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Abstract. Graph rewrite systems are powerful tools to model and study
complex problems in various fields of research. Their successful applica-
tion to chemical reaction modelling on a molecular level was shown but
no appropriate and simple system is available at the moment.
The presented Graph Grammar Library (GGL) implements a generic
Double Push Out approach for general graph rewrite systems. The frame-
work focuses on a high level of modularity as well as high performance,
using state-of-the-art algorithms and data structures, and comes with ex-
tensive documentation. The large GGL chemistry module enables exten-
sive and detailed studies of chemical systems. It well meets the require-
ments and abilities envisioned by Yadav et al. (2004) for such chemical
rewrite systems. Here, molecules are represented as undirected labeled
graphs while chemical reactions are described by according graph gram-
mar rules. Beside the graph transformation, the GGL offers advanced
cheminformatics algorithms for instance to estimate energies ofmolecules
or aromaticity perception. These features are illustrated using a set of
reactions from polyketide chemistry a huge class of natural compounds
of medical relevance.
The graph grammar based simulation of chemical reactions offered by
the GGL is a powerful tool for extensive cheminformatics studies on a
molecular level. The GGL already provides rewrite rules for all enzymes
listed in the KEGG LIGAND database is freely available at
http://www.tbi.univie.ac.at/software/GGL/.

1 Background

Graphs are powerful tools to represent and study all kind of data in any field
of research. In order to generate graph structures of interest or to alter them
according to some directive, graph transformations can be applied. A common
approach is to formulate such transformations in terms of graph grammars or
graph rewrite systems [5, 7, 37]. This enables a compact but very expressive
representation of allowed alterations and allows for sound mathematical analyses
of the problems [2, 19].

Here, we present our Graph Grammar Library (GGL), a fast and generic
C++ framework to formulate and apply graph grammars. Beside the general
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Fig. 1. Two graph representations of the same molecule at different levels of detail (a,
b). Graphical depiction of the Diels-Alder reaction (d) for two molecules that enables
two different result molecules. (c) The corresponding graph grammar rule L→ R.

graph rewrite system, we provide a specialized module to enable efficient graph
grammar applications in chemical context. The power of such systems for chem-
ical studies was highlighted by Yadav et al. [49] who emphasized the lack and
need for an efficient implementation. The requirements and abilities sketched by
Yadav et al. are well met by the capabilites of the GGL framework as presented
within this manuscript.

To represent molecules in graph notation is well known in chemistry and
found in any text book. Therein, atoms are represented by labeled nodes in
the graph and the connecting chemical bonds are depicted by according edges
(see Fig. 1 a) and b)). Such molecule graphs can be used to model chemical
reactions by the application of graph grammar rules as shown in Fig. 1 c) and d).
This small example shows already the power of graph rewrite systems, since a
single graph grammar rule encodes all possible interaction combinations of the
chemical reaction encoded (within the example two possible product molecules
are possible, see Fig. 1 d)).

In the following, we will introduce the concept of graph rewrite systems in
general and how it is implemented in detail within the GGL framework. We
give insight into the techniques applied and the efforts done in order to gain
an efficient and flexible framework for graph grammar applications. A major
contribution of the GGL is its chemistry module tailored to fulfill the needs
when representing chemical reactions via graph transformations as requested by
Yadav et al. [49]. We show the generality of the GGL via several applications
and elaborate its use for chemical studies. The latter is extended by providing a
full set of predefined graph grammar rules for all enzymes listed in the KEGG
LIGAND database [30] (Release 58.1 June 2011).



Graph Grammars and their Applications in Chemistry

For simplicity, we will focus on labeled, undirected graphs in the following. Such
a graph is given by a tuple (V,E, lV , lE) that is defined by the set of n nodes
V = {v1, . . . , vn}, the set of edges E = {{vi, vj} | vi, vj ∈ V }, and the label
functions lV : V → Σ∗ and lE : E → Σ∗ that assign a label based on some
alphabet Σ to each node and edge, respectively.

Graph rewrite systems are an algebraic approach to apply graph transfor-
mations [36]. It is defined by a set of rewriting rules of the form L→ R, with L
defining the subgraph to be replaced during the transformation, the pattern or
left side of the rule, and R stating the transformation result, i.e. the replacement
or right side of the rule. Thus, graph rewriting requires the location of the pat-
tern graph within the graph to transform. This subgraph monomorphism problem
is a hard computational problem depending on the graph type [18]. Formally,
given two graphs G = (V G, EG, lGV , l

G
E) and L = (V L, EL, lLV , l

L
E), one has to find

an injective mapping m : V L → V G such that it holds

∀vi,vj∈V L : m(vi) 6= m(vj) ∧ lLV (vi) = lGV (m(vi))

∀{vi,vj}∈EL : {m(vi),m(vj)} ∈ EG ∧ lLE({vi, vj}) = lGE({m(vi),m(vj)})

In the following, such a mapping m is called a match of the pattern L within
target graph G and defines the subgraph of G isomorph to L.

When applying a graph grammar rule L → R, one can follow the Double
Push Out (DPO) approach [12, 36]. Therein, given a match m of L in some
target graph G, the result graph G′ is derived from G by (I) a relabeling of all
matched nodes present in both V L and V R but showing different labels according
to lLV , l

R
V , (II) the deletion of all nodes (and adjacent edges) present only in V L

but absent in V R, and (III) the adding of all nodes exclusively present in V R.
Edges are handled accordingly based on EL and ER. For further details please
refer to the standard literature, e.g. [12, 36].

Such graph grammar rules have been successfully applied to model chemical
reactions with molecular detail [6, 19, 35]. Therein, a graph grammar rule en-
codes the molecule graph transformations resulting from a chemical reaction as
exemplified in Fig. 1. The figure shows the power of such an encoding: the reac-
tion is as much abstracted from the specific molecules as possible and implicitely
encodes all interaction configurations.

At a higher abstraction level, frameworks have been introduced to encode and
alter metabolic and signal-transduction networks based on graph rewrite systems
[7, 9, 15, 16, 26, 48]. The focus here is to encode the kinetics and interactions of
chemical reactions and not the mechanisms underlying them.

All the above mentioned frameworks are either prototypical implementations
not tailored for a extensive application or very specialized systems designed
for a specific type of experiment/problem. Within the context of general graph
rewrite systems, other implementations have been introduced. Among them are
the AGG [42, 43] and the GrGen.NET [21, 28] frameworks. While the AGG
implementation was shown to be not well performing for larger data sets [21],



we found the very general GrGen.NET system not well placed to meet the
requirements formulated by Yadav et al. [49]. The compilation of the graph
grammar rules into executable code including the planned search strategy used
to locate the patterns and the very expressive but complicated rule encoding
makes the package powerful but not well placed for its integration into tools for
chemical modelling to be used by chemists.

Here, we introduce the Graph Grammar Library (GGL) as a generic graph
grammar framework with a strong focus on chemical applications as sketched
by Yadav et al.. The GGL is not as general as e.g. the GrGen.NET system,
since it currently allows only for a single label attribute associated to each node
and edge, but it features an easy rule encoding in combination with a flexible
and efficient rule application framework. In the following, we will introduce the
GGL and the applied methods in detail.

2 The Graph Grammar Library

The Graph Grammar Library (GGL) is a generic C++ programming library
that enables an easy setup of graph rewrite systems for labeled graphs. During
the design of the library, we have focused on the following features:

Generality The GGL is built as a generic framework to be used for graph
grammars on labeled graphs. The implementation uses the generic Boost
Graph Library (BGL) [39] for its core graph representations. This enables
the embedding of the graph rewrite functionalities into existing BGL-based
projects. Our chemistry module supports the full atom range as well as
standard chemoinformatics formats and libraries [33,46]

Modularity The object-oriented modular design of the library enables a clear
separation of functional units and the straight-forward implementation and
use of specific functionalities. The interconnection of the modules is defined
by clear and slim interfaces to enable a high level of transparency. The separa-
tion into context-specific sublibraries enables a selective use of the operations
needed for a specific task.

Performance The main goal of the library is to provide a generic framework for
computationally extensive applications. Thus, the implementation is tuned
to be as fast as possible while maintaining a high level of generality and
modularity. We apply efficient state-of-the-art algorithms [11, 23, 24] and
data structures [13, 39], as detailed later, and have profiled and improved
the code for a maximal performance.

Documentation In order to make the GGL easily applicable, we provide a
well documented Application Programming Interface (API) for programmers
as well as tutorials for end users focusing e.g. on the graph grammar rule
encoding.

In the following, we will present the core functionalities of the library and how
graph grammar rules are formulated and applied. Afterwards, we focus on the
chemistry module of the GGL and the provided features and functionalities for
chemoinformatical applications.



2.1 Subgraph Matching

As introduced above, the identification of matchesm of a given left side pattern L
of a graph grammar rule L → R is the central task of rule applications. The
applied algorithm to solve the subgraph isomorphism problem is thus defining
the performance of the whole rewrite engine [21]. Within the GGL, we apply the
efficient VF2-algorithm and implementation introduced by Cordella et al. [11],
which is among the fastest available [10]. We slightly adapted and extended the
fast C-implementation and provide it within the GGL v4.0 package.

We have extended the implementation in two directions. First, we have in-
troduced the handling of wildcard labels. This is needed to specify the existence
of a given node without specifying the concrete label, e.g. to define an adjacent
residual group of a molecule without any details. Furthermore, we have added an
advanced constraint handling that can be used to enforce additional matching
constraints. Among them are degree and adjacency constraints, negative appli-
cation conditions (NAC), like the non-existence of an edge, as well as advanced
chemistry related confinements.

Since we focused on a high level of modularity, we use a clear interface to pro-
vide the subgraph matching functionalities within the GGL. The VF2-algorithm
is ported via this interface for its application. This enables the use of the avail-
able efficient VF2-implementation as well as the replacement of the VF2-algorithm
with other subgraph matching approaches if needed. Since it was shown that
the isomorphism problem can be solved efficiently for some types of graphs [18],
it might be useful to apply a dedicated matching algorithm depending on the
problem at hand. Furthermore, other matching approaches can be easily inte-
grated [17, 37, 45]. The whole subgraph matching module is encapsulated into
an independent library module, the SubGraph Matching (SGM) library, which
is part of the GGL distribution.

2.2 Rule Encoding

Before we give details on the graph grammar rule applications we first introduce
how rules are represented and to be specified within the GGL framework. Within
the library, a graph grammar rule is represented by a specific graph object that
encodes both, the left (L) and right side part (R) of a rule L→ R. Thus, it holds
for each node and edge if it is present in L or R together with the according
label. Formally, it is defined by the extended graph tuple (V,E, lLV , l

R
V , l

L
E , l

R
E),

which encodes the mapping of left and right side graphs. A node v ∈ V not
present within L will have an empty left side node label lLV (v) = λ. The same
holds for edges. Thus we can derive the left side pattern L = (V L, EL, lLV , l

L
E) by

V L = {v ∈ V | lLV (v) 6= λ} and EL = { {vi, vj} ∈ E | lLE({vi, vj}) 6= λ}.

The right side graph R is derived accordingly. Based on this representation, we
have all the information at hand to apply the rule for each match m of L within
some target graph G, since we know exactly the corresponding nodes/edges of L
and R.



rule [

ruleID "Diels-Alder reaction"

context [

node [ id 1 label "C" ]

node [ id 2 label "C" ]

node [ id 3 label "C" ]

node [ id 4 label "C" ]

node [ id 5 label "C" ]

node [ id 6 label "C" ]

]

left [

edge [ source 1 target 2 label "=" ]

edge [ source 2 target 3 label "-" ]

edge [ source 3 target 4 label "=" ]

edge [ source 5 target 6 label "=" ]

constrainNoEdge [ source 1 target 5 ]

constrainNoEdge [ source 4 target 6 ]

]

right [

edge [ source 1 target 2 label "-" ]

edge [ source 2 target 3 label "=" ]

edge [ source 3 target 4 label "-" ]

edge [ source 4 target 5 label "-" ]

edge [ source 5 target 6 label "-" ]

edge [ source 6 target 1 label "-" ]

]

]

Fig. 2. The GML rule encoding of the graph grammar rule presented in Fig. 1.

For an easy and readable specification of graph grammar rules, we use an
encoding in the Graph Modelling Language (GML) format [25]. This key-value
pair structured format enables a compact and human-readable encoding while
it is still machine-parsable due to its simple grammar. Figure 2 shows the GML
encoding of the rule presented in Fig. 1. Note, all unchanging nodes and edges
part of L and R are defined within the context section (contributing to both
lLV and lRV ), while left/right side graph specific nodes/edges and their labels are
given in the according left/right sections and will only define the according
lLV / lRV data, respectively.

If the label of some nodes/edges of the pattern is of no interest for the
matching, one can specify a wildcard label (e.g. *) by adding the according

key-value entry wildcard "*" . The subgraph matching engine will now match
all nodes/edges from the left side pattern L that show the wildcard label, e.g.

node [ id 1 label "*" ] , to any other nodes/edges in the target graph with-

out further label comparisons.
Often, the specification of wildcard labels makes the rule too general and

might enable unintended rule applications. To tackle this problem, we support
the specification of additional matching constraints that have to be ensured by
the matching procedure. The simplest example is to restrict the allowed labels
for a node defined with wildcard label to a given set of labels:

constrainNode [ id 1 op = nodeLabels [ label "C" label "N" ] ]

The reverse constraint can be encoded by changing the operator value from “=”
to “!” to disallow the given labels. Other constraints supported for general graph
grammars are the restriction of edge labels or node degree, the specification of



required/forbidden adjacent nodes or edges, or the explicit prohibition of the
existance of an edge between two nodes. For further details on the constraints
supported and their encoding we refer to the according tutorial part of the GGL
v4.0 distribution.

2.3 Rule Application

The rule application follows the Double PushOut (DPO) approach [12,36]. Given
a graph grammar rule L → R encoded by a rule graph (V,E, lLV , l

R
V , l

L
E , l

R
E) as

defined above and a target graph G onto which the rule is to be applied. First, all
matches m of the rule’s left side pattern L within G have to be indentified. The
GGL uses to this end its subgraph matching interface and (as default) the VF2-
algorithm [11] as already introduced. For each match m, the following procedure
is applied to generate the result graph G′ for the current match and rule:

1. Remove from G all nodes exclusive within L

V G
′

= V G \ {m(v) | v ∈ V ∧ lRV (v) = λ}

and all edges exclusive within L or adjacent to removed nodes.

EG
′

= EG\ { {m(vi),m(vj)} | {m(vi),m(vj)} ∈ E
∧ (lRE({m(vi),m(vj)}) = λ ∨ lRV (vi) = λ ∨ lRV (vj) = λ) }

2. Relabel withinG′ all nodes/edges showing different (non-empty) labels within
L and R.

3. Add to G′ all nodes/edges exclusive within R and label accordingly.

All resulting graphs G′ are then forwarded to a provided instance of a well de-
fined graph reporter interface. This enables application specific post-processing
and storing of the graphs resulting from the graph rewrite. Within the chemistry
module, described next, this is for instance used to apply sanity checks on the
produced molecule graphs, to convert and store molecule graphs into canoni-
cal string formats, to gather reaction product information, or to compute the
reaction rate of the specific reaction defined by the rule application. In a more
algorithmic context, such a graph reporter can also trigger another recursive iter-
ation of rule applications resulting in a depth-first search/traversal of the graph
space encoded by the graph grammar. An according generic implementation is
provided and applied within the GGL framework.

2.4 Chemistry Package

As discussed in the introduction, chemistry and especially chemical reactions
are a well placed target for the application of graph rewrite systems [6, 35].
The GGL provides a specialized chemistry module tailored for such needs. It
enables a flexible but fast and efficient implementation of graph grammar based
algorithms to solve chemical reaction related problems. In the following, we will
present the features provided by the module and the available data structures
and algorithms.



Molecules as Graphs Figure 1 illustrate the definition of molecules in terms
of graphs and the relation of chemical reactions and graph grammar rules. In
detail, a molecule is represented as a graph M where the node (lMV ) and edge
labels (lME ) are restricted to the existing atom and bond types, respectively. As
suggested by Yadav et al. [49] and applied in literature [6, 35], we follow the
SMILES encoding of atoms and bonds [46]. Therein, bond labels are confined
to lME (..) ∈ {-,=,#,:}, encoding for single, double, triple, or aromatic bonds
respectively. Atom labels lMV are either one of the labels known from the periodic
table of elements, e.g. C or Br, an organic atom participating in an aromatic ring
(encoded by lower case symbols, e.g. c or n), or a “complex” label encoding
additional charge information, e.g. O-.

Within the GGL chemistry module we enforce an explicit encoding of hydro-
gen information as atoms (see Fig. 1b)), even if the SMILES notation allows for
their encoding within complex node labels. This was done a) to ensure explicit
and complete chemical rule encodings, b) to enable sanity checks for molecules
and rules, c) to allow for the prediction of aromaticity information, and d) to en-
sure an efficient matching of chemical rule patterns onto molecule graphs, which
is needed for their application.

Based on our internal molecule graph representation, the GGL chemistry
module features a couple of functionalities needed within the context of chemi-
cal reaction problems. This includes sanity checks for molecules (e.g. correct label
usage, valence constraints, etc.), the SMILES string encoding (discussed within
next section), and automatic hydrogen prediction. Furthermore, we have reim-
plemented the efficient free energy prediction algorithm introduced by Jankowski
et al. [29]. It enables a fast energy approximation of a given molecule graph based
on a decomposition into defined atomic groups and their energy contributions.
Again, we take advantage of the fast subgraph matching module part of the GGL
v4.0 to allow for a performant decomposition. The implementation and use of
other energy estimation approaches is easily possible due to the modular design
of the library.

The estimation of a molecule’s energy usually requires knowledge about (het-
ero) aromatic rings within the molecule [38]. Since the property of aromaticity
might emerge or vanish due to chemical reactions, we provide an aromaticity
prediction framework. It is based on a ring perception using an extension of the
fast algorithm suggested by Hanser et al. [24] in combination with a support
vector machine learning approach for the aromaticity prediction based on the
NSPDK graph feature kernel [13].

Canonical SMILES The SMILES notation was actually introduced to enable
a string representation of chemical molecules, i.e. SMILES strings are a string
encoding of molecule graphs [46]. Furthermore, they allow for a canonical, i.e.
unique, representation of molecules [47]. This is especially useful when storing
molecule information in databases or when molecules are to be given as pro-
gram input (see [49]). The GGL features a full-fledged canonical SMILES writer
implementation as well as an according SMILES parser to enable SMILES as



the chemical communication language for applications. Internally, molecules are
represented as graphs as given above.

Chemical Reactions Chemical reactions are special graph grammar rules since
they have certain essential side constraints to be fulfilled. First and most impor-
tant: conservation of mass, i.e. no atom can appear or vanish. Thus, a chemical
reaction is – as a coarse grained sketch – a “rewiring” of bonds within or be-
tween molecule graphs. Technically, we can encode chemical reactions as graph
grammar rules in GML notation as introduced above. Therein, atom and node
labels are restricted to the encoding supported by SMILES (see above), while
wildcard labels are allowed to enable more general encodings. All chemical rules
can be and are checked for their correctness within the GGL chemistry frame-
work. Among the tests are checks for mass conservation, label use, or reasonable
valence changes. Another important check is to ensure that no bond is formed
twice, which is done by implicitely adding according “no-edge” constraints for
all bonds formed within the chemical rule.

When applying chemical rules on molecule graphs we can use the generic
graph grammar rule application framework described above. No adjustments for
the rule applications are needed. Since some chemical rewrites might result in
non-realistic molecules, e.g. due to steric constraints not covered by the rule [49],
we provide a post-application verification step. Here, the output molecules are
postprocessed, e.g. to correct the molecules aromaticity, and checked for sanity.
A chemical rewrite only results in a chemical reaction, if all result molecules
have been shown to be valid. The canonical SMILES encoding introduced above
is used to derive a compact string representation of both the resulting molecules
as well as the whole reaction.

Chemical reaction networks are often subject of reaction pathway analyses.
For this purpose one has to know or estimate the reaction rates to be associated
to individual chemical reactions e.g. as produced by a graph grammar rule appli-
cation. The GGL chemistry framework fully supports such requirements. Based
on the approach by Jankowski et al. [29], we estimate the energy difference ∆E
of the input and output molecules of a reaction. This enables the estimate of the
reaction rate using the well known Arrhenius law, i.e. the reaction rate is ap-
proximated by exp−∆E/RT for a given temperature T using the gas constant R.
Other approaches, e.g. the machine learning approach by Kayala et al. [31], can
be easily integrated and used within the GGL chemistry framework if needed
due to its modular architecture.

Molecular Group Specification The specification of (bio)chemical reactions
often requires the representation of large (unchanged) parts of molecules in order
to make the rule as specific as the chemical reaction. A classic example is the
involvement of helper molecules like ATP, NADH, etc. that are only slightly
changed but have to be represented completely to avoid the application of the
rule using similar molecules.



Fig. 3. The depiction of the Diels-Alder reaction network for the two input molecules
depicted in Fig. 1d) (with SMILES C=CC(C)=C and C=CC) and the rule encoding from
Fig. 2 using two rule application iterations.

To this end, the GGL supports the specification of molecular groups as
pseudo-atoms within chemical rule definitions. They allow for a much easier
and compact rule definition and avoid potential typos and mistakes. Section B
of the suppl. material exemplifies the problem.

Visualization To enable an easier definition and evaluation of chemical reac-
tion data, visualization scripts are provided. 2D-layouting of molecule graphs is
done via the OpenBabel framework [33] and scalable vector graphics in SVG
or PDF format are generated. For instance, given a valid GML encoding of a
chemical rule, the script chemrule2svg.pl can be used to generate an according
depiction. Figure S.1 (suppl. material) exemplifies the application for the GML
rule encoding given in Fig. 2.

The GGL v4.0 package provides a reimplementation of the reaction network
expansion approach presented in [6] named toyChem. Given a set of molecules
and chemical reactions, toyChem expands the according reaction network via an
iterative application of the reaction rules. Along the expansion, it automatically
computes according reaction rates and produces a graph encoding of the reaction
network. The script printReactionNetwork.pl visualizes the network including
depictions of the molecules and rate information. For an example see Fig. 3.

Set of Enzymatic Reaction Data Provided For the application of the
GGL to simulations of biochemical reactions within metabolic networks, 5133
unique GML-encoded graph grammar rules for enzymatic reactions are included
in the GGL v4.0 distribution. The rules are derived from the KEGG LIGAND
database [30], Release 58.1 June 2011.

For each enzyme listed in the database, a rewrite rule for each reaction an-
notated to that enzyme has been created automatically. To this end, an atom-
to-atom correspondence between the substrate and product molecules has been
determined to identify the broken and formed bonds along the given reaction.
The atom mapping was generated using a greedy heuristic losely based on the
Cut Successive Largest algorithm proposed in [14]. The predicted mappings fol-
low the Principle of Minimal Chemical Distance, which states that the mech-



anism involving the least reconfigurations of valence electrons (i.e. edge addi-
tions/removals) is most likely the true reaction mechanism. Reactions that are
unbalanced or contain compounds with missing or faulty molecular structure
data cannot be mapped and are therefore not included. Since there is no data
on reaction reversibility in the database, only the forward direction as given in
the database is represented.

OpenBabel Port The GGL chemistry module is of course not the only avail-
able cheminformatics package on the market. It is neither intended nor designed
to enable very sophisticated chemical informations as molecule mass or to pro-
vide specific tools like graphical depiction algorithms already available in other
libraries. A powerful and freely available library is provided by the OpenBa-
bel project [33] that was initially started to enable an easy conversion between
the various chemical data formats. Nowadays, various tools and solutions are
provided to tackle chemoinformatics problems.

Since we focus on a highly modular design of the GGL, we provide an easy
port to convert our internal molecule graph representation into an OpenBa-
bel object. This port can be used to get access to the full set of functionality
provided by the OpenBabel library if needed [33].

2.5 Further Library Features

Beside the features introduced we want to give some further remarks on the
GGL programming library. The object-oriented C++ source code is fully ANSI-
conform and extensively documented. This enables the generation of the pro-
vided Application Programming Interface using the doxygen system. The de-
pendency checking and compilation process is tailored for Unix-like systems (in-
cluding Cygwin for MS Windows) and is based on the established GNU autotools

resulting in an easy and automatic setup and installation of the libraries and
tools. The GGL v4.0 comes with an extensive test set framework to ensure the
correctness of the build on the used platform and to ensure the stability and
maintainability of the library. In addition, we provide Perl-5 bindings to en-
able the application of the GGL functionalities within fast prototypical Perl
developments, e.g. in combination with the PerlMol package [44].

Last but not least, the GGL v4.0 package is freely available at:

http://www.tbi.univie.ac.at/software/GGL/

3 Application and Examples

The graph grammar library is designed to support a wide range of graph rewrite
systems on any type of graph. For illustration, we have implemented a few exam-
ple applications that cover different aspects of graph rewrite. All are distributed
within the GGL v4.0 package and described in Sec. C of the suppl. material.

http://www.tbi.univie.ac.at/software/GGL/


Fig. 4. Autocatalytic core network (a) of the formose process, keto-enol tautomer-
ization of a carbonyl compounds (b), and aldol addition (c) between two carbonyl
compounds. Depending on the reaction direction the aldol addition forms or breaks
a C–C bond (�). In the case of α-hydroxy-carbonyl compounds (HO–C–C=O), the keto-
enol tautomerization provides a mechanism for the carbonyl functionality (C=O) to
shift along the backbone of the sugar (�).

Since the GGL v4.0 supports an extensive module for chemical graph rewrite
systems, we will focus on chemical applications in the following.

The graph grammar approach to chemical transformation gives a very com-
pact description of a whole “chemical universe”, i.e. the language of all chemical
graphs, which are reachable from an initial set of chemical “starting graphs” by
iterative application of the reaction rules. The iterative expansion of a particular
graph grammar yields a directed, potentially infinit reaction network, where the
chemical graphs are connected by hyperedges representing the reaction rules.
These reaction networks can be further analysed statistically or with method-
ologies from network theory to uncover unexpected relations between network
nodes and their properties [22, 41]. The toyChem utility distributed with the
GGL implements only simple exhaustive iterative expansion of a chemical uni-
verse. For the efficient exploration of a chemical universe a sofisticated strategy
framework is required (see [1]) to avoid combinatorial explosion. The GGL is a
major improvement over the prototypical implementation presented in [6]. Be-
sides the extention to the full chemical atom set GGL implements an energy
increment system as well as a rate calculation approach for chemical reactions.
Furthermore GGL provides an interface to the OpenBabel library and therefore
the whole functionality of this important open source cheminformatics library
can be harnessed from within the GGL.

On the basis of the formose process [8], we illustrate, that the graph gram-
mar approach is indeed a sensible model of chemical reaction networks and nicely
captures the algebraic properties of chemistry itself. The formose process con-
denses formaldehyde, the simplest possible sugar, into a combinatorial complex



Fig. 5. Hypergraph of the resulting reaction network after 4 iterations of the formose
process grammar.

mixture of higher sugars by repeatedly involving only two reversible reactions,
the aldol reaction and the keto-enol tautomerization (see Fig. 4 b, c). The corre-
sponding graph grammar rule encodings are depicted in Fig. S.5 and S.6 (suppl.
material). An autocatalytic loop, which produces glycolaldehyd and consumes
formaldehyde, is located at the core of the formose process (see Fig. 4 a). Figure 5
depicts the growing reaction network of the formose process.

The following table 1 shows the exponential explosion of the molecular space
for the formose process and the according runtime of our toyChem tool. Note,
the vast majority of the runtime is consumed by canonical SMILES generation
for the molecule graphs resulting from graph grammar rule applications. Still
this step is essential to distinguish new from already known molecules and it is
much faster than graph isomorphism based comparisons.

Iteration 1 2 3 4 5 6

Molecules 3 5 9 37 302 10,572
Time 0 0 0 0 0.2s 10.5s

Table 1. Exponential explosion of the molecular space for the formose process starting
from OCC=O and C=O along with the runtimes of toyChem.



The second example shows the reaction network for the enzyme mechanism
of β-lactamase (see Fig. S.7) as found in the MACiE database [27] entry M0002.
Specificity of the amino acide side chains of Lys, Ser and Glu in the active site
of the enzyme EC 3.5.2.6 was achieved by marking the Cα atom labels of the
aminoacides with a SMILES class flag (see Fig. S.8 suppl. material). In that
way reactions between amino acide side-chains are suppressed within the graph
grammar rule application. Figure S.9 (suppl. material) depicts the first step
within the enzyme mechanism.

4 Summary

The Graph Grammar Library (GGL) is a powerful framework for cheminfor-
matics applications based on graph rewrite. It meets very well the mandatory
requirements for such studies as discussed by Yadav et al. [49] and comes with
a powerful chemistry module providing essential algorithms. With the advent
of genome-scale metabolic networks, formalisms such as the GGL to handle
chemical transformation will become an important factor for the analysis, inter-
pretation, and manipulation of these networks.
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6. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J
Chem. Inf. and Comp. Sci. 43(4), 1085–1093 (2003)

7. Blinov, M., Yang, J., Faeder, J., Hlavacek, W.: Graph theory for rule-based model-
ing of biochemical networks. In: Transactions on Computational Systems Biology
VII, LNCS, vol. 4230, pp. 89–106. Springer (2006)



8. Butlerov, A.M.: Einiges über die chemische structur der körper. Zeitschrift für
Chemie 4, 549–560 (1861)

9. Colvin, J., Monine, M., Gutenkunst, R., Hlavacek, W., Von Hoff, D., Posner, R.:
RuleMonkey: software for stochastic simulation of rule-based models. BMC Bioin-
formatics 11(1), 404 (2010)

10. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the
VF graph matching algorithm. In: Proc. of ICIAP’99. p. 1172 (1999)

11. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 26(10), 1367–1372 (2004)

12. Corradini, A., , Montanari, U., , Rossi, F., Ehrig, H., Heckel, R., Loewe, M.: Al-
gebraic approaches to graph transformation part I: Basic concepts and double
pushout approach. In: Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. vol. 97, pp. 163–245 (1997)

13. Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In:
Proc. of ICML’10. pp. 255–262 (2010)

14. Crabtree, J.D., Mehta, D.P.: Automated reaction mapping. J. Exp. Algo. 13, 1.15–
1.29 (2009)

15. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Proc. of Concurrency Theory (CONCUR). pp. 17–41 (2007)

16. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling,
symmetries, refinements. In: Proc. of Formal Methods in Systems Biology (FMSB).
pp. 103–122 (2008)

17. Dörr, H.: Efficient Graph Rewriting and its Implementation. LNCS, Springer
(1995)

18. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In:
Proc. of SODA’95. pp. 632–640 (1995)

19. Flamm, C., Ullrich, A., Ekker, H., Mann, M., Hoegerl, D., Rohrschneider, M.,
Sauer, S., Scheuermann, G., Klemm, K., Hofacker, I.L., Stadler, P.F.: Evolution of
metabolic networks: A computational framework. J Syst. Chem. 1(1), 4 (2010)

20. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American 223, 120–123 (1970)

21. Geiss, R., Batz, G., Grund, D., Hack, S., Szalkowski, A.: GrGen: A fast SPO-
based graph rewriting tool. In: Proc. of ICGT’06), LNCS, vol. 4178, pp. 383–397.
Springer (2006)

22. Grzybowski, B.A., Bishop, K.J.M., Kowalczyk, B., Wilmer, C.E.: The
ẃiredúniverse of organic chemistry. Nature Chemistry 1, 31–36 (2009)

23. Guzman, J.d., Nuffer, D.: The Spirit Library: Inline parsing in C++. C/C++ Users
Journal 21(9), 22 (2003)

24. Hanser, T., Jauffret, P., Kaufmann, G.: A new algorithm for exhaustive ring per-
ception in a molecular graph. J. Chem. Inf. Comp. Sci. 36(6), 1146–1152 (1996)

25. Himsolt, M.: GML: A portable graph file format. Tech. rep., University of Passau,
Germany (1999)

26. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.:
Rules for modeling signal-transduction systems. Sci. STKE 2006(344), re6 (2006)

27. Holliday, G.L., Andreinj, C., Fischer, J., Rahman, S.A., Almonacid, D.E., Williams,
S.T., Pearson, W.R.: MACiE: exploring the diversity of biochemical reactions. Nuc.
Acids Res. 40, D783–D789 (2012)

28. Jakumeit, E., Buchwald, S., Kroll, M.: GrGen.NET. STTT J. 12(3), 263–271 (2010)



29. Jankowski, M.D., Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V.: Group contri-
bution method for thermodynamic analysis of complex metabolic networks. Bio-
phys. J. 95(3), 1487–1499 (2008)

30. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integration
and interpretation of large-scale molecular data sets. Nuc. Acids Res. (2011)

31. Kayala, M.A., Azencott, C.A., Chen, J.H., Baldi, P.: Learning to predict chemical
reactions. J. Chem. Inf. and Modeling 51(9), 2209–2222 (2011)

32. Lynce, I., Ouaknine, J.: Sudoku as a SAT problem. In: Proc. of AIMATH’06. p. 9
(2006)

33. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison,
G.R.: Open Babel: An open chemical toolbox. J. Cheminf. 3(1), 33+ (2011)

34. Roos-Kozel, B.L., Jorgensen, W.L.: Computer-assisted mechanistic evaluation of
organic reactions. 2. perception of rings, aromaticity, and tautomers. J. Chem. Inf.
Comp. Sci. 21, 101–111 (1981)
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45. Varró, G., Friedl, K., Varró, D.: Adaptive graph pattern matching for model trans-

formations using model-sensitive search plans. Electron. Notes Theor. Comput.
Sci. 152, 191–205 (2006)

46. Weininger, D.: SMILES, a chemical language and information system. 1. introduc-
tion to methodology and encoding rules. J. Chem. Inf. Comp. Sci. 28(1), 31–36
(1988)

47. Weininger, D.: SMILES, a chemical language and information system. 2. algorithm
for generation of unique SMILES notation. J. Chem. Inf. Comp. Sci. 29(2), 97–101
(1989)

48. Xu, W., Smith, A.M., Faeder, J.R., Marai, G.E.: RuleBender: a visual interface for
rule-based modeling. Bioinformatics 27(12), 1721–1722 (2011)

49. Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph
transformation system. In: ICGT. LNCS, vol. 3256, pp. 83–95. Springer (2004)



Supplementary Material

A Visualization
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Fig. S.1. The depiction of the Diels-Alder GML graph grammar rule encoding using
the provided visualization script chemrule2svg.pl. The presentation highlights the
altered bonds within the left and right side graph of the reaction in red and green,
resp., to enable the identification of the underlying reaction mechanism.

B Molecular Groups

One field of application for the definition and use of molecular groups is the
specification of molecules that differ only in a few atoms or bonds. In such cases,
it can be convenient to specify only the dissimilar parts of the molecules and
to use group placeholders for the equal parts. That way, the similarity becomes
easy to see and the SMILES easier to read.

As an example, we use the molecules NADH and NAD+ depicted in Fig. S.2
sporting 66 and 65 atoms, respectively. The difference basically comprises only
an additional proton within NADH and a charge change within the lower ring
while the rest of the molecules are identically. Note, these two changes alter the
ring from non-aromatic (NADH) to aromatic (NAD+).

Minimal SMILES encodings of the molecules (highlighting the differing ring
in red) are

NC(=O)C1[CH2]C=CN(C=1)C2OC(COP(O)(=O)O..
..P(O)(=O)OCC3OC(C(O)C3O)n4cnc5c(N)ncnc54)C(O)C2O

for NADH and

NC(=O)c1ccc[n+](c1)C2OC(COP(O)(=O)O..

..P(O)(=O)OCC3OC(C(O)C3O)n4cnc5c(N)ncnc54)C(O)C2O

for NAD+.
In contrast, when using group declarations for the identical parts, namely

the CONH2 group and the ribo-adenosine, the SMILES shrinks to
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Fig. S.2. The molecules NADH (left) and NAD+ (right).

[{CONH2}]C1[CH2]C=CN(C=1)[{Ribo-ADP}]

for NADH and

[{CONH2}]c1ccc[n+](c1)[{Ribo-ADP}]

for NAD+, both depicted in Fig. S.3a) and b).
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Fig. S.3. The molecules NADH (a) and NAD+ (b) described using group identifiers.
Note, only for C3 within NADH explicit proton information is given; all other carbons
have one not depicted adjacent proton. (c) Depiction of the {CONH2} group using the
script molcomp2svg.pl. Note, the proxy node is highlighted in red.

C General Graph Rewrite Examples

C.1 Game of Life

In the 60th, John Conway created a cellular automaton named Game of Life [20]
that reflects the basic principles of birth, death, and survival within populations.



Each cell represents an individual that is either alive or dead depending on the
state of the neighbored individuals.

The problem can be represented as a graph relabeling problem where each
node represents a cell and edges connect neighbored cells. The formulation of
the birth, death, and survival rules defined by Conway as graph grammar rules
is straight forwardly described by graph grammar rules. Each of the three rules
resembles a single node and according adjacency constraints for the matching
and the according recoloring of the node in match case. In combination with an
exhaustive application of the rules, this results in a complete Game of Life solver
based on a graph rewrite system distributed with the package.

C.2 Sudoku

Sudoku is a combinatorial problem where a given 9×9 grid has to be filled with
numbers from 1 to 9, such that each number appears only once in each row,
column, and defined 3×3 sub-grids. The task is to fill a given partially filled grid
such that all constraints are fullfilled [32,40].

Similar to Game of Life, one can encode the Sudoku grid within a graph
where each cell is represented by a node. Each node is connected to all other
cells that have to have a different label. Thus, it resembles the dependency graph
of the problem. In order to find a solution, a Depths-First-Search (DFS) of the
exponential search space can be applied, where each search step is defined by
the valid application of a graph grammar rule. Each rule does the assignment of
a number to a non-assigned node while respecting all constraints.

The GGL v4.0 package features a generic DFS implementation for such pur-
poses. Given a set of graph grammar rules and a start graph, a DFS exploration
of the search space is done and solutions are identified.

C.3 Ring Perception

The enumeration of all rings within a graph can be done using the algorithm pro-
posed by Hanser et al. [24]. Such ring perceptions are important e.g. in chemistry
to do structure classifications or aromaticity identification [34]. The algorithm
by Hanser et al. creates an image of the studied graph that represents the node
adjacency within its edge labels, a so called path graph. This path graph is pro-
gressively collapsed in a way that the final path graph contains only loops, each
representing a ring from the original graph.

We have implemented this general approach for ring perception based on
a small set of graph grammar rules and a simple rule application iteration.
This shows once more the expressivity of graph rewrite systems. A rule-based
example as well as an efficient native C++ implementation of the ring perception
algorithm is part of GGL v4.0 package.

C.4 Y-∆-equivalence problem

The Y-∆-equivalence problem, also known by name wye-delta or delta-wye, star-
delta, star-mesh, or T-Π, is an important problem from graph theory [3] with



application in electrical resistor network optimization [4]. In short, two graphs
are defined to be Y-∆-equivalent if and only if they can be transformed into
each other by applying a series of Y-∆-transformations. These transformations
are either to convert a ∆ triangle subgraph into a Y-like subgraph (by adding
a new central node in combination with the necessary rewiring) or the reverse
operation, i.e. transforming a Y-subgraph into a triangle (via center deletion
and rewiring). For instance, this property is fulfill by the Peterson graph family
forming a Y-∆-equivalence class [3].

Using two simple graph grammar rules that encode the allowed Y-∆-trans-
formations, we can easily setup a search engine to check if two graphs are Y-
∆-equivalent or not. To this end, one starts two independent Breadth-First-
Searches (BFS) starting from the two graphs of interest. Within each BFS all
graphs are generated that can be obtained from the start graph by applying
Y-∆-transformations. The Y-∆-equivalence is proven as soon as the two sets
of graphs produced by the independent BFS intersect. The according graph
grammar rules in GML notation are given in Fig. S.4.

rule [

ruleID "wye to delta"

wildcard "*"

context [

node [ id 1 label "*" ]

node [ id 2 label "*" ]

node [ id 3 label "*" ]

]

left [

node [ id 4 label "*" ]

edge [ source 4 target 1 label "*" ]

edge [ source 4 target 2 label "*" ]

edge [ source 4 target 3 label "*" ]

constrainAdj [

id 4 op = count 3

edgeLabels [ label "*" ]

nodeLabels [ label "*" ]

]

constrainNoEdge [ source 1 target 2 ]

constrainNoEdge [ source 1 target 3 ]

constrainNoEdge [ source 2 target 3 ]

]

right [

edge [ source 1 target 2 label "*" ]

edge [ source 1 target 3 label "*" ]

edge [ source 2 target 3 label "*" ]

]

]

Fig. S.4. The GML rule encoding “wye to delta” graph grammar rule used for Y-
∆ transformations. The reverse “delta to wye” rule can be easily obtained by exchang-
ing the left and right content of the rule, while all constraints can be omitted.

D Chemical Reactions as Graph Grammars

D.1 Formose Process



rule [

ruleID "Keto-Enol Isomerization"

context [

node [ id 1 label "C" ]

node [ id 2 label "C" ]

node [ id 3 label "O" ]

node [ id 4 label "H" ]

]

left [

edge [ source 1 target 4 label "-" ]

edge [ source 1 target 2 label "-" ]

edge [ source 2 target 3 label "=" ]

constrainAdj [ id 2 op = count 1 nodeLabels [ label "O" ] ]

]

right [

edge [ source 1 target 2 label "=" ]

edge [ source 2 target 3 label "-" ]

edge [ source 3 target 4 label "-" ]

]

]

Fig. S.5. The GML rule encoding the “keto-enol tautomerization” graph grammar
rule used. The reverse rule can be easily obtained by exchanging the left and right

content of the rule, while all constraint can be omitted.

rule [

ruleID "Aldol Condensation"

context [

node [ id 1 label "C" ]

node [ id 2 label "C" ]

node [ id 3 label "O" ]

node [ id 4 label "H" ]

node [ id 5 label "O" ]

node [ id 6 label "C" ]

]

left [

edge [ source 1 target 2 label "=" ]

edge [ source 2 target 3 label "-" ]

edge [ source 3 target 4 label "-" ]

edge [ source 5 target 6 label "=" ]

constrainAdj [ id 2 op = count 1 nodeLabels [ label "O" ] ]

constrainAdj [ id 6 op = count 1 nodeLabels [ label "O" ] ]

]

right [

edge [ source 1 target 2 label "-" ]

edge [ source 2 target 3 label "=" ]

edge [ source 5 target 6 label "-" ]

edge [ source 4 target 5 label "-" ]

edge [ source 6 target 1 label "-" ]

]

]

Fig. S.6. The GML rule encoding the “aldol condensation” graph grammar rule. The
reverse rule for the retro-aldol can be easily obtained by exchanging the left and right

content of the rule, while all constraint can be omitted.



D.2 β-Lactamase Enzyme Mechanism

Fig. S.7. Hypergraph of the enzyme mechanism for β-lactamase (EC 3.5.2.6).



# Beta-lactamase (class A)

# MACiE version: 3

# MACiE-entry: M0002, 3.5.2.6, Step 01

rule [

ruleID "3.5.2.6-M0002-S01"

left [

node [ id 8 label "N" ]

node [ id 5 label "O" ]

edge [ source 1 target 5 label "=" ]

edge [ source 6 target 7 label "-" ]

]

context [

node [ id 1 label "C" ]

node [ id 2 label "C" ]

node [ id 3 label "C" ]

node [ id 4 label "N" ]

node [ id 6 label "O" ]

node [ id 7 label "H" ]

node [ id 9 label "H" ]

node [ id 10 label "H" ]

node [ id 100 label "*"]

node [ id 101 label "*"]

edge [ source 1 target 2 label "-" ]

edge [ source 2 target 3 label "-" ]

edge [ source 3 target 4 label "-" ]

edge [ source 4 target 1 label "-" ]

edge [ source 8 target 9 label "-" ]

edge [ source 8 target 10 label "-" ]

edge [ source 6 target 100 label "-" ]

edge [ source 8 target 101 label "-" ]

constrainNode [ id 100 op = nodeLabels [ label "C:1" ] ]

constrainAdj [ id 100 op = count 1 nodeLabels [ label "O" ] ]

constrainNode [ id 101 op = nodeLabels [ label "C:1" ] ]

]

right [

node [ id 8 label "N+" ]

node [ id 5 label "O-" ]

edge [ source 1 target 5 label "-" ]

edge [ source 1 target 6 label "-" ]

edge [ source 8 target 7 label "-" ]

]

]

Fig. S.8. Rewrite Rule in the enzyme mechanism of β-lactamase (EC 3.5.2.6). The
distinction between enzyme and the substrate(s) is achieved by using SMILES class
number for atom labels belonging to amino acid side chains of the enzyme.
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Fig. S.9. First step in the enzyme mechanism of β-lactamase (EC 3.5.2.6)


	The Graph Grammar Library - a generic framework for chemical graph rewrite systems

