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Abstract

Summary: SHAPE experiments are used to probe the structure of RNA molecules. We present

ShaKer to predict SHAPE data for RNA using a graph-kernel-based machine learning approach that

is trained on experimental SHAPE information. While other available methods require a manually

curated reference structure, ShaKer predicts reactivity data based on sequence input only and by

sampling the ensemble of possible structures. Thus, ShaKer is well placed to enable experiment-

driven, transcriptome-wide SHAPE data prediction to enable the study of RNA structuredness and

to improve RNA structure and RNA–RNA interaction prediction. For performance evaluation, we

use accuracy and accessibility comparing to experimental SHAPE data and competing methods.

We can show that Shaker outperforms its competitors and is able to predict high quality SHAPE

annotations even when no reference structure is provided.

Availability and implementation: ShaKer is freely available at https://github.com/BackofenLab/

ShaKer.

Contact: backofen@informatik.uni-freiburg.de

1 Introduction

Secondary structure plays an important role for the function of

RNA molecules. The conservation of secondary structure is a central

feature to determine classes of non-coding RNAs consisting of mole-

cules that have similar structure and function (Bateman et al., 2017;

Miladi et al., 2017; Will et al., 2007). In contrast, the importance of

structure for mRNA function is less well understood. While there

are well-known examples for structured RNA elements in the 5’ and

3’ untranslated regions with regulatory roles, the situation is more

complex for the coding region. Albeit ribosomes show helicase activ-

ity, and thus active translation leads to transient unfolding of the

mRNA structure, there is evidence for a regulatory role of mRNA

structure (Rice et al., 2018).

For that reason, it would be advantageous to know the structure

of (m)RNA on a genome-wide level to study such effects. SHAPE-

seq (SHAPE¼Selective 20-hydroxyl acylation analyzed by primer

extension) experiments offer an approach to investigate mRNA

structure on such a large scale (Choudhary et al., 2017; Katrina and

Alain, 2017; Rouskin et al., 2014; Zubradt et al., 2017). In such an

experiment, free nucleotides of a (folded) RNA are exposed to an

acylation process that stops the polymerase in the subsequent

sequencing step. Based on that, a reactivity estimation is calculated

for each nucleotide. This SHAPE data encode the ‘structuredness’ of

the molecule. There are similar experimental methods to SHAPE.

One of them is DMS (Russell et al., 2007) which uses dimethyl sul-

fate to experimentally probe the accessibility of cytosine and adenine

only.

While SHAPE experiments showed that mRNA is frequently

structured, they often lacked quantitative precision and coverage to

determine mRNA structure on an individual gene level. An excep-

tion is a recent work by Mustoe and co-workers (Mustoe et al.,

2018), who showed translational efficiency is correlated with

mRNA structure. Thus so far there is a lack of suitable experimental

data, which calls for computational methods to model the missing

RNA structure information. Thermodynamic approaches like Mfold

(Zuker, 2003) or RNAfold (Lorenz et al., 2011), while successful

for short RNAs, have problems in modeling the structure of longer

RNAs and especially for mRNAs. Local approaches (Hofacker

et al., 2006; Lange et al., 2012) do improve this situation, however,

mRNA structure is still very challenging for thermodynamic

approaches. In order not to do SHAPE experiment for each RNA, a

couple of computational methods were developed to approximate

SHAPE information. Sükösd et al. (2013) estimated probability
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distribution functions for the nucleotides in unpaired, stacked and

helix-end regions based on the experimental SHAPE data on two

long ribosomal RNAs in the mentioned regions. Another method

(Montaseri et al., 2017) is based on k-mers of RNA sequence on

helices, loops and the helices that comprise pseudoknot regions as

their SHAPE are obtained as the average of available SHAPE data

on RNAs in the above regions. In these methods, the real structure

of an RNA (or a respective prediction using a thermodynamic

model) is required to decompose the given sequence into the men-

tioned regions and subsequently estimate its SHAPE data.

To the authors’ knowledge, there exists no method to learn and

predict SHAPE data on RNA sequences without known structures.

For that reason, we set out to predict an RNA’s SHAPE information

from its sequence only, using a machine learning approach. We pre-

sent a new tool called ShaKer, ‘SHAPE prediction using graph

Kernel’, which is trained on available experimental SHAPE data to

approximate SHAPE experiments in silico. In transcriptome-wide

high-throughput studies, for instance, reactivities cannot be

obtained if the RNA is not (highly) expressed/transcribed within the

cell. For such cases, ShaKer can be trained on other expressed RNAs

and used to predict missing data. Furthermore, such in silico SHAPE

data might also be useful to improve the prediction of intra-

molecular structure (Hajdin et al., 2013; Montaseri et al., 2016) as

well as RNA–RNA interaction (Miladi et al., 2019).

To evaluate ShaKer’s performance, we compare its predicted

SHAPE information to experimental data and to results from purely

thermodynamic modeling when no reference structure is available.

ShaKer outperforms the unguided thermodynamic predictions both

in terms of accessibility as well as base-pair accuracy. These results

suggest that the thermodynamic model may not be sufficient to re-

flect all the relevant energy terms for the identification of RNA’s

functional structure. Furthermore, we compare ShaKer with the ap-

proach from Sükösd et al. for given reference structures. Also here,

ShaKer shows superior results in both categories. This demonstrates

that ShaKer is able to model highly accurate SHAPE information

and is well placed to support RNA structure studies with missing in-

formation. Since we learn ShaKer’s model from experimental data,

the steady growth of available SHAPE experiments will further im-

prove its prediction accuracy.

2 Materials and methods

2.1 Definitions
An RNA sequence is a word over the alphabet of nucleotides {A, C,

G, U}. Here, we consider the base pairings AU, CG and GU as com-

plementary. An RNA secondary structure S is a list of pairs of indi-

ces that indicate complementary base pairs in the RNA sequence.

Each nucleotide can only participate in one base pairing. W.l.o.g.,

we restrict the base pairs of S to be non-crossing, i.e. there are no

two base pairs (i, j), ði0; j0Þ 2 S such that one is not enclosed by the

other ði < i0 < j < j0Þ. The free energy E(S) of such a secondary

structure S can be estimated using the Nearest Neighbor model and

experimentally derived parameters (Turner and Mathews, 2010). A

reference structure is a structure that was manually curated based

on literature. RNA’s SHAPE data are a vector of non-negative real

numbers, which assigns to each nucleotide position the respective re-

activity estimate.

2.2 Graph processing
In order to encode RNA secondary structure for our machine learn-

ing approach, we encode them as labeled graphs. A graph consists of

edges (E) and vertices (V) and their labels. The RNA-graph is gener-

ated as follows. First, we use the sequence to generate a path graph,

where the vertices are labeled according to the nucleotides in the se-

quence. The edges of the path graph are labeled as ribose-phosphate

backbone. Second, we encode the structure by introducing edges be-

tween the vertices that correspond to a base pair and label them as

hydrogen bond.

Graph kernels, typically used to calculate the distance between

graphs, enable graphs to be used with kernelized machine learning

methods like support vector machines. The Neighborhood Subgraph

Pairwise Distance Kernel (NSPDK) of the ‘EDeN’ package (Costa

and Grave, 2010) allows us to extract feature vectors for every node

in a graph. NSPDK is a Weisfeiler–Lehman kernel (Leeuwen, 2011),

except that it does not only consider the immediate neighborhood of

a vertex but considers pairs of neighborhoods of vertices in close

proximity. The neighborhood of a vertex is the subgraph that is

induced by all vertices that are within a certain number of edges.

The NSPDK graph kernel has two main parameters r for the radius

of the neighborhood subgraphs and distance d for the maximum dis-

tance between neighborhood subgraphs. For a given node v, the fol-

lowing features are extracted

h hgðNsðvÞÞ;hgðNsðwÞÞÞ
� �� s 2 f0::rg ^w 2 V

^ distanceðv;wÞ � d

� �
:

Where h is a hash function, hg a hash function on graphs and Ns

extracts the neighborhood subgraph of a vertex. The size of the

resulting vector depends on the bit-length of the hash function h,

resulting in a feature vector of size 2bit�length.

2.3 RNA structure and probability estimation
For predicting SHAPE reactivities, we rely both on experimental

SHAPE training data as well as secondary structure. In our context

it is adequate to work with the structures that are most likely to

occur in the thermodynamic model. Conveniently, the ViennaRNA

package (Lorenz et al., 2011) provides tools for secondary structure

prediction under minimization of the free energy of a given sequence

using the nearest neighbor energy models. We use RNAfold to calcu-

late free energy EM of the structure ensemble M and RNAsubopt to

sample structures S from M according to their Boltzmann probabil-

ity. The latter is given by PðSÞ ¼ expð�EðSÞ=RTÞ=Z, where T

denotes the temperature, R the gas constant and Z the ensemble’s

partition function computed by �RT logðEMÞ.

2.4 Regression model
Model training. Gradient tree boosting (Chen and Guestrin, 2016) is

an ensemble-based machine learning method that improves on ran-

dom forest by taking previously trained trees in account. We use a

regressor based on this method and train it on experimental SHAPE

reactivity values and the feature vectors obtained by vectorizing the

vertices of the reference structure induced RNA-graph with the

EDeN graph kernel to predict SHAPE values. For each vertex there

is exactly one feature vector. See Figure 1 for an overview of this

process. In practice, SHAPE annotations can be unavailable for indi-

vidual positions. Whenever the reactivity annotation for a nucleo-

tide is missing, that vertex is ignored for training.

Reactivity prediction. Figure 2 shows how we use these tools to

estimate SHAPE data for a given sequence of length n. The m struc-

tures and the associated probabilities are sampled as described previ-

ously. We call the unit norm of the probabilities p. From the

sequence and the structures we generate m RNA-graphs whose verti-

ces are vectorized by the graph kernel. Using the trained model,
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SHAPE reactivities are predicted. Since every nucleotide in the se-

quence has now m predictions, one corresponding to each RNA

structure graph, we compute a weighted average of the reactivities

with the probability vector of the sampled structures. This is done

by multiplying the n � m matrix of predictions by vector p.

Eventually, we are thereby combining the standard thermo-

dynamic model (used for structure sampling and probability compu-

tation) with our model trained on experimental SHAPE data. The

resulting combined reactivities are thus not biased toward a single

(arbitrary) user-provided structure [as done in Sükösd et al. (2013)

and Montaseri et al. (2017)] but are guided by the structural ensem-

ble that can be formed by the sequence.

2.5 Hyperparameter optimization
For EDeN we tested parameters r and d in the range of 0.4. We

used 16-fold cross-validation on the 16 sequences with a random

forest regressor and compared the Spearman’s correlation with

the experimental data to determine the best configuration. The de-

fault values, 3 and 3, performed best. For the regressor, we gener-

ated RNA-graphs from all 16 sequences and vectorized all

vertices to obtain a joint dataset. Random search with 3-fold

cross-validation was performed to obtain our final parameters.

Optimal parameters for RNAsubopt were inspired by Deforges

et al. (2017). Namely we sample 60 structures with a maximum

base-pair range of 150.

2.6 Software and data
ShaKer is implemented in Python and freely available at github.

ShaKer depends on several libraries e.g. NetworkX (Daniel et al.,

2008), Matplotlib (Hunter, 2007) and Scikit-learn (Pedregosa et al.,

2011).

All data used in this work are made available in an accessible for-

mat in our ShaKer github repository. The input is in a single ‘.dbn’

file which is a FASTA file where each sequence is followed by a dot-

bracket-string line and a ‘.react’ file that contains a sequence name

header followed by pairs of nucleotide position and SHAPE reactiv-

ity value.

3 Results

Our ShaKer method predicts SHAPE reactivities for any RNA se-

quence employing a regression model. The model is based on a

graph-kernel encoding secondary structure and is trained on a data-

set of RNA sequences with experimentally determined SHAPE reac-

tivities. The main advantage compared to previous approaches is

that it does not require a reference structure for the prediction step,

which implies that it can be used on RNA with unknown structure.

We tested ShaKer by analyzing the publicly available SHAPE

(Deigan et al., 2009; Hajdin et al., 2013; Montaseri et al., 2017)

dataset to evaluate the quality of SHAPE reactivity prediction for

RNAs with unknown reference structure. Furthermore, we also

compared ShaKer to the Sükösd et al. method (Sükösd et al., 2013)

and to the thermodynamics-based predictions by RNAfold. The

method by Sükösd et al. uses the reference structure and annotates

the strength of reactivity using different precalculated probabilistic

models for bound and unbound nucleotides. We use the median per-

formance of five runs on the Sükösd et al. method. Our method does

not require a reference structure to predict the reactivity profile.

However, the prediction quality is necessarily better when using a

reference structure as prior information. For that reason, when com-

paring to Sükösd et al., we provide only the RNA-graph induced by

the reference structure to guarantee a fair comparison. The method

of Sükösd et al. was derived from SHAPE data of ribosomal RNA;

we use the ribosomal RNA in our dataset for training and the rest

for testing.

Fig. 1. Schema of the training process. The input data are triplets of sequence, a reference structure and SHAPE reactivity values for the nucleotides in the se-

quence. We combine the sequence and the structure to form an RNA-graph. Each vertex in the graph is vectorized such that there is one vector per vertex. The

vectors are the input and the associated reactivity values the targets for the regressor to train on

Fig. 2. SHAPE reactivity prediction. (left) For a given sequence, possible struc-

tures are sampled. Respective Boltzmann probabilities form the unit probabil-

ity vector p which has as many entries as there were structures sampled.

(middle) RNA-graphs of the structures are vectorized and we use the model

to predict a SHAPE (S) value for each nucleotide (n_x). We stack the predic-

tions for each graph column wise. (right) We obtain as many predictions for

every nucleotide in the sequence as there are sampled structures. We weight

these by the probabilities of the structure to obtain the final prediction i.e. we

multiply the matrix of predictions with p
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3.1 Accessibility correlation
SHAPE reactivities are a proxy for accessibility of nucleotides.

Although it is feasible to directly compare the reactivity vectors of

the experimental and predicted SHAPE reactivities, it is more desir-

able to compare the resulting accessibility profiles as they are direct-

ly interpretable. This evaluation is also more reliable than a direct

comparison of SHAPE profiles due to the stochastic nature of the

structure probing experiments and experiment-specific biases. To

make the evaluations comparable between SHAPE values obtained

from separate experiments with different conditions, we chose to

compare the performances over the SHAPE-assisted accessibility

predictions.

Accessibility, also termed unpaired probability, calculates the

probability that sequence nucleotides are unpaired across the ensem-

ble of possible structure formations. The accessibility for a given

RNA sequence can be predicted using RNAplfold (Lorenz et al.,

2016). RNAplfold has two modes for predicting accessibility. The

first mode is relying purely on the thermodynamic model for RNA

secondary structure. In the second mode, SHAPE data are used as an

additional input to assist the prediction of accessibility. Technically,

this is solved by transforming SHAPE data into pseudo-energy terms

that are used in the evaluation of secondary structures (Deigan

et al., 2009; Zarringhalam et al., 2012). The second mode is prefer-

able as accessibility induced by experimental SHAPE data is our best

estimation of the true accessibility and thus considered as the ground

truth.

We evaluated how simulated SHAPE data improves the predic-

tion of accessibility compared to the pure thermodynamic model.

To compare the accessibility of a transcript, we calculate the

accessibility profiles using different prediction methods and compare

these profiles to the profile generated from SHAPE data using

RNAplfold which uses the SHAPE-assisted mode as ground truth.

The prediction performance is then assessed using Spearman’s rank

correlations against the ground truth. We also report the standard

deviation after a ‘6’. The mean can be found before this symbol and

marked with a white circle in the figures. As shown in Figure 3, the

prediction results by our ShaKer tool induce a better average correl-

ation to the ground truth (0.895 6 0.18) compared to Sükösd et al.

(0.87 6 0.17) even in the case of a known structure.

Since the accessibility is the probability of a position to be un-

paired, it is a quantity that is related to the ensemble of all struc-

tures. Nevertheless, the reference structure usually has a high weight

in the structure ensemble and should dominate accessibility values.

To test this role of the reference structure as prior information, one

can read off reactivities directly from the reference structure by

assigning 1 to an unpaired nucleotide and 0 otherwise. In this case

one does not need to consider the scale as RNAplfold will normalize

the values. We call this the trivial binary predictor. It scores slightly

worse than Sükösd et al. (0.86 6 0.19), which shows that a given

reference structure already provides a strong prior information.

For that reason, we compared the prediction quality for the

more realistic case where the reference structure is not given. When

the reference structure is not provided to the algorithm, we can only

compare to the thermodynamic model since we already used the ex-

perimental SHAPE data to compute the reference accessibility and

we are not aware of alternative tools. Here, we get an improvement

of 2.6% (0.861 6 0.17 versus 0.839 6 0.16). This might seem like a

small amount, but the folding process also takes into account the se-

quence, limiting the effect of the SHAPE data on the correlation.

3.2 Base-pair accuracy
One application for SHAPE data is the determination of functionally

relevant secondary structure. Providing a folding algorithm with ac-

curate SHAPE data should guide the prediction tool toward the

manually curated reference structure. One could use the predicted

minimum free energy structure for comparison, however, this would

ignore predicted suboptimal structures in the vicinity of the refer-

ence structures. Thus, in order to compare a reference structure to a

predicted structure ensemble, Lange et al. (Lange et al., 2012) intro-

duced a measure similar to the maximum expected accuracy scoring

for structure prediction. Here, the accuracy A of a reference struc-

ture in a predicted ensemble of structures is the sum of all probabil-

ities for the base pairs of the reference structure:

AðSljRÞ ¼
X

S

jSl \ Sj � PðSjRÞ ¼
X
ði;jÞ2Sl

pði; jÞ

We calculate the probability of a base pair (i, j) under SHAPE in-

put with the Vienna tool set (Lorenz et al., 2011) and report the

average to account for varying sequence length.

In Figure 4, we see the evaluations according to the base-pair ac-

curacy metric. When the reference structure is provided to the pro-

grams ShaKer (0.892 6 0.096) performs slightly (1.9%) better than

Sükösd et al. (0.875 6 0.113). Our simulation when the reference

structure is not available scores a mean accuracy of 0.679 6 0.26

while the thermodynamic model alone performs lower with

0.629 6 0.21. This is significant because it shows that you can use

ShaKer to find potentially biologically relevant structures. Since we

did not need to resort to using the wet lab data as ground truth, we

included it in the evaluation. With 0.73 6 0.29 it scores better than

ShaKer.

Fig. 3. Correlation of accessibility profiles by RNAplfold using predicted

SHAPE reactivities compared to the accessibility profile generated from ex-

perimental SHAPE data. The first three prediction methods are using a manu-

ally curated reference structure. Because of this prior information, all

prediction tools result in a high correlation to the profile generated from ex-

perimental SHAPE data. The final two plots evaluate the situation for the

more realistic application scenario where no reference structure is given. In

this case, only ShaKer without structure and RNAplfold without SHAPE data

can be compared. The predicted SHAPE data by ShaKer leads to an improved

result compared to the pure thermodynamic prediction (mean 0.86160.17

versus 0.83960.16)
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3.3 Structured versus unstructured
The benefits of our method are that we work on structured data and

perform structure sampling while Sükösd et al. annotates based on

single nucleotides. K-mer approaches are popular in bioinformatics

and have a wide array of applications. One could see a k-mer ap-

proach as a combination of ShaKer and Sükösd et al. It could learn a

sequence bias and quickly annotate sequences without requiring the

reference structure.

By supplying ShaKer with path graphs only when training and

predicting, we effectively mimic a gapped k-mer algorithm.

Intuitively, choosing a vertex in a sequence path graph and its neigh-

bors at distance 1 is effectively the same as selecting a 3-mer from

the sequence. Figure 5 shows the performance of ShaKer in this con-

figuration. Structured ShaKer (0.85 6 0.15) clearly outperforms the

unstructured version (0.74 6 0.24).

4 Discussion

Structure prediction for mRNAs has a limited quality as the tran-

script is often bound by RNA-binding proteins in vivo. Here,

SHAPE-seq experiments offer an approach to investigate mRNA

structure on such a large scale. The collected SHAPE reactivities can

be used to guide the structure prediction toward the functional

structure. However, SHAPE-seq data are limited and will not be

available for many organisms or tissues. One way to overcome this

problem is to use predicted SHAPE reactivities learned from

SHAPE-seq data instead of experimental ones.

We presented ShaKer to predict SHAPE reactivity on arbitrary

RNA sequences. In comparison to existing methods as e.g. Sükösd

et al. (Sükösd et al., 2013), we do not rely on a manually curated

secondary structure for the input RNA. Thus, it can be applied to a

large class of RNA sequences with unknown structures. Our ShaKer

method learns the association of secondary structure elements and

reactivity in a regression approach using a graph kernel to represent

secondary structures. To abstract from individual structures, we

sample the possible structure space and weight the considered struc-

tures with respective Boltzmann probabilities.

For the comparison of the ShaKer method with other tools, we

did not compare SHAPE profiles directly but relied on biologically

more relevant information for the comparison, namely the accessi-

bility profiles and the base-pair accuracy of the reference structure

within the SHAPE-guided predicted structure ensemble. SHAPE

reactivities are considered a proxy for the accessibility of positions,

which is important information as it provides e.g. hints for binding

sites of RNA-binding proteins.

We compared ShaKer with the tool presented by Sükösd et al.

(Sükösd et al., 2013) as it established a state-of-the-art SHAPE pre-

diction tool. The latter requires a single input structure. Thus we

also only use the reference structure for ShaKer predictions. That

way, we compare the predictive power of the learned models. Albeit

the secondary structure as prior information already provides a lot

of information about accessibility, we were able to improve the al-

ready good results by Sükösd et al. by 2.9%.

Our ShaKer approach is, in contrast to Sükösd et al., per se able

to predict SHAPE reactivities in the absence of prior information

about the structure. This is done by applying our model (trained on

experimental SHAPE data) to a sampled set of secondary structures

for the given sequence weighted by respective structure probabilities.

We show that this approach provides a much better accessibility pre-

diction compared to the pure thermodynamic accessibility profiles

as calculated by RNAplfold (þ2.6%). The improvement is even

more visible when comparing the base-pair accuracy for known ref-

erence structures when using RNAplfold with or without ShaKer-

predicted SHAPE reactivities (þ7.9%). This shows that constraints

implied by the ShaKer-predicted reactivities guide structure predic-

tion toward the functional secondary structure. This results from the

conversion of the reactivity data into pseudo-energy terms that are

Fig. 4. Comparison of base-pair accuracy. Accuracy is the average probability

of all base pairs in a single structure over the whole ensemble of possible

structures. This structure is the reference structure in this case. We expect

good SHAPE data to support the reference structure. In this test ShaKer per-

forms significantly better than the thermodynamic model alone. The experi-

mental data outperform both, which is a testament to its quality. Given the

reference structure Sükösd et al. and ShaKer perform even better than

SHAPE data which is not surprising since we evaluated for exactly that refer-

ence structure. ShaKer performs slightly better than Sükösd et al.

Fig. 5. Comparison of ShaKer using structures i.e. RNA-graphs as described

earlier and ShaKer using sequence data only. For the unstructured mode, we

trained ShaKer on the RNA-graphs but omitted the hydrogen bond edges.

Subsequently when predicting, we only predicted on the sequence graph

without structure sampling. This effectively mimics gapped k-mers, a popular

technique in bioinformatics
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extending the thermodynamic model for structure prediction

(Lorenz et al., 2016). Thus we conclude that the high-level structure

information learned by ShaKer from experimental SHAPE data (in

combination with structural ensemble information) implicitly mends

the underlying energy model to reflect more complex rules for

improved secondary structure prediction.

Next, we will investigate the impact of ShaKer reactivities on

sRNA target prediction using IntaRNA (Mann et al., 2017), which

is able to incorporate SHAPE structure probing data into RNA–

RNA interaction prediction (Miladi et al., 2019).

Finally, ShaKer could be trained on SHAPE experiments under

different experimental conditions (such as in vivo or cell-free), and

thus can also investigate the effects of these different conditions on

other RNAs with unknown SHAPE reactivities.
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