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Abstract

Knowledge of a protein’s 3-dimensional native
structure is vital in determining its chemical prop-
erties and functionality. However, experimental
methods to determine structure are very costly and
time-consuming. Computational approaches, such
as folding simulations and structure prediction algo-
rithms, are quicker and cheaper but lack consistent
accuracy. This currently restricts extensive com-
putational studies to abstract protein models. It
is thus essential that simplifications induced by the
models do not negate scientific value. Key to this is
the use of thoroughly defined protein-like sequences.
In such cases abstract models can allow for the in-
vestigation of important biological questions.

Here we present a procedure to generate and clas-
sify protein-like sequence data sets. Our LatPack
tools, and the approach in general, are applicable
to arbitrary lattice protein models. Identification
is based on thermodynamic and kinetic features.
Further LatPack can incorporate the sequential
assembly of proteins by addressing co-translational
folding.

We demonstrate the approach in the widely used,
unrestricted 3D-cubic HP-model. The resulting se-
quence set is the first large data set for this model
exhibiting the protein-like properties required. Our
data and tools are freely available and can be used
to investigate protein-related problems. Further-
more our data sets can serve as the first benchmark
sequence sets for folding algorithms that have tra-
ditionally only been tested on random sequences.

Introduction

Proteins have evolved to adopt a unique or very few
functional native structures. In contrast, random
amino acid sequences generally form non-functional
random coils. This prompts one of the major bio-
logical questions: “What are the features of proteins
that enable the unerring folding into their functional
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native structures rather than just producing random
coils?”

To address such questions comparative studies of
protein sequence and structure space are necessary
to identify underlying properties. Due to extreme
computational complexity and limited knowledge of
aspects governing protein folding it is not currently
feasible to investigate the folding process of real pro-
teins via full simulations nor to calculate their na-
tive structure directly. Thus abstract protein mod-
els have been defined to focus on and elucidate cer-
tain features of proteins and protein folding.

By reducing complexity, protein models are com-
putationally accessible but induce a major problem:
One has to identify protein-like sequences! Real
protein sequences are usually not applicable due to
model restrictions in sequence/structure space or
simplified energy functions. Thus a biological pro-
tein sequence is not guaranteed to show protein-like
(in vivo) behavior when ported into the model.

Therefore, an independent classification/defini-
tion of protein-like sequences has to be calculated
for each protein model! Identified protein-like se-
quences must posses a (unique) stable native struc-
ture and, more importantly, be able to fold to this
structure within a short (biologically relevant) time
interval. Thus thermodynamic and kinetic proper-
ties have to be used. Without such a data set the
study of the initially formulated question is inhib-
ited by the unvalidated data underlying it. Here we
introduce such a classification scheme of protein-
likeness, essential for computationally accessible,
biologically relevant models!

Our procedure is applicable to widely used lattice
protein models. These models restrict the place-
ment of atoms to nodes of an underlying 2- or 3-
dimensional lattice (e.g. 3D-cubic) and, usually,
use just a few monomers to represent a single amino
acid. For instance, the widely used HP-model (Lau
and Dill, 1989) represents each amino acid with
only a single monomer, which is (H)ydrophic or
(P)olar, in the lattice. The HP energy function fo-
cuses on hydrophobic interactions (by maximizing
HH-contacts) that are known to be a driving force in
the folding process (Chan and Dill, 1990; Dill et al.,
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1995). Though this yields a very rough protein rep-
resentation, the associated problems, such as opti-
mal structure prediction or sequence design, are still
computationally demanding (NP-complete) (Garey
and Johnson, 1990; Unger and Moult, 1993; Berger
and Leighton, 1998; Berman et al., 2004). Other
models also often utilize a contact based energy
function; but all levels of interaction detail can be
found from the HP- to the HPNX-model (Wolfin-
ger et al., 2006) up to full 20 amino acid con-
tact potentials provided by the Miyazawa-Jerning-
matrix (MJ) (Miyazawa and Jernigan, 1996). All
share the lattice discretization that allows for an
enumeration of the whole structure space, obvi-
ously not applicable to real protein structures in
free 3D-space. Thus exhaustive studies of folding
pathways (Steinhöfel et al., 2007), energy landscape
features (Wolfinger et al., 2006), general structural
properties (Jacob and Unger, 2007) or protein de-
sign (Gupta et al., 2005) and evolution (Irback and
Troein, 2002) are applicable.

Our procedure can be applied to any of these
models, independently from the used energy func-
tion or the underlying lattice. It is directly capable
of work on any protein model due to the general ap-
plicability of the used LatPack tools (see methods
or reference LatPack-home). Quintessentially, we
use a three-step classification system. First, ther-
modynamic features are checked to ensure a sta-
ble native structure (Crippen and Chhajer, 2002).
Next, the filtered sequences are tested if they can
adopt their native structure in a short time interval.
Thus a good/bad folder classification is achieved
(Jacob and Unger, 2007). Only good folders are con-
sidered in the final step: sequential folding with the
ability to only traverse low energy barriers (Huard
et al., 2006). This final step considers the sequential
assembly of proteins and therefore the occurrence of
co-translational folding during elongation or mem-
brane transports (Fedorov and Baldwin, 1997; Kolb
et al., 2000; Deane et al., 2007). Co-translational
folding is assumed to restrict the accessible parts of
the energy landscape during folding and hence to
guide the process to the native structure (Levinthal,
1968; Govindarajan and Goldstein, 1998). The re-
sulting protein-like sequences can thus be used to
address the initial question.

Our approach is exemplified in the widely stud-
ied HP-model (Wolfinger et al., 2004; Coluzza and
Frenkel, 2007; Jacob and Unger, 2007). We use
the LatPack-tools package (LatPack-home); a col-
lection of programs and approaches to enable fold-
ing studies in the field of lattice proteins with ar-
bitrary energy functions. The package is tailored
to be as flexible as possible while ensuring high
performance, essential for the computationally de-
manding tasks. So it is possible to perform the
necessary kinetic folding simulations (LatFold) as
well as sequential/co-translational folding studies

(LatSeF). The tools are described in more detail
in the methods section.

Based on our classification we provide a large set
of protein-like, good and bad folding sequences for
the 3D-cubic HP-model. The data set is freely avail-
able, see materials section.

In addition to the applicability of this data set
to address relevant biological questions it serves as
the first well defined benchmark sequence set for
folding algorithms (Steinhöfel et al., 2007). So far
new methods have usually been tested on random
sequences that, with high-probability, will not show
protein-like behavior. Since the approach and the
used LatPack tools are applicable to arbitrary lat-
tice protein models it opens the selection of such
data sets for any lattice protein model!

Results and Discussion

In the following we will demonstrate our strategy
to classify protein-like sequences in simplified lat-
tice protein models based on folding properties. We
utilize the HP-model, but the strategy is directly
applicable to arbitrary lattice protein models. The
LatPack tools applied are described more thor-
oughly in the methods section. The free package
together with manuals is available from

http://www.bioinf.uni-freiburg.de/Software/

The HP-model in the unrestricted 3D-cubic lat-
tice was chosen due to its prevalence in previous
protein studies (Jacob et al., 2007; Steinhöfel et al.,
2007; Wolfinger et al., 2006; Jacob and Unger, 2007;
Thachuk et al., 2007) and the abundance of rea-
sonable sequence sets. Often the used benchmark
sets consider degeneracy only and thus (with the
exception of (Jacob and Unger, 2007)) do not re-
flect a reasonable protein-likeness definition based
on kinetic properties. Furthermore, they usually
consist of a few sequences only. Here we implement
a generic, transparent and reproducible definition
with the aim of producing a large benchmark set
for use in future studies.

The classification is mainly achieved using fold-
ing simulations. For global folding, where the whole
fold space is explored, we utilize the Pull-move set
(Lesh et al., 2003). This set is often used (Thachuk
et al., 2007) and has been shown to yield realistic
folding times (Steinhöfel et al., 2007). We address
the problem of correct folding temperatures essen-
tial for reasonable Monte-Carlo simulations (see
methods). The outcome of our procedure is a data
set consisting of protein-like sequences, good and
bad folders that is freely accessible at (SeqData-
URL).

http://www.bioinf.uni-freiburg.de/Data/
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Non-degenerate native structure

In the HP-model, protein-likeness is usually defined
via thermodynamic properties only. The simpli-
fied energy function yields a very high degener-
acy for most of the sequences, i.e. they can adopt
thousands or millions of optimal structures (Mann
et al., 2008). Such sequences have low thermody-
namic stability and are very unlikely to fold into
a single native structure. Therefore, a common
way to select protein-like sequences is to request
that degeneracy = 1, i.e. a non-degenerate, unique
ground state (Crippen and Chhajer, 2002; Jacob
and Unger, 2007). Such a single energetically mini-
mal structure is assumed to be the native structure
of the sequence. This is discussed in more detail in
the materials section.

In the first classification step of our approach
we search for non-degenerate sequences. Thus to
classify a sequence as protein-like we assume, as
the minimal requirement, that such a unique na-
tive structure exists. Using the CPSP-tools (Mann
et al., 2008) we observed that only about 0.01 per-
cent of all sequences fulfill this property in the un-
restricted 3D-cubic HP-model (data not shown).
Thus only a small fraction of sequences are consid-
ered in the next, kinetic based, classification step.

For illustration, we derived a random non-
exhaustive set of 10,500 non-degerate HP-sequences
of length 27 (in the 3D-cubic lattice) using the
CPSP-tools. This sequence set will be used in the
following to demonstrate the whole classification
approach.

Determination of the optimal folding
temperature

Protein folding is a kinetic process and therefore
highly temperature depending. When modelling
this process by Metropolis Monte-Carlo (MC) sim-
ulations (as done in the next classification step),
this dependency is reflected by the folding temper-
ature T used in the Metropolis criterion to calculate
the Boltzmann weight e

− E
kBT of a given structure

with energy E. Due to the coarse grained energy
function, the Boltzmann factor kB cannot be ap-
plied! Furthermore the optimal folding tempera-
ture Tf , where the native structure of a protein is
adopted best and is stable too, is unknown and has
to be determined for each protein model indepen-
dently.

It is sufficient to determine the product kTf in-
stead of Tf and k independently. This is achieved
by a screening with folding simulations (using
LatFold) over different values of kT for a non-
redundant set of non-degenerate sequences, because
we are only interested in their folding behavior and
not in random sequence folding. We define kTf as
the value where the folding simulations spend most
of the time in the native state.

We expect that the screening shows a very low ra-
tio for low kT and that the folding simulations are
usually frozen in local minima (non-native struc-
tures) of the energy landscape. For high kT , a
randomized traversal of the landscape is expected,
resulting in a few native fold hits and a high vari-
ety in the adopted energies. At kTf the simulation
should hit the native structure at high rate and stay
there for long periods. To exemplify the process we
use Monte-Carlo folding simulations based on Pull
moves (Lesh et al., 2003) (see materials).

Figure 1 shows representative screening simula-
tion trajectories (energy runs) that exemplify the
expected behavior for different kT values in the HP-
model. For very low kT the simulation is immedi-
ately trapped while for high values a random be-
havior is observed. Only in the 3rd plot at kTf ,
the energy of the single native structure is reached,
kept and recovered (if left) over long time series.

To prepare the folding based classification of se-
quences in the next section, we have performed
a kT screening for a subset of the underlying se-
quence set (see materials section). Therefore, a
non-redundant set of 50 sequences were selected at
random from the pool of 10,500 non-degenerate se-
quences from the first classification step. For each
sequence at every kT -value screened, 1000 fold-
ing simulations with 10,000 steps were done and
the native structure ratio averaged. This way
we could determine the kT i

f for each screened se-
quence Si. To derive a general kTf we averaged
over all gained kT i

f .
The resulting kTf for the non-degenerate HP-

sequences of length 27 in the unrestricted 3D-cubic
lattice using Pull-Moves is kTf ∼ 0.3 (in detail
0.285). We observe a very low variance of 0.006,
supporting the low sample size. Independent tests
revealed the same kTf characteristics for the result-
ing classified groups (data not shown). Thus the
kTf choice seems to be invariant to the specific se-
quence set used in this model. In general a higher
sample size should be used if the kT values show a
higher variance.

Our determined kTf is close to the folding tem-
perature (kT = 0.5) for sequences of length 25 in
the 2D-square lattice as used in (Jacob and Unger,
2007); however, it is unclear how the authors de-
cided on this value.

Identifying good and bad Folders

Given the optimal kTf value, we are now in the po-
sition to classify lattice protein sequences based on
kinetic properties. The goal of the second classi-
fication step is to separate our non-degenerate se-
quences in two sets: good and bad folders, depen-
dent on their kinetic properties. Good folders are
assumed to be the more protein-like sequences due
to the ability to fold into their native structure very
fast. On the opposite the bad folders represent ran-
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dom protein sequences that are able form a random
coil but no stable functional native structure (Maz-
zoni and Casetti, 2006). Such a classification opens
new studies to investigate the common properties of
good vs. bad folders; perhaps facilitating indentifi-
cation of the properties that allow for folding into a
unique native state (Jacob and Unger, 2007). This
property is often assumed to correlate with a fea-
ture of the energy landscape, the folding funnel. For
good folders such a funnel is assumed to cover large
parts of the landscape and drives the folding pro-
cess downwards to the native fold (Wolynes et al.,
1995; Klemm et al., 2008).

We are going to do a good/bad folder classification
for the large non-redundant set of non-degenerate
HP sequences of length 27 from the first classifica-
tion step. For each sequence we perform a series of
1000 very short folding simulations with 1000 steps
at the given value kTf using LatFold to allow for
reasonable statistics and a high parallisation of the
computations. The choice of 1000 steps was based
on prelimary tests (data not shown) and has to be
adopted for each protein model and length. We stop
a simulation early if the native structure is adopted.
Therefore, we are able to measure how often a se-
quence is able to adopt its native conformation in
a given short time interval. This is of importance
due to the relatively short folding time of proteins
in vivo. Once the native structure is reached we
assume it is kept because we are simulating at the
optimal folding temperature (kTf used).

A histogram on the “success rates” of the se-
quences is given in Figure 2. For each sequence
the number of successfull runs that found the native
structure out of the 1000 runs was determined (bins
of the histogram). The label of each bin gives the
lower bound on the interval the bin covers to allow
for a logarithmic view. The observed number of hits
lies in the range 0 to 125, thus the sequence with
the highest success rate found its native structure
in 12.5% of the short runs. These are the best can-
didates for good folders. The number of sequences
not able to fold into its native structure within the
given simulation time is about 10%. Furthermore it
becomes visible that a low number of hits is a com-
mon feature (about 70% show 1-9 successful runs).
The wide range of hit-ratios allows for an arbitrary
classification of sequences as done in the following.

Based on the collected data on the 10,500 se-
quences we can set two thresholds. hbad marks the
maximal number of hits to mark a sequence still as
a bad folder and hgood the minimal hit number for
a sequence to be classified as a good folder.

For our data, we set hbad = 1 and hgood = 10 to
split the data set to gain a large set of good folders
for the last classification step.

Based on this setting we get 3 classes of se-
quences: 2163 bad folder, 2447 good folder and
5890 “in-between” not classified non-degenerate se-

quences with a hit rate in (hbad, hgood) excluding
the limits.

Sequential folding properties

As discussed at the beginning, proteins are assem-
bled in a sequential manner at the ribosome. Thus
it is very likely and in some instances has been ex-
perimentally verified that the protein begins to fold
before release from the ribosome (Frydman et al.,
1994; Nicola et al., 1999; Kolb et al., 2000; Kolb,
2001). Our current classification does not consider
this co-translational scenario and assumes global
folding of the whole protein as occurring e.g. af-
ter unfolding of the structure due to heat shock or
other environmental changes.

To integrate co-transational folding ability into
our classification we revisit our set of good folders.
We want to further partition this set based on the
ability to fold co-translationally, assuming that this
feature describes an additional fundamental prop-
erty of proteins.

For all 2447 good folders, we run a sequential
folding simulation using LatSeF. To prevent se-
quences from becoming trapped in shallow, local en-
ergy minima we allow sequences to overcome small
energy barriers in the co-translational folding path-
way. We perform simulations at varying maximal
energy barriers ∆E ∈ {0, 1, 2}. For each sequence
we check if and on which energy threshold the na-
tive structure is reachable.

We classify a good folder as protein-like if it is
able to adopt its native structure with sequential
folding traversing a maximal energy barrier ∆E
of 2.

Based on this classification we end up with
605 protein-like sequences. A first screen on se-
quence features did not revealed significant differ-
ences to one of the other sequence classes.

Conclusion

The selection of protein-like sequences is an impor-
tant problem in simplified protein models. The
identification of protein-like sequences opens the
door for studies on folding kinetics, sequence evo-
lution and docking experiments. Currently, within
abstract but computationally accessible lattice pro-
tein models often only thermodynamic criterias are
considered in selection. Alternatively, random se-
quences used.

We introduce a classification scheme that incor-
porates both the thermodynamic features and ki-
netic properties of sequences. A protein-like se-
quence has to be able to adopt its unique native
structure in a short simulation time. Furthermore,
we consider the sequential assembly of proteins and
so include co-translational folding. Here each se-
quence is checked to see if its native structure can
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be adopted sequentially if only small energy barriers
are allowed to be overcome.

This classification scheme was applied to a non-
exhaustive set of 10,500 random non-degenerate se-
quences of length 27 in the 3D-cubic HP-model. We
end up with 4 sequence sets that are available online
(see reference SeqData-URL):

• 605 protein-like sequences

• 1842 good folders

• 2163 bad folders

• 5890 unclassified non-degenerate sequences

This data set is the first classification based on
thermodynamic and kinetic features that respects
the sequential production of proteins as well. It
can therefore form the basis for validated studies in
abstract models.

Though only demonstrated here for short se-
quence lengths in the simple 3D HP-model, the
whole classification approach is applicable to any
arbitrary lattice protein model using a contact or
even distance based energy function. The used tools
LatFold and LatSeF are able to perform the nec-
essary folding simulations for any of these models.
Thus the classification can be done for any sequence
set and model of interest using our freely available
LatPack tools.

Materials and Methods

In this section we give detailed information on our
sequence data and the tools utilised from the Lat-
Pack package.

Non-degenerate HP sequences

As stated above it is an essential feature of a
protein-like sequence to have a thermodynamically
stable native conformation. This results in the com-
mon assumption, in simplified protein models, that
the structure of minimal energy corresponds to the
native fold (Crippen and Chhajer, 2002; Jacob and
Unger, 2007).

Unfortunately, the simple energy function in the
HP-model (Lau and Dill, 1989) in tandem with the
discretization of structure space (due to the lattice)
induces a high degeneracy of the model. Thus a
high number of sequences have thousands or mil-
lions of structures with minimal energy. In order to
allow for a stable native structure, such sequences
cannot be considered as protein-like. Therefore, we
are interested in sequences with a very low degen-
eracy or, even better, non-degenerate sequences.
In earlier research it was felt, that such non-
degenerate sequences with a unique minimal en-
ergy structure would not exist (Shakhnovich, 1996).
Due to the high computational complexity required

to calculate even a single optimal structure (NP-
complete) (Berger and Leighton, 1998) it was not
thought possible to determine efficiently the de-
generacy of a sequence, i.e. all optimal struc-
tures. Using the new Constraint-based Protein
Structure Prediction (CPSP) approach of Backofen
and Will (Backofen and Will, 2006) it was shown
in (Mann et al., 2008) that such structures exist
and can be detected with very low time consump-
tion.

We have used the CPSP-tools (Mann et al.,
2008; CPSP-home) to calculate a random non-
exhaustive set of 10,500 non-degenerate HP se-
quences of length 27. These sequences have a
unique minimal energy structure in the unrestricted
3D-cubic lattice. The whole set of sequences is
available, see reference (SeqData-URL).

The problem of a high average degeneracy is com-
mon in lattice protein models. It results mainly
from the discretization of sequence and structure
space. Thus an approach for the calculation of a
sequence’s degeneracy would be needed for each
model, as the CPSP-approach for the HP-model.
Currently, only for the HPNX-model (Renner and
Bornberg-Bauer, 1997; Wolfinger et al., 2006) does
such an approach exists - an extension of the CPSP-
approach (Backofen and Will, 1998, 2006).

In some cases, the restriction to non-degenerate
sequences might be too severe and also sequences
with a low degeneracy are of interest. The CPSP-
tools, used for the degeneracy classification in the
HP-model, support identification of these sequences
too (Mann et al., 2008). The number of sequences
grows exponentially with rising degeneracy in the
HP-model. Nevertheless, the modularity of our
classification approach is well suited to incorporate
such customisations.

LatFold - global folding simulations

LatFold enables global folding simulations of lat-
tice proteins. The folding path is emulated via
the common Monte-Carlo (MC) simulation using
a Metropolis criterion (Jacob and Unger, 2007;
Thachuk et al., 2007). It is therefore an iterative
procedure that at each step takes the current struc-
ture and, utilizing a move set, indentifies a random
neighbor in the energy landscape (discussed later).
The Metropolis criterion is used to determine if the
neighboring structure is accepted. If rejected, the
simulation keeps the current structure for this step.
Thus if the neighboring structure has lower energy
it is always accepted. If not it is adopted with prob-
ability e−

∆E
kT while ∆E is the energy difference be-

tween the neighbored structure and the current one.
kT is protein model specific and has to be calculated
as discussed above. A similar method was success-
fully applied to RNA models (Flamm et al., 2000)
and reflected realistic folding features.
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The program is applicable to lattice protein mod-
els with arbitrary contact or distance based energy
functions and is consequently very general. Fur-
thermore the energy function can be chosen inde-
pendently from the lattice used. We are currently
supporting the unrestricted simple 2D-square, 3D-
cubic and the highly complex 3D-Face-Centered-
Cubic (FCC) lattice. The latter was shown to al-
low for high precision real protein structure presen-
tations (Park and Levitt, 1995). Park and Levitt
achieved a coordinate root mean square deviation of
1.78 Å, whereas a deviation of 2.84 Å was obtained
in the 3D-cubic lattice. An extension of LatFold
to other lattice models is easily possible (see BIU
library (BIU-home)).

The applied neighborhood generation within
LatFold utilizes two different ergodic so called
move sets. These are generic definitions of rules to
apply (small) structural changes within a given pro-
tein conformation to generate structures neighbored
in the energy landscape. Thus an iterative applica-
tion of such moves models structural changes over
time, i.e. folding. The ergodicity ensures that all
structures can be transformed into each other via
a sequence of moves. The Pivot-moves (Madras
and Sokal, 1988) yield relatively strong structural
changes (Wolfinger et al., 2006) by rotating huge
parts of the structure. In contrast, the application
of Pull-moves (Lesh et al., 2003) results in more
local changes of the structure. It has been shown
that this move set is able to reproduce realistic fold-
ing times (Steinhöfel et al., 2007) and is therefore
well suited for our folding based classification (Ja-
cob and Unger, 2007). To our knowledge there is no
other ergodic move set for lattice protein models.
The non-ergodic local moves (Madras and Sokal,
1987) are not used due to the partitioning of the
accessible energy landscape into independent ergod-
icity classes. Their number is growing exponentially
while each ergodicity class gets exponentially small.

The current implementation of LatFold is
based on the free and open-source BIU (BIU-home)
and ELL (ELL-home) C++ programming libraries
to allow for highest performance and modularity
and is applicable to any sequence length.

It would be of great interest to enable the ap-
plication of LatFold to side chain lattice protein
models too, but to our knowledge this is currently
not possible due to the absence of a suitable er-
godic move set for such structure models. In gen-
eral, Pivot-moves should be applicable. Unfortu-
nately, most of the moves will produce overlapping
and therefore invalid structures, leading to a large
computational overhead critical in folding simula-
tions.

Another possible extension is the usage of a
rejection-less MC-simulation that was successfully
applied to RNA folding simulations (Flamm et al.,
2000) and offers lower runtimes when a high rejec-

tion rate is present (low kT values). Furthermore,
such simulations yield more accurate time scalings.

ELL - the energy landscape library

To investigate the folding process of biopolymers
the generic concept of energy landscapes is often
applied (Wales, 2004; Wolfinger et al., 2006; Flamm
and Hofacker, 2008). It is defined by a triple
(X , E,N ) where X is the set of structures a se-
quence can adopt, its structure space, E : X → R
is an energy function and N : X → X ∗ the neigh-
borhood relation, e.g. defined by a move set.

Studying energy landscapes can give insights
into the folding process and kinetic properties of
a molecule (Mazzoni and Casetti, 2006). It has,
therefore, been an area of great study and many
algorithms have been designed to address the prob-
lem (Hoffmann and Sibani, 1988; Flamm et al.,
2002; Wolfinger et al., 2004). The energy land-
scape library (ELL) (Mann et al., 2007) was de-
veloped to serve as a platform to implement such
algorithms independently from a concrete energy
landscape model as e.g. HP lattice proteins.

Our LatFold program performs a Metropolis
MC-simulation and, thus, utilizes the modular-
ity and functionality of the ELL. Consequently,
the program is easy to extend while still ensuring
high performance, necessary for exhaustive high-
throughput studies that are possible and needed for
lattice protein models.

The ELL offers a flexible framework to define
move sets and, hence, the neighborhood relation N
that defines the energy landscape. It is, thus, easy
to extend LatFold if new ergodic move sets, e.g.
for side chain models, are developed.

LatSeF - sequential folding

LatSeF implements a greedy, heuristic chain-
growth approach similar to the procedure applied
in (Bornberg-Bauer, 1997). The monomers are
placed successively on lattice positions such that
the structure forms a self-avoiding walk. For each
length all possible structure extensions with one
monomer are generated and evaluated. The ener-
getically best structures are considered in the next
extension iteration.

Due to the lattice restrictions and the constraint
of self-avoidance, the procedure may end in non-
extensible structures during the iteration and fail.
A fast way to overcome this problem is to check the
extensibility of the last monomer after its place-
ment. This check is not ensuring extensibility to
the whole length but seems to be sufficient for most
sequences (data not shown). Only extensible struc-
tures are considered further and evaluated later.

The algorithm in detail:
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Algorithm 1 LatSeF - chain growth algorithm
1: S = S1, . . . , Sn . protein sequence

2: E(S, P ) . energy function
3: N . lattice’s neighboring vectors
4: ∆E . maximal energy barrier to overcome
5: B ← {L1 = (0, 0, 0)} . best structures of last iteration

. initialized by placing the first monomer to (0, 0, 0)
6: C ← ∅ . structures generated in current iteration
7: for i = 2 . . . n do
8: for all L ∈ B do . L has length (i − 1)
9: for all ~v ∈ N do

10: if L(i−1) + ~v 6∈ L1, . . . , L(i−1) then . selfavoidingness

11: if L1, . . . , L(i−1), (L(i−1) + ~v) is extensible then

12: C ← C ∪ {(L1, . . . , L(i−1), L(i−1) + ~v)}
. store extension

13: end if
14: end if
15: end for
16: end for
17: minE ← minimal energy of all elements in C

18: B ← {c | c ∈ C and E(S1...i, c) ≤ (minE + ∆E)} . all best

19: C ← ∅ . reset structure storage
20: end for
21: report best placement L ∈ B with minimal energy E(S, L)

A main feature of the algorithm is its ability
to overcome energy barriers in the co-translational
folding path. This is done by not only considering
the energetically best structures from the last itera-
tion for elongation but all structures within an en-
ergy interval of ∆E of the minimal energy found for
the current chain length. Thus, the method is not
trapped by local minima and the sequential folding
can escape over low energy barriers. This exten-
sion is essential for longer chain lengths or com-
plex 3D lattices. Nevertheless, the interval should
be choosen thoughtfully because of its direct influ-
ence on the memory consumption of the program.
The higher the allowed energy difference the more
sequences are stored for consideration in the next
iteration. Their number typically grows exponen-
tially, depending on the degeneracy of the protein
model, such that even small intervals might lead to
a high memory requirement for long sequences.

A further, but here not applied, feature is the
consideration of side chain lattice models. LatSeF
is the first tool that allows for sequential folding in-
cluding side chain monomers. As discussed above,
once a suitable ergodic move set / neighborhood
relations for side chain models is available, we can
directly apply the whole presented classification ap-
proach on these models.

Last, but not least, the strength of LatSeF is
its applicability to any contact or distance based
energy function (thus also a full potential as the
MJ-matrix (Miyazawa and Jernigan, 1996)) and the
possibility to use high complex 3D-lattices as the
discussed Face-Centered-Cubic (FCC) lattice.

The implementation is based on the BIU C++
programming library (BIU-home).

Acknowledgements

We thank Dr. Sebastian Will for his helpful com-
ments on the manuscript. Martin Mann is sup-
ported by the EU project EMBIO (EC contract
number 012835).

References
Backofen, R. and Will, S., 1998. Structure prediction in an

HP-type lattice with an extended alphabet. In Proc of
German Conference on Bioinformatics (GCB’98).

Backofen, R. and Will, S., 2006. A constraint-based approach
to fast and exact structure prediction in three-dimensional
protein models. J Constraints 11, 5 – 30.

Berger, B. and Leighton, T., 1998. Protein folding in the
hydrophobic-hydrophilic (HP) model is NP-complete. J
Comp Biol 5, 27–40.

Berman, P., DasGupta, B., Mubayi, D., Sloan, R., Turán,
G., and Zhang, Y., 2004. The protein sequence design
problem in canonical model on 2D and 3D lattices. In
Combinatorial Pattern Matching, volume 3109, 244–253.
Springer.

BIU-home, 2007. BIU : Bioinformatics utili-
ties. Available as an open-source library from
http://www.bioinf.uni-freiburg.de/sw/biu/.

Bornberg-Bauer, E., 1997. Chain growth algorithms for HP-
type lattice proteins. In RECOMB’97, 47–55.

Chan, H. S. and Dill, K. A., 1990. Origins of structure in
globular proteins. Proc Natl Acad Sci USA 87, 6388–92.

Coluzza, I. and Frenkel, D., 2007. Monte carlo study of
substrate-induced folding and refolding of lattice proteins.
Biophys J 92, 1150–1156.

CPSP-home, 2008. CPSP-tools : Constraint-based protein
structure prediction. Available as an open-source package
from http://www.bioinf.uni-freiburg.de/sw/cpsp/.

Crippen, G. M. and Chhajer, M., 2002. Lattice models of
protein folding permitting disordered native states. J.
Chem. Phys. 116, 2261.

Deane, C. M., Dong, M., Huard, F. P., Lance, B. K., and
Wood, G. R., 2007. Cotranslational protein folding–fact
or fiction? Bioinformatics 23, i142–8.

Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P.,
Thomas, P. D., and Chan, H. S., 1995. Principles of pro-
tein folding–a perspective from simple exact models. Pro-
tein Sci 4, 561–602.

ELL-home, 2007. ELL : Energy landscape li-
brary. Available as an open-source library from
http://www.bioinf.uni-freiburg.de/sw/ell/.

Fedorov, A. N. and Baldwin, T. O., 1997. Cotranslational
protein folding. J Biol Chem 272, 32715–8.

Flamm, C., Fontana, W., Hofacker, I. L., and Schuster, P.,
2000. RNA folding at elementary step resolution. RNA 6,
325–38.

Flamm, C. and Hofacker, I. L., 2008. Beyond energy min-
imization: approaches to the kinetic folding of RNA.
Chemical Monthly 139, 447–457.

Flamm, C., Hofacker, I. L., Stadler, P. F., and Wolfin-
ger, M. T., 2002. Barrier trees of degenerate landscapes.
Z.Phys.Chem 216, 155–173.

Frydman, J., Nimmesgern, E., Ohtsuka, K., and Hartl, F. U.,
1994. Folding of nascent polypeptide chains in a high
molecular mass assembly with molecular chaperones. Na-
ture 370, 111–117.

Garey, M. R. and Johnson, D. S., 1990. Computers and In-
tractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA.

7

Preprint



Govindarajan, S. and Goldstein, R. A., 1998. On the ther-
modynamic hypothesis of protein folding. Proc Natl Acad
Sci USA 95, 5545–9.

Gupta, A., Manuch, J., and Stacho, L., 2005. Structure-
approximating inverse protein folding problem in the 2D
HP model. J Comp Biol 12, 1328–1345.

Hoffmann, K. H. and Sibani, P., 1988. Diffusion in hierar-
chies. Physical Review A 38, 4261–4270.

Huard, F. P. E., Deane, C. M., and Wood, G. R., 2006.
Modelling sequential protein folding under kinetic control.
Bioinformatics 22, e203–210.

Irback, A. and Troein, C., 2002. Enumerating designing se-
quences in the HP model. Journal of Biological Physics
28, 1–15.

Jacob, E., Horovitz, A., and Unger, R., 2007. Different mech-
anistic requirements for prokaryotic and eukaryotic chap-
eronins: a lattice study. Bioinformatics 23, i240–i248.

Jacob, E. and Unger, R., 2007. A tale of two tails: why are
terminal residues of proteins exposed? Bioinformatics 23,
225–230.

Klemm, K., Flamm, C., and Stadler, P. F., 2008. Funnels in
energy landscapes. The European Physical Journal B 63,
387–391.

Kolb, V. A., 2001. [cotranslational protein folding]. Mol Biol
(Mosk) 35, 682–90.

Kolb, V. A., Makeyev, E. V., and Spirin, A. S., 2000. Co-
translational folding of an eukaryotic multidomain protein
in a prokaryotic translation system. J Biol Chem 275,
16597–601.

LatPack-home, 2008. LatPack : Lattice protein fold-
ing package. Available as an open-source package from
http://www.bioinf.uni-freiburg.de/Software/.

Lau, K. F. and Dill, K. A., 1989. A lattice statistical me-
chanics model of the conformational and sequence spaces
of proteins. Macromolecules 22, 3986–3997.

Lesh, N., Mitzenmacher, M., and Whitesides, S., 2003. A
complete and effective move set for simplified protein fold-
ing. In Proceedings of the seventh annual international
conference on Research in computational molecular biol-
ogy (RECOMB’03), 188–195.

Levinthal, C., 1968. Are there pathways for protein folding?
Extrait du Journal de Chimie Physique 65.

Madras, N. and Sokal, A. D., 1987. Nonergodicity of lo-
cal, length-conserving Monte Carlo algorithms for the self-
avoiding walk. Journal of Statistical Physics 47, 573–595.

Madras, N. and Sokal, A. D., 1988. The pivot algorithm: A
highly efficient Monte Carlo method for the self-avoiding
walk. Journal of Statistical Physics 50, 109–186.

Mann, M., Will, S., and Backofen, R., 2007. The energy
landscape library - a platform for generic algorithms. In
Proc. of BIRD’07, volume 217, 83–86. OGC.

Mann, M., Will, S., and Backofen, R., 2008. CPSP-tools
- exact and complete algorithms for high-throughput 3D
lattice protein studies. BMC Bioinformatics 9, 230.

Mazzoni, L. N. and Casetti, L., 2006. Curvature of the energy
landscape and folding of model proteins. Physical Review
Letters 97, 218104.

Miyazawa, S. and Jernigan, R. L., 1996. Residue-residue
potentials with a favorable contact pair term and an un-
favorable high packing density term, for simulation and
threading. J Mol Biol 256, 623–44.

Nicola, A. V., Chen, W., and Helenius, A., 1999. Co-
translational folding of an alphavirus capsid protein in the
cytosol of living cells. Nat Cell Biol 1, 341–5.

Park, B. H. and Levitt, M., 1995. The complexity and accu-
racy of discrete state models of protein structure. J Mol
Biol 249, 493–507.

Renner, A. and Bornberg-Bauer, E., 1997. Exploring the fit-
ness landscapes of lattice proteins. Pac Symp Biocomput.
361–372.

SeqData-URL, 2008. Classified set of protein-like, good/bad
folding and non-degenerate HP-sequences of length 27
in the unrestricted 3D-cubic HP-model. Available from
http://www.bioinf.uni-freiburg.de/Data/.

Shakhnovich, E. I., 1996. Modeling protein folding: the
beauty and power of simplicity. Fold Des. 1, R50–54.

Steinhöfel, K., Skaliotis, A., and Albrecht, A. A., 2007.
Stochastic protein folding simulation in the d-dimensional
HP-model. In Proceedings of the 1st Conference on BioIn-
formatics Research and Development, 381–394. Springer.

Thachuk, C., Shmygelska, A., and Hoos, H. H., 2007. A
replica exchange Monte Carlo algorithm for protein fold-
ing in the HP model. BMC Bioinformatics 8, 342.

Unger, R. and Moult, J., 1993. Finding the lowest free energy
conformation of a protein is an NP-hard problem: proof
and implications. Bull Math Biol 55, 1183–1198.

Wales, D. J., 2004. Energy Landscapes. Cambridge Univer-
sity Press, Cambridge.

Wolfinger, M., Will, S., Hofacker, I., Backofen, R., and
Stadler, P., 2006. Exploring the lower part of discrete
polymer model energy landscapes. Europhysics Letters
74, 725–732.

Wolfinger, M. T., Flamm, W. A. S.-S. C., Hofacker, I. L., and
Stadler, P. F., 2004. Exact folding dynamics of RNA sec-
ondary structures. J.Phys.A: Math.Gen. 37, 4731–4741.

Wolynes, P. G., Onuchic, J. N., and Thirumalai, D., 1995.
Navigating the folding routes. Science 267, 1619 – 1620.

Figure Legends

Figure 1

Folding simulations for a kT series to identify kTf

(3rd plot). The dotted green line marks the energy
of the unique native structure, i.e. if it is reached
the native structure is adopted.

Figure 2

Histogram of the sequence numbers based on suc-
cessful runs that end in the native structure out of
1000 runs with maximal 1000 simulation steps per
sequence (green bars). The red bar on the left rep-
resents the number of sequences that did not found
their native structure within the given simulation
length.
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Figures

Figure 1
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Figure 2
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