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Abstract. Chemical reactions consist of a rearrangement of bonds so
that each atom in an educt molecule appears again in a specific position
of a reaction product. In general this bijection between educt and product
atoms is not reported by chemical reaction databases, leaving the Atom
Mapping Problem as an important computational task for many practical
applications in computational chemistry and systems biology. Elemen-
tary chemical reactions feature a cyclic imaginary transition state (ITS)
that imposes additional restrictions on the bijection between educt and
product atoms that are not taken into account by previous approaches.
We demonstrate that Constraint Programming is well-suited to solving
the Atom Mapping Problem in this setting. The performance of our ap-
proach is evaluated for a subset of chemical reactions from the KEGG
database featuring various ITS cycle layouts and reaction mechanisms.

1 Introduction

A chemical reaction describes the transformation of a set of educt molecules
into a set of products. In this process, chemical bonds are re-arranged, while
the atom types remain unchanged. Thus, there is a one-to-one correspondence,
the so-called atom map (or atom-atom mapping), between atoms in educts and
products. Atom maps convey the complete information necessary to disentangle
the mechanism, i.e. the bond re-arrangement, of a chemical reaction via the
identification of bonds that differ in educt and product molecules. The changing
parts of the molecules are described by a so called intermediate transition state
(ITS) [17, 24] that allows, for instance, a classification of chemical reactions [31,
33, 45]. Atom maps are a necessary requisite for computational studies of an
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Fig. 1. Example of a Diels-Alder reaction. The imaginary transition state (ITS) is an
alternating cycle defined by the bonds that are broken (in red) and the bonds that are
newly formed.

organisms metabolism. For instance, the allow for consistency checks within
metabolic pathway analyses [3] and play a role in the global analysis of metabolic
networks [7, 26]. Practical applications include, for example, the tracing or design
of the metabolic break down of a candidate drug, which constitutes an important
issue in in drug design studies [39].

For chemical reactions only the product and educt molecules are directly ob-
servable. The atom map therefore often remains unknown and has to be inferred
from partial knowledge. Experimental evidence may be available from isotope la-
beling experiments. Here, special isotopes, i.e. atoms with special variations, are
introduced into educt molecules that can then be identified in product molecules
by means of spectroscopy techniques [44]. Such data, however, is not available
for most reactions. The complete experimental determination of an atom map is
in general a complex and tedious endeavor. Reaction databases, such as KEGG,
therefore do not generally supply atom maps. The computational construction
of atom maps is therefore an important practical problem in chemoinformatics.

Several computational approaches for this problem have been developed over
the last three decades (for a recent review see [8]). The Educts and products are
described as two not necessarily connected labeled graphs I and O, respectively.
Vertex labels define atom types, while edge labels indicate bond types. The atom
map is then determined as the solution of a combinatorial optimization problem
resulting in a bijective mapping of all vertices of the educt molecule graph to
corresponding vertices in the product molecule graphs. An illustration is given
in Fig. 1.

The most common formulations are variants of the maximum common sub-
graph (isomorphism) problem [15]. Already the earliest approaches analyzed
the adjacency information within educts and products [14, 34]. The Principle
of Minimal Chemical Distance, which is equivalent to minimizing an edge edit
distance, was invoked in [28], using a branch and bound approach to solve the cor-
responding combinatorial optimization problem. Maximum Common Edge Sub-
graph (MCES) algorithms search for isomorphic subgraphs of the educt/product
graphs with maximum number of edges [13, 22, 23, 33, 40], an NP-hard problem.
Furthermore, the use of specialized energetic [2, 30] or weighting [32] criteria al-
lows for the identification of the static parts of the reaction and, subsequently, of



the atom mapping. A detailed investigation of the MCES from an Integer Linear
Programming (ILP) perspective can be found in [6].

Akutsu [1] showed that the MCES approach fails for certain reactions. As
an alternative, the Maximum Common Induced Subgraph (MCIS) problem was
proposed as a remedy. This problem is also NP complete. Approximation re-
sults can be found in [27]. Algorithms for the MCIS iteratively decompose the
molecules until only isomorphic sub-graphs remain [1, 7, 11, 12]. Recently, an ILP
approach incorporating stereochemistry was presented [16].

Neither the solutions of the MCES nor the MCIS necessarily describe the true
atom map. Indeed, both optimality criteria are artificial and can not be derived
from basic principles of chemical reactions. In fact, it is not hard to construct
counter-examples, i.e., chemical reactions whose true atom maps are neither
identified by MCES nor by MCIS. The re-organization of chemical bonds in a
chemical reaction is far from arbitrary but follows strict rules that are codified
e.g. in the theory of imaginary transition states (ITS) [17, 24]. The ITS encodes
the redistribution of bond electrons that occurs along a chemical reaction. Bond
electrons define the atom-connecting chemical bonds and their according bond
orders. Their redistribution is expressed in terms of the deletion or formation
of bonds as well as changes of in the oxidation state of atoms, the latter result-
ing from non-bound electrons that are freed from or integrated into bonds. The
ITS can be used to cluster, classify, and annotate chemical reactions [17, 24, 25].
These studies revealed, that only a limited number of ITS “layouts” are found
among single step reactions and that these layouts represent a cyclic electron
redistribution pattern usually involving less than 10 atoms [25]. In a most basic
case, an elementary reaction, the broken and newly formed bonds form an alter-
nating cycle (see Fig. 1) covering a limited even number of atoms [18], usually
less than 8 [24]. In the case of homovalent reactions, i.e., those in which the
number of non-bound electron pairs of all atoms (defining their oxidation state)
remains unchanged, this cycle is elementary. That is, the transition state is a
single, connected even cycle, along which bond orders change by ±1 [25]. This
property imposes an additional, strong condition of the atom maps that is not
captured by the optimization approaches outlined in the previous paragraphs.
Here, we explicitly include it into the specification of the combinatorial problem.

A chemically correct atom map is a bijective map between the vertices of the
educt and product graphs such that:

1. The map preserves atom types
2. The total bond orders (including lone electron pairs) are preserved. Each

broken bond thus must be compensated by a newly formed bond or a change
in the oxidation number of an atom.

3. The broken and newly formed bonds constitute a chemically reasonable
imtermediate transition state (ITS) following [25]. In the case of elemen-
tary chemical reactions, the transition state is an alternating cycle.

A formal definition of the combinatorial problem will be given in the following
section. While cyclic transition states are very common, more “complex tran-
sition states” appear in non-elementary reactions, i.e., compositions of elemen-



tary reactions. Furthermore, even in elementary reaction, it is not true that the
shortest ITS cycle is necessarily chemically correct. Empirically, transition states
are most frequently six-membered cycles, while cycles of length 4 or 8 are less
abundant [17–19, 24]. As a consequence, we will consider several variants of the
chemical reaction mapping problem:

1. Decision problem: Is there an atom map with cyclic ITS? Of course one
may restrict the question to ITS cycles of length k.

2. Optimization problem: Find the minimal length k of an ITS cycle that
enables an atom map.

3. Enumeration problem: Find all atom maps with cyclic ITS (of length k).

Given a straightforward encoding of molecular graphs in terms of vertex indices,
atom labels, and adjacency information, the atom mapping problem is naturally
open to be treated as a constraint satisfaction problem with finite integer do-
mains. This approach is particularly appealing when additional information on
the ITS, e.g. its size or atoms involved in the ITS, are known.

2 Constraint Programming Formulation of the Atom
Mapping Problem

We focus on the identification of the cyclic ITS. Once the ITS has been identi-
fied the overall atom mapping is easily derived. We formulate separate constraint
satisfaction problems for different ITS layouts and cycle lengths. A fast graph
matching approach is used subsequently to extend each ITS to a global atom
mapping. In this section we follow closely [36]. We first formally define the prob-
lem, which is followed by a description of our constraint programming approach
for identifying the cyclic ITS. Finally we discuss how to extend an ITS candidate
to a complete atom mapping for the chemical reaction.

2.1 Problem Definition

Both educts and products of a chemical reaction are each represented by a single,
not necessarily connected, undirected graph defined by a set of vertices V and a
set of edges E = { {v, v′} | v, v′ ∈ V }. The educt (input) graph is denoted by I =
(VI , EI) and the product (output) graph by O = (VO, EO). Here, each molecule
corresponds to a connected component. Vertices represent atoms and are labeled
with the respective atom type accessible via the function l(v ∈ VI ∪ VO). The
principle of mass conservation implies |VI | = |VO|, i.e. no atom can dissolve or
appear during a reaction. Edges encode covalent chemical bonds between atoms.
For the CSP formulation we label each edge {x, y} ∈ EI ∪EO with the number
of shared electron pairs, i.e. its bond order: single, double or triple bonds are
represented by a single edge with labels 1, 2, or 3, respectively. Non-bonding
electron pairs of an atom, which define its oxidation state, are represented by
loops labeled with the according number of unbound pairs.



We use an adjacency matrix I to encode the edge labels of the educt graph
(and a corresponding matrix O for the products). The matrix elements Iv,v′

denote the number of shared bond electron pairs for the edge between the atoms
v and v′ in the educt graph I. In practice Iv,v′ ∈ {0, 1, 2, 3}. Non-bonding
electron pairs (loops) are represented by the diagonal entries Iv,v and Ov,v.

Consider a bijective function m : VI → VO mapping the vertices of I onto
the vertices of O and a matrix Q with rows and columns indexed by VI . Then
Q◦m is the matrix with entries Qm(x),m(y), i.e. with rows and columns indexed
by VO. Thus the reaction matrix Rm = O− (I ◦m) is well defined and encodes
the bond electron differences between educt and product.
Definition. An atom mapping is a bijective mapping m : VI → VO such that

1. ∀x∈VI
: l(x) = l(m(x)) (preservation of atom types)

2. Rm−→1 = 0 (preservation of bond electrons)

The reaction matrix Rm encodes the imaginary transition state (ITS) [17, 24].
This definition of m is a slightly more formal version of the Dugundji-Ugi theory
[14]. Our notation emphasizes the central role of the (not necessarily unique)
bijection m. Since we consider I and O as given fixed input, the atom mapping m
uniquely determines Rm. The triple (m, I,O), furthermore, completely defines
the chemical reaction. It therefore makes sense to associate properties of the
chemical reaction directly with the atom map m.

Equivalently, the ITS can be represented as a graph R = (VR, ER) so that
ER consists of the “changing” edges that lose or gain bond electrons during the
reaction, i.e. Iv,v′ 6= Om(v),v(v′) → Rm

v,v′ 6= 0. The set of atom vertices VR ⊆ VO

covers all vertices with at least one adjacent edge in ER. Each edge {v, v′} ∈ ER

is labeled by the electron change Rm
v,v′ 6= 0, i.e. its change in bond order. See

Fig. 2 for an example.

I v1 v2 v3 v4 v5 v6 v7 v8
v1 0 1 0 0 0 0 0 0
v2 1 0 1 2 0 0 0 0
v3 0 1 0 0 2 0 0 0
v4 0 2 0 0 0 0 0 0
v5 0 0 2 0 0 0 0 0
v6 0 0 0 0 0 0 2 1
v7 0 0 0 0 0 2 0 0
v8 0 0 0 0 0 1 0 0

O v′
1 v′

2 v′
3 v′

4 v′
5 v′

6 v′
7 v′

8
v′
1 0 1 0 0 0 0 0 0

v′
2 1 0 2 1 0 0 0 0

v′
3 0 2 0 0 1 0 0 0

v′
4 0 1 0 0 0 1 0 0

v′
5 0 0 1 0 0 0 1 0

v′
6 0 0 0 1 0 0 1 1

v′
7 0 0 0 0 1 1 0 0

v′
8 0 0 0 0 0 1 0 0

Rm v′
1 v′

2 v′
3 v′

4 v′
5 v′

6 v′
7 v′

8
v′
1 0 0 0 0 0 0 0 0

v′
2 0 0 +1 -1 0 0 0 0

v′
3 0 +1 0 0 -1 0 0 0

v′
4 0 -1 0 0 0 +1 0 0

v′
5 0 0 -1 0 0 0 +1 0

v′
6 0 0 0 +1 0 0 -1 0

v′
7 0 0 0 0 +1 -1 0 0

v′
8 0 0 0 0 0 0 0 0

Fig. 2. Adjacency matrices I for the reaction given in Fig. 1. The vertices vi ∈ VI and
v′j ∈ VO are numbered in top-down-left-right order of their appearance in Fig. 1. The
atom mapping m(vi) = v′i defines Rm and thus the ITS graph R covers only vertices
v′2 to v′7 since v′1 and v′8 do not show any bond electron changes.

It is important to note that the existence of an atom mapping m as defined
above does not necessarily imply that Rm is a chemically plausible ITS.

We say that two edges {v, v′}, {v′, v′′} ∈ ER in R are alternating if Rm
v,v′ 6= 0

and Rm
v,v′ +Rm

v′,v′′ = 0. A simple cycle in R of size k > 2 is given by the vertex
sequence (v1, v2, . . . , vk, v1) with vi ∈ VR, {vi, vi+1} ∈ ER, {vk, v1} ∈ ER, and



∀i < j ≤ k : vi 6= vj . Such a simple cycle is called alternating if all successive
edges as well as the cycle closure {v2, v1}, {v1, vk} are alternating.
Definition. An atom map m is homovalent if Rm

v,v = 0 for all v ∈ VR. A
homovalent reaction is elementary if its ITS R is a simple alternating cycle.
Thus Rm

v,v′ ∈ {−1, 0,+1} holds for all elementary homovalent reactions.
In the following we outline a novel algorithm for finding atom maps for a

given ITS graph R that is guaranteed to retrieve all possible mappings given the
educt and product graphs I and O, respectively. To simplify the presentation,
first only elementary homovalent reactions are considered. Generalizations are
discussed in Sec. 3.

2.2 Constraint Programming Approach

The central problem to find an elementary homovalent atom mapping is to iden-
tify the alternating cycle defining the ITS R given the adjacency information
of the educts I and products O. This can be done via solving the Constraint
Satisfaction Problem (CSP) as presented below. Note, due to the alternating
edge condition within the ITS, we have to consider cycles with an even number
of atoms only. In practice, the ITS of elementary homovalent reactions involves
|VR| = 4, 6, or 8 atoms [18].

Basic CSP Formulation: In the following, we will present a first basic CSP
for an ITS of size k = |VR| that we already introduced in [36]. It is given by the
triple (X,D,C) defining the set of variables X, according domains Di, and the
set of constraints C to be fulfilled by any solution.

We construct an explicit encoding of the ITS atom mapping using k variables
representing the cycle in I and another set for the mapped vertices in O, i.e.,
X = {XI

1 , . . . , X
I
k} ∪ {XO

1 , . . . , XO
k } with domains DI

i = VI and DO
i = VO.

Note, we do not directly encode the overall atom mapping problem but the
identification of the two ITS subgraphs in the educts and products. Given this
information, the overall atom mapping is easily identified as explained later.

To find a bijective mapping we have to ensure ∀i 6= j : XI
i 6= XI

j and ∀i 6= j :

XO
i 6= XO

j , i.e., a distinct assignment of all variables. To enforce atom label

preservation we need arc consistency for l(XI
i ) = l(XO

i ), i.e. we have to enforce
∀e ∈ DI

i : ∃p ∈ DO
i : l(e) = l(p) as well as ∀p ∈ DO

i : ∃e ∈ DI
i : l(p) = l(e).

Analogously, homovalence is represented by (IXI
i ,X

I
i
−OXO

i ,XO
i

) = 0. Due to the
alternating bond condition, each atom can lose or gain at most one edge during
a reaction. Thus, we can further constrain the variables with |degree(XI

i ) −
degree(XO

i )| ≤ 1; where degree(v) gives the out-degree of vertex v.
Finally, we have to encode the alternating cycle structure of the ITS in the

mapping, i.e., for the sequence of bonds with indices 1-2-..-k-1. For all index pairs
within the cycle (i, j) we therefore require pairs with even index i to correspond
the formation of a bond, i.e., we enforce (OXO

i ,XO
j
− IXI

i ,X
I
j
) = 1, while all odd

indices i are bond breaking (OXO
i ,XO

j
− IXI

i ,X
I
j
) = −1 accordingly.
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Fig. 3. Symmetries resulting from interchangeable hydrogens. The figure presents three
successive atom assignments within an ITS mapping. Bonds present in I are given in
black, bonds to be formed to derive O are dotted and gray. The ITS describes the
loss of an hydrogen for the carbon (bond order decrease) and the bond formation
between the decoupled hydrogen with the oxygen next in the ITS. It becomes clear
that all 4 hydrogens are not distinguishable, which results in 4 possible symmetric ITS
mappings.

The homovalent ITS layout is rotation symmetric in itself (see Fig. 6). To
partially counter this, we introduce order constraints on the input variables:
(∀i > 1 : XI

1 < XI
i ); where Xi < Xj denotes ∃(x, y) ∈ Di ×Dj : x < y us-

ing e.g. an index order on the vertices. This ties the smallest cycle vertex to
the first variable XI

1 and prevents the rotation-symmetric assignments of the
input variables. Note, since we constrain the bond (1, 2) to be a bond breaking
(OXO

1 ,XO
2
− IXI

1 ,X
I
2

= −1), the direction of the cycle is fixed and all direction
symmetries are excluded as well.

As we will show in the evaluation (Sec. 3), the basic CSP will produce many
ITS candidates that do not enable an atom mapping over the whole educt and
product graphs. Therefore, we introduce an extended version of this CSP that
incorporates further constraints derived from the input.

Extended CSP Formulation: Investigating the given educt and product
graph, we can exclude a large set of symmetric solutions that arise due to an
exchange of hydrogens. The latter can form at most one single bond to other
atoms. Thus, if a hydrogen participates in the ITS, its adjacent atom will do
as well (since the bond is to be broken in the ITS). Most adjacent atoms are
non-hydrogens, like carbon atoms, that can have multiple adjacent hydrogens.
Since there is exactly one bond breaking and formation for each ITS atom, only
one such adjacent hydrogen will be part of the ITS. This results in a combina-
torial explosion due to the symmetries of adjacent hydrogen atoms. An example
is given in Fig. 3.

To break this type of symmetry, we select for each non-hydrogen one adjacent
“master” hydrogen and remove all other sibling hydrogens from the domains,
both for educt and product variables XI and XO, respectively.

Furthermore, we can extend and tune the CSP formulation by comparing the
graph structure of educts and products. To this end, we generate the sets NI

and NO of local neighborhoods of all atoms (vertices) for the educt and product
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CSP for homovalent ITS of size k=6
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6...

ensure-ITS-neighborhood(                 ,               )X I
1 X I

6... N \I NO
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1 XO
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ensure-ITS-atom-labels(                 ,               )X I
1 X I

6... N \I NO

(i,i)O (i,i)I
homovalence: - =  0

Fig. 4. Overview of the extended CSP for a homovalent ITS of size k = 6 where the
extensions of the basic CSP are given in the gray box in the lower right.

graph, resp., given by

NI = { N(v) | v ∈ VI} with (1)

N(v) = ( l(v), { Iv,v′⊕l(v′) | where v 6= v′ ∈ VI ∧ Iv,v′ > 0} ) (2)

where N(v) is a tuple of the label of atom vertex v and an encoding of the
set of all adjacent edges for this vertex. Note, ⊕ denotes string concatenation.
NO is derived accordingly. For example, the neighborhood sets for the reaction
from Fig. 1 are

NI = { 2×(C, {1C}), 3×(C, {2C}), 2×(C, {1C, 2C}), (C, {1C, 1C, 2C}) }
NO = { 2×(C, {1C}), 3×(C, {1C, 1C}), (C, {1C, 2C}), (C, {1C, 1C, 1C}),

(C, {1C, 1C, 2C}) }

The subtraction NI \NO gives the local neighborhoods that are unique within
the educts and thus are part of the ITS, i.e. have to be changed during the
reaction. Therefore, we can derive a lower bound on the number of atoms of
a certain type that are participating in the ITS. In the example this results in
NI \NO = {3×(C, {2C}), (C, {1C, 2C})} revealing that at least 4 C-atoms of two
types are ITS members.

Given this information, we formulate an extended version of the basic CSP.
An arc-consistent global constraint on XI is added, which enforces the occur-
rence of the identified ITS atom labels. This is automatically propagated on
XO via the atom label preservation constraints. In addition, we enforce that a
valid assignment of the variables XI and XO preserves the ITS neighborhoods
NI\NO and NO\NI , respectively. To minimize propagation cost, this is ensured
by a simple n-ary constraint propagating, which is propagated only after all
variables have been confined to a single value. The full CSP is depicted in Fig. 4.

Although the CSPs from above are defined for domains of vertices v ∈ VI∪VO,
they can be easily reformulated using integer encodings of the atom indices



allowing for the application of standard constraint solvers such as Gecode [42].
This enables the use of efficient propagators for most of the required constraints,
such as the algorithm of Regin [41] for globally unique assignments. Only a few
binary constraints, e.g. to ensure atom label preservation or the cyclic bond
pattern, require a dedicated implementation as discussed in Sec 4.

All solutions for these CSPs are chemically valid ITS candidates. In order to
check whether or not a true ITS is found we have to ensure that the remaining
atoms, i.e., those that do not participate in the ITS, can be mapped without
further bond formation or breaking. This is achieved using a standard graph
matching approach as discussed in the following.

2.3 Overall Atom Mapping Computation

Given the CSP formulation from above, we can enumerate all valid ITS can-
didates. For a CSP solution we denote with aIi and aOi the assigned values of
the variables XI

i and XO
i , respectively. Once the ITS candidate is fixed, we can

reduce the problem to a general graph isomorphism problem with a simple re-
labeling of the ITS edges. Thus, we derive two new adjacency matrices I ′ and
O′ from the original matrices I and O, resp., as follows: For all atom pairs (i, j)
within the cyclic index sequence 1-2-..-k-1, we change the corresponding adja-
cency information to a unique label using I ′

aI
i ,a

I
j

= O′
aO
i ,aO

j
∈ {f, b} encoding if

a bond between the mapped ITS vertices is formed (f) or broken (b). All other
adjacency entries are kept the same as in I and O, respectively.

Given these updated, “ITS encoding” adjacency matrices I ′ and O′, the
identification of the overall atom mapping m reduces to the graph isomorphism
problem based on I ′ and O′. Thus, all exact mappings of I ′ onto O′ are valid
atom mappings m of an elementary homovalent reaction, since the encoded ITS
respects all constraints due to the CSP formulation.

2.4 Implementation Details

Our C++ implementation of the approach currently takes a chemical reaction in
SMILES format [43], identifies chemically correct atom mappings, and returns
these in annotated SMILES format. The latter provides a numbering of mapped
atoms in the educts and products.

Molecule parsing, writing, and graph representation uses the chemistry mod-
ule of the Graph Grammar Library (GGL) [35]. Note, we do an explicit hydro-
gen representation within the CSP formulation as in [16], since most homovalent
elementary reactions involve the replacement of at least one hydrogen. Unfor-
tunately, the compact string encoding of molecules in SMILES format does not
explicitly represent hydrogens. Thus, we use the hydrogen correction procedures
of the GGL to complete educt and product molecule input. The CSP formulation
and solving is done within the Gecode framework on finite integer domains [42].
The final graph matching is done using the state-of-the-art VF2-algorithm [10],
which is among the fastest available [9].



The CSP uses standard binary order constraints and the n-ary distinct and
counting constraints provided by the Gecode library. Dedicated binary con-
straints propagating on unassigned domains have been implemented for preser-
vation of atom label, degree, and homovalence. The alternating cycle is imple-
mented by a sequence of k constraints propagating the edge valence change of
±1. The ITS local neighborhood preservation to be enforced in the extended CSP
is implemented by a dedicated n-ary constraint over all variables propagating on
assignments only.

We are using a Depth-First-Search where the branching strategy chooses first
variables with minimal domain size and first assigns non-hydrogen indices before
hydrogen vertices are considered. The latter increases the performance to find
the first solution since most reaction mechanism are constructed of at least 50%
non-hydrogen atoms. Once a non-hydrogen is selected, propagation will ensure
that adjacent hydrogens are considered for the neighbored variables within the
ITS cycle encoding if appropriate.

For each ITS mapping identified, a full reaction atom mapping is derived via
VF2-based graph matching. Therein, the discussed problem of hydrogen inter-
changeability (see extended CSP formulation) is faced again and would result in
symmetric overall atom mappings. This is countered by first producing interme-
diate “collapsed” educt/product graphs, where all adjacent non-ITS hydrogens
are merged into the atom labels of their adjacent non-hydrogens. This preserves
the adjacency information and enables a unique mapping via VF2 excluding
the hydrogen-symmetries. Furthermore, this compression speeds up the graph
isomorphism identification since the graph size is approximately halved.

While not described here, the CSPs can be easily extended to find candidates
for the entire atom mapping by introducing additional matching variables for all
atoms participating in the reaction, all constrained to preserve atom label, vertex
degree, and bond valence information. But first tests (not shown) revealed that
the increase in CSP size and accordingly search and propagation effort needed
does not repay due to the efficiency of the VF2 graph isomorphism approach
used. Therefore, we omitted this approach from this work.

3 Application and Evaluation

In order to investigate the impact of our extended CSP formulation over the
basic version, we selected a subset of homovalent elementary reactions from the
KEGG LIGAND database [29]. The The reactions have been chosen to provide
various ITS and reaction sizes for evaluation. The average size of the selected re-
actions, i.e. the average number of atoms, is about 30 (Tab. 2 column 2) while the
whole KEGG database shows an average of 50 atoms per reaction. The example
reactions cover homovalent ITS sizes of k = 4, 6, and 8 as introduced. Since there
is no atom mapping information provided within the KEGG database, the exam-
ple reactions had to be identified manually based on chemical knowledge. This
again highlights the need for an automated identification of chemically feasible



Reaction Educts Products

R00013 C(=O)=O, C(C(=O)O)(C=O)O 2× C(=O)(C=O)O

R00018 N, N(CCCCN)CCCCN 2× C(CCN)CN

R00048 CC(O)CC(=O)OC(C)CC(O)=O, O 2× CC(O)CC(O)=O

R00059 N(C(=O)CCCCCN)CCCCCC(=O)O, O 2× C(CC(=O)O)CCCN

R00207 P(=O)(O)(O)O, O=O, CC(=O)C(=O)O P(=O)(OC(=O)C)(O)O, OO, C(=O)=O

Table 1. Elementary homovalent reactions from the KEGG LIGAND database [29]
used for the evaluation of the approach. The educt and product molecules are given in
SMILES notation [43].

Time Sol. Time all Sol.
Reaction Atoms CSP Type k 1st Sol. Sol. CSP CSP VF2

R00013 14
Basic

6
0.03

1
346 0.8 0.03

Ext. {2C} 0.02 76 0.05 0.02

R00018 36
Basic

4
10.4

1
73,924 2.62 19.9

Ext. {2N} 0.28 36 0.44 0.01

R00048 30
Basic

4
0.1

2
26,178 1.44 6.1

Ext. {2O} 0.02 24 0.42 0.03

R00059 44
Basic

4
0.34

1
194,210 9.45 63.15

Ext. {H,C,N,O} 0.03 4 2.08 0.01

R00207 20
Basic

8
0.02

1
20,640 1.11 4.05

Ext. {C,4O} 0.01 24 0.56 0.02

Table 2. Evaluation of the reactions from Tab. 1. Timings are given in seconds. For
extended CSPs, the minimal set of ITS participating atoms is listed in column 3.
Column “Sol. CSP” gives the number of CSP solutions (ITS candidates) tested via
VF2 for final atom mappings.

atom mappings as provided by our approach. The selected homovalent reactions
are given in Tab. 1 with their respective KEGG ID, educts and products.

For each reaction, we applied our approach using both the basic and extended
CSP formulation to evaluate the impact of the latter for various reaction and
ITS cycle sizes. In Table 2 we report runtime, search, and solution details for the
smallest ITS size k that yields a solution. For smaller values of k, the infeasibility
tests were done within fractions of seconds and are therefore omitted.

Our atom mapping approach finds a first atom mapping for homovalent ele-
mentary reactions within milliseconds. It is clear that the additional constraints
within the extended CSP formulation significantly increase the performance of
the approach. This becomes even more striking when considering the timings for
full solution enumeration. The extended CSP produces several orders of mag-
nitude less ITS candidates (column “Sol. CSP”). Since the time consumption
of the VF2 algorithm is about linear in the number of ITS candidates to test,
this results in according speedups of the overall approach. Still there is room for
optimization since the symmetry breaking within the CSP solution enumeration
is not complete (see next section).



The strength of the extended CSP comes from the precomputed list of local
neighborhoods to be part of the ITS candidate and the “hydrogen symmetry”
breaking. For the reactions from Tab. 2, this list comprises on average about
half the ITS resulting in the impressive impact of the constraint. For reaction
R00059, the list covers the whole ITS with an according immense reduction in
ITS candidates.

As already expected based on the results from other approaches [16], only a
single or very few reaction mechanisms, i.e. non-symmetric atom mappings, are
identifiable, see Tab. 1 column “Sol”.

4 Development and Future Work

The basic approach was implemented by a user not familiar with constraint
programming within 1 month work time given the well documented and eas-
ily extendable Gecode library [42] and the chemoinformatics implementations
provided by the GGL [35]. Extending the approach and adding the basic func-
tionalities for symmetry exclusion required another week of implementation, such
that we got a first prototype within 1.5 months. Given the current framework
and available constraint implementations, we expect another month of imple-
mentation time to get the final atom mapping program that will cover most of
the following features.

Branching strategies: The current CSP allows for further performance optimiza-
tions when solving the satisfaction problem. We are currently evaluating the
impact of different branching strategies on the runtime of the approach. As a
first result, a hierarchical value selection that first tries to assign vertices to the
variables that are compatible to the neighborhoods participating in the ITS (see
extended CSP formulation) and which selects hydrogen representing vertices last
seems to allow for a good performance.

Symmetry breaking: As it can be seen from Tab. 2, the current CSP formula-
tion still produces symmetric ITS solutions when enumerating all possible atom
mappings. We are currently working on strategies to apply further symmetry
breaking techniques during the solution enumeration of CSPs, i.e. symmetry
breaking during search (SBDS) [4, 21, 5] (or the similar lightweighted dynamics
symmetry breaking (LDSB) approach [37]), as well as symmetry exclusion in
the final mapping phase. Both requires more sophisticated input analyses as e.g.
done in [16].

CSPs for other ITS layouts: Of course, not all chemical transformations are
based on a homovalent elementary ITS. This will in general be the case for
multi-step reactions and for the so-called ambivalent reactions, in which the
number of non-bonding electron pairs (and thus the oxidation number of some
atoms) changes in the course of a reaction [25]. Figure 5, for example, shows
a reaction for which it is not possible to find a simple homovalent circular ITS
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Fig. 5. The Meisenheimer rearrangement [38] transforms nitroxides to hydroxylamines.
It does not admit a simple alternating cycle as ITS when molecules are represented as
graphs whose vertices are atoms. An extended representation, in which the additional
electron at the oxygen is treated a “pseudo-atom” can fix this issue. See Figure 6 for
further details of such an ITS layout.

Reaction Sol. Time
Educts Products Atoms k Fig. Sol. CSP all Sol.

O=[S--]=O.C=CC=C O=S1(=O)CC=CC1 13 5 6 bottom 1 20 0.01

Cl[C--]Cl.C=C ClC1(Cl)CC1 9 3 6 bottom 1 12 0

[O-][NH2+]CC=C NOCC=C 12 5 5, 6 top 1 22 0

Table 3. Evaluation of CSPs for ambivalent reactions with an odd cycle ITS layout
given in Fig. 6.

using the presented ITS encoding. Still the reaction shows a cyclic ITS with
alternating bond electron changes for all but one bond [17].

We have extended the CSP-based framework outlined above to reactions with
arbitrary cyclic ITS layouts, which allows for any defined bond and atom valence
changes (i.e. charge changes) within the ITS. Figure 6 exemplifies odd ITS cycle
layouts for ambivalent reactions [19]. The main difference to homovalent reaction
CSP is the relaxation of the homovalence constraint, which is not enforced for
all participating atoms [19]. Furthermore, the preservation of bond electrons for
some ITS bonds instead of a change is enforced. The latter holds for instance
for the bond connecting N+ and O− in Fig. 5.

Table 3 presents the timing results for our prototypical implementation of
the ambivalent ITS layouts given in Fig. 6. The model is based on the extended
CSP formulation for elementary reactions. Also for such ambivalent reactions,
our CP-based atom mapping approach enumerates all possible atom mappings
within milliseconds, as reported for homovalent reactions in Tab. 2. Note, the
ambivalent CSPs require a different, ITS-specific symmetry breaking and thus
have to enforce different static order constraints compared to the homovalent
CSP. The ambivalent layouts given in Fig. 6 show no symmetry in itself such
that actually no order constraint is needed here. The driving force of the CSP
performance is the propagation of the oxidation state change for the atoms
that get charged. This poses a very strong constraint for the ambivalent ITS
identification.

We are currently identifying and verifying further ITS layouts, some of the
already available layouts are given in Fig. 6. Considering the reaction classifi-



0

0

0

0

0

0

k ∈ {4, 6, 8}

-1 +1

-1

+1-1

+
1

0

0

0

−1+1

k ∈ {3, 5, 7}

-1 +1

-1

0

+
1

≡ 0

0

0

0

e−

0

-1 +1

-1

+1-1

+
1

0 0

0

+2

0

k ∈ {3, 5, 7}

-1

+1

-1

+1+1

≡ 0 0

0

0

0

-1

+1

-1

+1+1

−1

0 0

0

−2

0

k ∈ {3, 5, 7}

-1

+
1

-1-1

+
1

Fig. 6. Currently supported ITS layouts: The number within the vertices corresponds
to atomic oxidation state changes, red bonds are broken green bonds are formed. (top)
Homovalent elementary reactions result in even sized cycles with no oxidation state
changes at the atoms (see Fig. 1). Note that odd cycles with two oppositely charged
atoms separated by a non-changing pseudo bond (black dashed edge labeled 0 see
Fig. 5) are equivalent to the next larger even sized cycle with a virtual vertex for the
moving charge (vertex label e−). (bottom) Ambivalent elementary reactions involving
non bonding electrons result in odd sized cycles and oxidation state changes of one
atom. Note that this situation is equivalent to a non-elementary cycle with alternating
bond labeling (bottom middle)

cation work in [25, 24, 17, 18], we expect a very limited number of possible ITS
layouts within a few hundreds at most given the physics underlying chemical
reactions. The overall approach will select, based on the provided input and the
local neighborhood analyses presented for the extended CSP, the suitable ITS
layouts and their respective CSPs and search for valid atom mappings.

Multi-step reactions: The current framework is designed to identify chemically
feasible atom mappings for single-step reactions. Nevertheless, there cases where
short-lived intermediate molecule structures are formed that are directly react
further into the final products. Unfortunately, these intermediate structures are
usually unknown, such that we cannot apply the presented approach.

As discussed by Hendriksen [24], often only two joint reactions with a single
unknown intermediate are observed. We therefore plan to create “fused” ITS
layouts based on our single-step ITS encodings that will allow for the correct
identification of atom mappings for multi-step reactions and reveal the individ-
ual steps and intermediate structures. For the combination of ITS layouts, we



are currently investigating the multi-step reaction analyses by Fujita [20] and
Herges [25].

Webserver: The final atom mapping framework will be available both as stand
alone tool as well as via a web front end including a visual depiction of the
atom mappings. An according webserver framework ready for the integration is
already available.

Graph Grammars and Atom Flow Network Generation: Atom mappings are the
base to generate and analyze the atom flow in reaction networks [7, 26]. Here,
the chemical validity of the atom maps is of particular importance to ensure
correct atom flow analyses. We will use our atom mapping approach to generate
chemical graph rewrite rules that will be used within our GGL framework [35]
to expand according reaction networks where molecular graph rewrite directly
provides the atom flow information within the network.

5 Discussion

We have presented here the first constraint programming approach to identify
chemically feasible atom mappings based on the identification of a cyclic inter-
mediate transition state (ITS). The incorporation of the cyclic ITS structure
within the search ensures the chemical correctness of the mapping that is not
guaranteed by standard approaches that attempt to solve Maximum Common
Edge Subgraph Problems [1]. To our knowledge, this is the first approach ex-
plicitly incorporating the cyclic ITS structure into an atom mapping procedure.

The formulation of the CSP using only the atoms involved in the ITS results
in a very small CSP that can be solved efficiently. Thus, it is well placed as a filter
for ITS candidates for the subsequent, computationally more expensive graph
matching approaches. The solutions of such an extended CSP are the desired
chemically feasible atom mappings m. We apply advanced symmetry breaking
strategies and thus can enumerate the different chemical mechanisms underlying
a reaction for a given ITS cycle size.

The feasibility of the approach was demonstrated here for the special case of
elementary, homovalent reactions, i.e., for reactions in which the transition state
is an elementary cycle with an even number of atoms. The CSP formulation can
be easily extended to arbitrary cyclic ITS layouts. Usually, such reactions are not
homovalent, i.e., at least one atom participating in the ITS is gaining or losing
non-bonding electrons, which requires some moderate changes in the formulation
of the constraints. We are currently identifying all feasible ITS layouts and are
developing a generic CSP formulations. This will result in a powerful approach
to identify atom mappings with chemically valid ITSs.

Constraint programming was shown to be a very promising approach to solve
atom mapping problems since it provides a very flexible framework to incorpo-
rate combinatorial constraints determined by the underlying rules of chemical
transformations.
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