly different from the
optimal cutoff calculated on the average ROC curve).
The optimal cutoff in each of these ROC curves can be inter-

preted as the best choice of maximum distance allowed between a
structure and the closest precursor so that the former may be
included in the acceptance region. We have observed that there is

a log-linear relation between the value of the average optimal
cutoff and the percentage of known precursors that is used as

reference (R2
¼ 0.998, for A.gambiae, and R2

¼0.989, for
D.melanogaster). Because the best choice of cutoff cannot be
directly determined for the entire set of known precursors, we

estimate it by extrapolating the log-linear model. The estimated
optimal cutoff can be interpreted as the best choice of maximum

distance to include additional (yet unknown) precursors with the
least number of false positives.
Using the estimated optimal cutoffs, the selected regions in-

clude 23.5% (77 366) and 23.5% (67 619) of all candidates from
the A.gambiae and D.melanogaster datasets, respectively.

3.4 Comparison with other methods

TripletSVM (Xue et al., 2005) is a classifier based on a SVM that
purports to determine whether a given stem-loop is a

pre-miRNA. The features considered by this SVM are quite simi-
lar to those of the TripletS vectorial representation that is
described in the Supplementary Materials. It is also, to our

knowledge, the only single-genome method whose source code

Table 1. Evaluation of vectorial representations

k-level Anopheles gambiae Drosophila melanogaster

Correctly

assigned (%)

P value Average

Cluster size

Correctly

assigned (%)

P value Average

cluster size

0.00 83.60 8.58e�87 3.05 82.10 3.45e�125 3.29

0.10 82.50 1.69e�87 3.33 81.24 1.92e�120 3.54

0.20 81.21 8.68e�84 3.70 80.01 4.31e�113 3.89

0.30 79.30 2.37e�76 4.27 78.24 3.31e�108 4.44

0.40 77.09 9.22e�65 5.31 76.08 1.64e�96 5.44

0.50 74.12 2.24e�55 7.61 72.80 1.43e�84 7.54

0.60 71.23 2.76e�42 12.09 69.45 1.01e�61 11.44

0.70 68.70 1.05e�31 17.24 67.41 1.74e�54 15.32

0.80 68.14 6.01e�26 19.52 66.07 9.62e�44 17.77

0.90 67.37 2.57e�22 21.08 65.72 4.01e�37 20.09

Note: For each k-level, the table shows the percentage of correct assignments in the datasets of A.gambiae and D.melanogaster, the P-value of Welch’s two-sample t test

comparing the observed correct assignments with a randomized version of each dataset shuffling the correspondence between candidates and their vectorial representation,

and the average number of cluster members.

3037

Navigating the unexplored seascape of pre-miRNA

 by Steffen H
eyne on January 31, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts574/DC1
http://bioinformatics.oxfordjournals.org/


is made available and which includes the necessary routines to

re-train the model with new data. Many other single-genome

methods exist (Mendes et al., 2009), but their time complexity

makes their use in the classification of hundreds of thousands

of candidates unfeasible. TripletSVM was trained using positive

examples from samples of known precursors and negative exam-

ples from samples from the candidate set (a detailed description

is given in Section 2). A graphical representation of the

performance of TripletSVM in each of the 4000 samples
(evenly distributed between training sets using 5%, 10%,
20% and 50% of the annotated pre-miRNAs), as well as the

average performance in each group of samples, is shown in
Figure 2. Table 2 shows the sensitivity, specificity and the F1

measure for TripletSVM as well as our method across training

sets including varying proportions (from 5% to 95%) of known
precursors.
The average performance of our method in A.gambiae is

superior to that of TripletSVM, and slightly worse in
D.melanogaster, except for sample groups containing a greater

number of known precursors. The slightly better performance
of TripletSVM in the D.melanogaster dataset is the result of a
tendency for having comparatively higher specificity but similar

sensitivity. This is probably due to the fact that MinDist is sen-
sitive to the inclusion of heterochromatic sequences in this data-
set, which introduces greater variability in terms of sequence/

structure features. As a consequence, the variation between the
features of pre-miRNAs and those of other stem-loops with

more regular features becomes less apparent. It is worth
noting, however, that despite achieving a slightly better average
performance in D.melanogaster for sample groups containing a

lower number of known precursors, the actual performance of
TripletSVM in these samples varies greatly from one sample to
the other, alternating between very good and very poor perform-

ances, particularly for the 5% sample group, as is shown
in Figure 2(b), which is a major disadvantage when exploring
recently sequenced genomes, for which few clear homologs with

which to seed the search for new pre-miRNAs are generally
available.

TripletSVM also bears the inconvenience of requiring negative
examples which are inevitably chosen under the assumption—
however plausible and defensible—that miRNA precursors are

rare with respect to the overall number of candidates, but one
cannot generally guarantee that hairpins which would normally
be processed by the miRNA-maturation pathway are not being

included in the negative training set. Our approach, despite
assuming all candidates to be false positives for the purposes
of performance evaluation, does not use this information to

shape the acceptance region and, since it does not try to identify
the optimal margin between positive and negative examples, it is

also less likely to suffer from overtraining. Additionally, by re-
flecting sequence/structure similarity in a way comparable with
conventional structural clustering, our method offers a better

interpretation of the decision rule that is made when selecting
candidates.

3.5 Transcriptional potential assessment further restricts

the number of candidates

The number of candidates obtained after our structural analysis
(77 366 for A.gambiae, and 67619 for D.melanogaster), albeit
considerably lower than the original candidate set (328 829 for

A.gambiae and 287469 for D.melanogaster), is still quite numer-
ous. A plausible interpretation of these results is that, despite

their structural similarity to known precursors, the majority of
these candidates are not pre-miRNAs due to other factors.
Chiefly among these is the fact that most remaining candidates

are probably not efficiently transcribed or are playing different

(a)

(b)

Fig. 2. ROC curves for the minimum distance (MinDist) to pre-miRNAs

method and the performance of TripletSVM over 4000 samples equally

divided into four groups. Each group uses 5%, 10%, 20% or 50% of the

known precursors of (a) A.gambiae and (b) D.melanogaster to set up the

positive examples of the training set. The positive examples of the testing

set are made up by the remaining precursors. In both sets, the negative

examples are samples of the set of candidates. ROC curves for each in-

dividual sample are shown in dashed lines and the average curve across

the range of cutoff values is shown in a solid line. The red dot represents

the average performance of the MinDist method over all samples con-

sidering the optimal cutoff for each sample. The green dots represent the

performance of TripletSVM on each sample, whereas the green diamond

refers to its average performance
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biological roles. This illustrates the often ignored distinction
between having an adequate secondary structure and actually
being transcribed and processed.

A straightforward way to address the need to assess the tran-
scriptional potential of the candidates is the observation that
many fall within regions that have been annotated. Genomic

locations with no annotation or which have been annotated as
introns may contain miRNA precursors, but candidates that
overlap regions annotated as exons, transposons or other

non-coding RNAs are less likely to contain pre-miRNAs. If we
filter out non-viable candidates by this criterion, our candidate
set is reduced to 44 210 for A.gambiae and 40 582 for

D.melanogaster.
If we additionally restrict our search to putative miRNA clus-

ter members, which are very common genomic organizations of

miRNA precursors in metazoans, we can lower the number of
candidates by considering only those which are found in the
vicinity of known pre-miRNAs. The price to pay for this reduc-

tion is that we risk missing yet unidentified miRNAs that happen
to occur in genomic locations far from previously identified pre-

cursors, or which are not part of a miRNA cluster. By selecting
candidates with viable annotation and at a genomic distance not
greater than 50 kb [as suggested in Baskerville and Bartel (2005)]

from pre-miRNAs, we reduce our candidate set to 439 for
A.gambiae and 1604 for D.melanogaster.
After having determined, for each dataset, the reduced list

of candidates, a more detailed analysis was performed for two
different approaches, both using LocARNA as a method to per-
form structural hierarchical clustering of our candidates along

with the annotated precursors. Unlike before, we do not use a
parameterized partition rule to enumerate our clusters at differ-
ent k-levels. Instead, we use criteria aimed at identifying miRNA

genomic clusters. The first approach consists in identifying, start-
ing from the leaves of the similarity tree, the smallest structural
clusters that include at least one known precursor, and within

these clusters we enumerate all subsets of stem-loops that are
located in close genomic proximity to each of the precursors in
the structural cluster. This way we can identify the candidates

which are both structurally similar and occurring close to each

given precursor in the genome. The second approach drops the
requirement that a known precursor be present and simply iden-
tifies leaves in the LocARNA similarity tree, extracting the

top-scoring clusters in terms of SCI (Washietl et al., 2005)
(Structure Conservation Index). Additionally, we enumerate all
subsets of stem-loops that are in close genomic proximity to each

other, regardless of whether a known pre-miRNA is present.
This way we try to identify candidates which are both similar
and in the vicinity of one another. Subsets of stem-loops identi-

fied in the second approach which happen to be included in the
output of the first approach are discarded.
The first approach identifies 108 and 422 candidates in the

extracted clusters from A.gambiae and D.melanogaster, respect-
ively, of which 5 and 11 were in the genomic vicinity of the
precursors included in their respective clusters. A total of 9 and

23 potential genomic clusters of pre-miRNAs (not to be confused
with structural clusters) corresponding to the relevant subsets of

stem-loops of each structural cluster were identified using this
approach for A.gambiae and D.melanogaster. Respectively, 4 and
13 were composed entirely of known pre-miRNAs at a median

distance of 3327 and 237.5 bp while 5 and 10 contained precursor
candidates at a median distance of 12 424 and 22 820 bp (see
Supplementary Materials for the list of most promising cluster

candidates). The genomic clusters exclusively made up of precur-
sors, as the one shown in Figure 3(a), attest the ability of our
method to identify structurally homogenous pre-miRNA gen-

omic clusters while the clusters which include new candidates,
as seen in Figure 3(b), may indicate new instances of this type of
genomic organization and plausible miRNA precursors.

The second approach, which purports to identify potential
genomic clusters where all members are non-annotated is, nat-
urally, limited to those candidates which happen to be included

in the initial set and are therefore close to known precursors
in the genome, but which are structurally more similar to each
other than to any pre-miRNA. This approach identified 481 and

1618 candidates in the extracted structural clusters for A.gambiae
and D.melanogaster, respectively, of which 81 and 147 were
not more than 50 kb away from another stem-loop in the same

structural cluster. The potential genomic clusters identified for

Table 2. Sensitivity (TPR), Specificity (1�FPR) and the F1 measure 2 TP=ðTPþFPÞ�TPR
TP=ðTPþFPÞþTPR

� �
of TripletSVM and MinDist computed as the average

performance across all samples for training sets whose positive examples consist of a fraction of known pre-miRNAs in Anopheles gambiae and

Drosophila melanogaster

% known A.gambiae D.melanogaster

MinDist TripletSVM MinDist TripletSVM

Sensitivity Specificity F1 Sensitivity Specificity F1 Sensitivity Specificity F1 Sensitivity Specificity F1

5 0.72 0.68 0.71 0.63 0.57 0.61 0.70 0.71 0.70 0.69 0.74 0.71

10 0.72 0.68 0.71 0.64 0.73 0.67 0.70 0.72 0.71 0.70 0.80 0.74

20 0.71 0.71 0.71 0.67 0.69 0.68 0.70 0.73 0.71 0.71 0.83 0.76

50 0.71 0.74 0.72 0.66 0.76 0.69 0.72 0.75 0.73 0.70 0.86 0.76

80 0.70 0.80 0.74 0.64 0.78 0.69 0.75 0.75 0.75 0.69 0.86 0.75

90 0.74 0.82 0.77 0.63 0.78 0.68 0.77 0.78 0.77 0.68 0.87 0.75

95 0.83 0.79 0.81 0.64 0.78 0.69 0.79 0.81 0.80 0.68 0.87 0.75
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this approach total 7 and 65 at a median distance of 17880 and
12 797 bp, respectively for A.gambiae and D.melanogaster.
Interestingly, there are several instances of identical or highly

similar candidates in both datasets that make up genomic clus-
ters. Some of these clusters (Supplementary Materials) have up
to three identical candidate members and are evenly spaced

across the genome. They are either the result of a duplication
event (more specifically, triplication) or they correspond to

instances of long repeats, transposons or other repeat sequences.
In any case, the fact that they were selected based on their struc-
tural similarity to known pre-miRNAs hints at the closeness

of these structures and supports the much discussed possibility
that repetitive sequences may serve as a dormant repository of
stem-loops which could be co-opted as pre-miRNAs (Smalheiser

and Torvik, 2005).

4 CONCLUSION

We have presented a method to assess the sequence/structure

similarity of a large dataset of hairpins in search for novel
pre-miRNAs, and we have placed these candidates in a multidi-
mensional space in a way that reflects their structural character-

istics. The portion of the multidimensional space selected around

the known pre-miRNAs purports to include most structures
which have the potential of being efficiently recognized by the
cellular miRNA-processing machinery.

The fact that this region is very dense in terms of the number
of precursor candidates it contains, tells us that a large number
of genome locations have the potential to generate stable and

robust structures which present sequence/structure similarities to
known pre-miRNAs. The use of annotation information helps
reducing the number of selected candidates but after this filtering

step, which is nevertheless dependent on the quality and breadth
of the available annotation data, they remain in the tens of thou-
sands. Therefore, there is either an exceedingly large number of

pre-miRNAs in these datasets or, more plausibly, most of these
candidates are not efficiently transcribed but could otherwise be
recognized as miRNA precursors.

The initial set of candidates extracted from the genomes of
A.gambiae and D.melanogaster and described in Mendes et al.
(2010) consisted of 2 245 014 and 1 316 305 candidates, respect-

ively. The total number of candidates, after applying stability
and robustness measures described in earlier work and the struc-
tural analysis along with the annotation filtering detailed in this

article, is reduced by two orders of magnitude to 44210 and
40 582.
Unlike many machine learning approaches to the identifica-

tion of miRNA precursors that use features of the sequence and
secondary structure to provide a classifier, our approach does
not need to postulate a set of negative examples. In fact, we

contend that if the purpose is to characterize the structures
which have the potential of being recognized by the enzymes
involved in miRNA maturation, one needs to reduce one’s

dependence on the positive set as well, because it will most
likely not be representative—it suffices to observe that the set
of recognizable structures is surely larger than the set of all the

pre-miRNAs contained in the genome and that these two sets are
subject to different evolutionary constraints. In our work, infor-
mation about known precursors is used merely to pinpoint a

region of interest in our multidimensional representation of se-
quence/structure features. Admittedly, this approach is not guar-
anteed to identify the entire portion of the feature space where

structures recognizable by the miRNA-processing machinery are
located, because such a subspace is surely much larger than the
examples that could ever be instantiated in any genome.

However, our method outperforms a machine learning approach
based on a SVM in one dataset and has comparable performance
with the other, for larger training sets. For sample groups with a

greater number of positive examples it outperforms the machine
learning method in both datasets.
One can further limit the candidates to those occurring in the

genomic vicinity of known precursors and which could, there-
fore, be part of miRNA clusters together with pre-documented
pre-miRNAs. This approach produces a greatly reduced set of

candidates (439 for A.gambiae, and 1604 for D.melanogaster),
even using a very liberal definition of miRNA cluster. This sig-
nificant reduction of the number of candidates, albeit at the

expense of the ability to identify novel miRNAs located else-
where in the genome, elicits both the possibility of experimental
validation and further detailed computational analyses. To

this effect, it was possible to identify several plausible miRNA
clusters with structurally similar stem-loops by performing

(a)

(b)

Fig. 3. Genomic clusters of pre-miRNAs. Shown are the secondary

structure of both stem-loops, the consensus structure along with the

SCI (structure conservation index) and the MPI (mean pairwise

identity), the LocARNA alignment and a representation of their genomic

loci
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conventional structural clustering over this reduced set, along
with an analysis of their genomic disposition.
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