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Abstract. The simulation of a protein’s folding process is often done
via stochastic local search, which requires a procedure to apply structural
changes onto a given conformation. Here, we introduce a constraint-based
approach to enumerate lattice protein structures according to k-local
moves in arbitrary lattices. Our declarative description is much more
flexible for extensions than standard operational formulations. It enables
a generic calculation of k-local neighbors in backbone-only and side chain
models. We exemplify the procedure using a simple hierarchical folding
scheme.

1 Introduction

The in silico determination of a protein’s functional fold is a well established
problem in bioinformatics. Since X-ray or NMR studies are still time consuming
and expensive, computational methods for ab initio protein structure predic-
tion are needed. Despite research over the last decades, a direct calculation of
minimal energy structures in full atom resolution is currently not feasible. Thus,
heuristics and a wide variation of protein models have been developed to identify
fundamental principles guiding the process of structure formation. A common
abstraction of proteins are lattice protein models [3, 13, 14, 20]. Their discretized
structure space enables efficient folding simulations [29, 31] while maintaining
good modelling accuracy [25].

Folding simulations are often based on stochastic local searches, e.g. Monte
Carlo simulations [29]. Different procedures, so called move sets, have been devel-
oped to calculate the structural changes along the simulation, i.e. to enumerate
the structural neighborhood of a certain structure. A method often applied in
literature are k-local moves [28] that allow for structural changes within a suc-
cessive interval of fixed length k. They are discussed in detail in Sec 3. Dotu
and co-workers have used local moves for backbone-only HP models within a
constraint-based large neighborhood search for optimal protein structures [9].
Lesh et al. introduced pull moves [15] that are widely used in recent studies [19,



29]. Pivot moves allow for the rotation or reflection of subchains at an arbitrary
Pivot position of the structure [17], while Zhang et al. suggested a sequential
regrowth of structure fragments to enhance folding simulations [31].

All named move sets are currently restricted to backbone-only lattice pro-
tein models, i.e. only the Cα-trail of the protein is modeled. For more realistic
protein models incorporating side chains, often a combination of different move
sets is applied. Betancourt combined Pivot moves on the backbone with a new
FEM move set [5], while Dima and Thirumalai have used a combination of 2-
local moves on the backbone with a simple relocation of the side chain [8]. An
exception is the advanced CABS model by Kolinski and co-workers [13], which
represents the side chain in higher detail and requires more complex moves.

Here, we introduce a generic and flexible approach to enable folding sim-
ulations in backbone-only and side chain models using any k-local moves (i.e.
any interval length k) in arbitrary lattices. The constraint programming (CP)
based formulation focuses on a description of the targeted structural neighbors
instead of an operational encoding of the moves possible. The introduced scheme
is therefore easy to extend with new directives or can be used for other applica-
tions, e.g. fragment re-localization [31], as discussed later. Beneath applications
in studies of the whole energy landscape [21], the approach is well placed to
be applied within a local search following the framework of Pesant and Gen-
dreau [26]. We apply our move set for side chain models within a simple folding
simulation procedure in the style of [29] and evaluate the results with known
protein structures.

2 Preliminaries

Given a lattice L ⊆ Z3 and an according neighborhood relation
L

∼ between co-
ordinates of L. A backbone-only lattice protein of length n is described by (S, C)
where S ∈ Σn denotes the sequence over some alphabet Σ (e.g. the 20 proteino-
gen amino acids) and C ∈ Ln the lattice nodes occupied. A valid lattice pro-

tein structure satisfies connectivity of successive monomers ∀1≤i<n : Ci
L

∼ Ci+1

and their self-avoidingness ∀1≤i<j≤n : Ci 6= Cj . A side chain lattice protein is
defined by (S, Cb, Cs), i.e. a sequence S ∈ Σn, the backbone positions Cb ∈
Ln and the side chain positions Cs ∈ Ln. The side chain position Cs repre-
sents the centroid of the amino acid’s side chain atoms. A valid lattice pro-
tein structure including side chains satisfies connectivity of successive backbone

monomers ∀1≤i<n : Cb
i

L

∼ Cb
i+1, the connection of backbone and side chain for

each amino acid ∀1≤i≤n : Cb
i

L

∼ Cs
i , and the selfavoidingness of all monomers

∀1≤i<j≤n : Cb
i 6= Cb

j ∧ Cs
i 6= Cs

j ∧ Cb
i 6= Cs

j ∧ Cb
i 6= Cs

i . We consider the contact

based energy functions Eb(S, C) =
∑(Ci

L
∼ Cj)

1≤i<j≤n e(Si, Sj) for backbone-only and

Es(S, Cb, Cs) =
∑(Cs

i

L
∼ Cs

j)

1≤i<j≤n e(Si, Sj) for side chain lattice proteins for a given
energy contribution function e : Σ × Σ → R. Note, the energy function for side
chain proteins considers (as in [7]) the contacts between side chain positions
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Fig. 1. HP-optimal structures of HPPHHPPPHPHHPHHPPHPHPPHHHPHHPPHPHPH in the face-
centered-cubic lattice. (a) backbone-only model with energy -50, (b) side chain model
with energy -55. Colors: green - H monomers, gray - P monomers, red - backbone in
side chain models. Calculation and visualization are done using the CPSP-package [22].

only! e20 denotes an empirical 20 amino acid contact potential as described
in [4, 23]. eHP represents the energy contribution function of the Hydrophobic-
Polar (HP) model [14], i.e. it returns −1 if both amino acids are hydrophobic,
0 otherwise. Our hydrophobic/polar (H/P) assignment follows [29]. An optimal

structure minimizes the energy function. In the following, we denote a structure
HP-optimal if it minimizes the energy function based on eHP . Figure 1 exem-
plifies HP-optimal structures for both lattice protein models. In the following,
we assume a scaled lattice such that neighbored positions in the lattice have a
distance of 3.8Å, the average Cα-atom distance in proteins.

3 Constraint-based Local Move Set Definition

To enable folding simulations we need a definition of structural changes that
encodes the structural neighborhood of a given lattice protein structure. Here,
we follow the idea of k-local moves, that confine the difference between the initial
and the neighbored structure to a consecutive interval of maximal length of k.
Therefore, we define the k-neighborhood Nk(C) of a given structure C as:

Nk(C) =
{

valid structures C′ | ∃1≤s≤n : ∀j 6∈[s,...,(s+k−1)] : Cj = C′
j

}

(1)

In order to enumerate all valid structural neighbors C′ ∈ Nk(C) of a given
lattice protein C, we have to enumerate the neighbors for all possible interval
lengths 1 ≤ k′ ≤ k and interval starts 1 ≤ s ≤ (n − k′ + 1). Since we want to
calculate each neighboring structure only once, we have to enhance the k-local
move definition to strict k-local moves. Here, we enforce in addition that both
ends (C′

s and C′
s+k−1) of the successive interval of length k are changed, i.e.

a strict k-local move does not cover a k′-local move with k′ < k, as a normal
k-local move in accordance with Eq. 1 does. This ensures a unique enumeration
of structural neighbors for an increasing k′.

In the following, we will introduce the Constraint Satisfaction Problems
(CSP) that describe all valid structural neighbors C′ ∈ Nk(C) of a given lattice
protein C according to strict k-local moves in a lattice L. A CSP is given by



(X ,D, C), where we denote the set of variables X , their domains D, and a set of
constraints C. A solution of a CSP is an assignment ai ∈ D(Xi) for each vari-
able that satisfies all constraints in C. To simplify the presentation, we utilize
a binary neighboring constraint neigh(X, Y ) that ensures ∀dx∈D(X) : ∃dy∈D(Y ) :

(dx
L

∼ dy) and vice versa. Furthermore, we use the global all-different constraint
by Régin [27] to enforce pairwise differences within a set of variables.

3.1 CSP for Backbone-only Models

Given a valid backbone-only lattice protein structure C of length n, a move
interval length k ≤ n, and the start of the interval 1 ≤ s ≤ (n − k + 1).
We define k variables Xi, one for each position of the interval, with D(Xi) =
L\{C1, . . . , Cs−1, Cs+k, . . . , Cn}. These variables have to form a valid structure,
therefore we post all-different(X1, . . . , Xk) and ∀1≤i<k : neigh(Xi, Xi+1). Since
we describe a substructure, it has to be connected to the interval borders: if
s > 1 : neigh(X1, Cs−1) and if (s + k − 1) < n : neigh(Xk, Cs+k). Finally, we
enforce that both ends of the interval are different from the old placement, i.e.
X1 6= Ci and Xk 6= Ci+k−1, to enumerate strict k-local move neighbors only.

The presented CSP is similar to the work of Dotu et al. [9], but in contrast
ensures the uniqueness of each move. Thus, each neighbored structure is available
only via a single interval. This is of high importance to enable a non-redundant
enumeration of a structure’s neighborhood in the fold space to access its energy
landscape [21].

3.2 CSP for Models Including Side Chains

Given a valid side chain lattice protein structure (Cb, Cs) of length n, a move
interval length k ≤ n, and the start of the interval 1 ≤ i ≤ (n−k+1). We define
k variables Xb

i and Xs
i , two for each position of the interval, with D(Xb

i ) =
D(Xs

i ) = L \ {Cb
1 , . . . , Cb

s−1, C
b
s+k, . . . , Cb

n, Cs
1, . . . , C

s
s−1, C

s
s+k, . . . , Cs

n}. To en-

sure a valid structure, we enforce all-different(Xb
1 , . . . , Xb

k , Xs
1, . . . , X

s
k), ∀1≤i<k :

neigh(Xb
i , Xb

i+1), and ∀1≤i≤k : neigh(Xb
i , Xs

i ). Since we describe a substruc-
ture, it has to be connected to the interval borders: if s > 1 : neigh(Xb

1 , Cb
s−1)

and if (s + k − 1) < n : neigh(Xb
k , Cb

s+k). Finally, we warrant the strictness
of the k-local moves and enforce that both ends of the interval differ from
the old backbone or side chain placement, i.e. (Xb

1 6= Cb
i ∨ Xs

1 6= Cs
i ) and

(Xb
k 6= Cb

i+k−1 ∨ Xs
k 6= Cs

i+k−1).

4 Application

In the following, we applied the introduced move set to folding simulations of
side chain lattice protein models in the 3D face-centered-cubic (FCC) lattice. In
the FCC lattice, two lattice points l1 and l2 are neighbored, if and only if
(l1 − l2) ∈ {±(1, 1, 0),±(1, 0, 1),±(0, 1, 1),±(1,−1, 0),±(1, 0,−1),±(0, 1,−1)}.
Thus, each point of the FCC lattice has 12 neighbored positions. k-local moves



are known to be non-ergodic for backbone-only models [16] depending on k, the
used lattice, and the protein length. We expect the same for models including
side chains, but using the FCC and an intermediate k should shift the problem
to long chain lengths. Thus, we apply 3-local moves, i.e. with a maximal interval
length k = 3 such that up to 6 monomers are moved (2 per amino acid). The
implementation is based on Gecode [11]. To evaluate the structural difference

between two structures (Cb, Cs) and (Ĉb, Ĉs) we calculate the distance and
coordinate root mean square deviation (dRMSD and cRMSD) as given by Eq. 2
and 3, respectively. The needed superpositioning utilizes Kabsch’s algorithm [12].
We apply the contact based energy function Es that evaluates (only) side chain
monomer contacts using the e20 contact energy potentials from Sec. 2 similar to
the backbone-only studies in [4, 29]. In the following, we use C as an abbreviation
for (Cb, Cs).

dRMSD :

√

√

√

√

√

∑

i<j
(|Cb

i − Cb

j | − |Ĉb
i − Ĉb

j |)
2 + (|Cs

i − Cs

j | − |Ĉs
i − Ĉs

j |)
2

+
∑

i
(|Cb

i − Cs

i | − |Ĉb
i − Ĉs

i|)
2

n2
(2)

cRMSD :

√

∑

i(|C
b

i − Ĉb
i|)2 + (|Cs

i − Ĉs
i|)2

2 · n
(3)

We derived a protein data from the Pisces web server [30] on June 23rd 2009.
Only complete X-ray structures of 2.0Å resolution or better with an R-value
of 0.3 that contain side-chain data were considered. We used a 30% sequence
identity cut-off. Since we are applying a simple contact-based energy function
we filtered for short globular shaped proteins. Table 1 summarizes the used
sequences and their corresponding Protein Data Bank (PDB) identifiers etc.

For each full atom PDB structure CPDB, we derived a lattice protein struc-
ture Cfit that minimizes the dRMSD to CPDB. This was done using LatFit

from the LatPack-tools package v1.7.04 [19]. Table 1 summarizes the resulting
dRMSD and cRMSD values.

Since the applied energy function is still a rough abstraction of the forces
that guide the real folding process into CPDB , no energy minimizing folding
strategy will find the fitted lattice protein structure Cfit. Thus, we map Cfit to
the according local minimum in the energy landscape. The mapping is done via
a steepest decent or gradient walk. Starting from a given structure, at each step
the neighbored structure with lowest energy is chosen for the next step until no
such neighbor exists. Therefore, a gradient walk ends in a local minimum of the
energy landscape, which we denote g(C) for a given start structure C.

The g(Cfit) structures represent our “true” model to benchmark the fol-
lowing folding scheme. The energies of Cfit and g(Cfit) and their structural
differences to each other and to CPDB are given in Table 1.

The folding simulation procedure applied follows the idea of [29]. For each
amino acid sequence S, we derive an according HP-sequence SHP using the
translation table used in [29]. The derived SHP are given in Table 1. Follow-
ing the observation of the hydrophobic collapse [1], we calculated HP-optimal

4 Freely available at http://www.bioinf.uni-freiburg.de/Software/LatPack/



PDB ID - chain Sequences (original and HP transform)

1BAZ-A SKMPQVNLRWPREVLDLVRKVAEENGRSVNSEIYQRVMESFKKEGRIGA

PPHPPHPHPHPPPHHPHHPPHPPPPPPPHPPPHHPPHHPPHPPPPPHPP

1J8E-A GSHSCSSTQFKCNSGRCIPEHWTCDGDNDCGDYSDETHANCTNQ

PPPPHPPPPHPHPPPPHHPPPHPHPPPPPHPPHPPPPPPPHPPP

1RH6-A MYLTLQEWNARQRRPRSLETVRRWVRESRIFPPPVKDGREYLFHESAVKVDLNRP

HHHPHPPHPPPPPPPPPHPPHPPHHPPPPHHPPPHPPPPPHHHPPPPHPHPHPPP

1Z0J-B IEEELLLQQIDNIKAYIFDAKQCGRLDEVEVLTENLRELKHTLAKQKGGTD

HPPPHHHPPHPPHPPHHHPPPPHPPHPPHPHHPPPHPPHPPPHPPPPPPPP

2DS5-A GKLLYCSFCGKSQHEVRKLIAGPSVYICDECVDLCNDIIREEI

PPHHHHPHHPPPPPPHPPHHPPPPHHHHPPHHPHHPPHHPPPH

2EQ7-C LAMPAAERLMQEKGVSPAEVQGTGLGGRILKEDVMRH

HPHPPPPPHHPPPPHPPPPHPPPPHPPPHHPPPHHPP

2HBA-A MKVIFLKDVKGMGKKGEIKNVADGYANNFLFKQGLAIEATPANLKALEAQKQ

HPHHHHPPHPPHPPPPPHPPHPPPHPPPHHHPPPHPHPPPPPPHPPHPPPPP

PDB ID Cfit to CPDB g(Cfit) to Cfit

- chain n dRMSD cRMSD E(Cfit) E(g(Cfit)) dRMSD cRMSD

1BAZ-A 49 0.886 Å 1.725 Å -3.73 -31.51 4.050 Å 6.565 Å

1J8E-A 44 0.928 Å 1.939 Å -3.54 -30.76 3.865 Å 6.857 Å

1RH6-A 55 0.921 Å 1.791 Å 1.33 -38.17 4.192 Å 8.243 Å

1Z0J-B 51 0.917 Å 2.095 Å 2.05 -35.95 3.185 Å 6.640 Å

2DS5-A 43 0.901 Å 1.750 Å -4.35 -34.36 4.658 Å 7.755 Å

2EQ7-C 37 0.905 Å 1.813 Å -3.07 -20.58 2.328 Å 4.751 Å

2HBA-A 52 0.890 Å 1.780 Å -3.04 -30.62 3.224 Å 6.015 Å

Table 1. Used sequences, their HP transforms, length n, the quality of the fitted lattice
protein model, and the according energies.

structure representatives utilizing the CPSP-approach [3, 22, 20] and its latest
extension HPrep [18]. The resulting HP-optimal structures are named CHP .
For each CHP we run gradient walks and evaluated the resulting local minima
found. The corresponding energies are listed in Table 2. Furthermore, we per-
formed a structural comparison of the resulting g(CHP ) structures to our “true”
models g(Cfit) from the fitting. The RMSD values are given in Table 2.

In addition, we executed for each CHP random descending walks in order to
sample the local minima of the energy landscape accessible from the collapsed
starting structures. Here, at each step a random neighbor with lower energy
is selected following a uniform distribution until no such neighbor exists. The
lowest reached local minimum of all random descending walks starting at C is
denoted by r(C). Energy and structural differences are given in Table 2.

5 Discussion

The gradient walks using 3-local moves starting from the fitted structures Cfit

revealed that the currently applied contact based energy function using the en-
ergy potentials e20, originally derived for backbone-only models [4], does not



PDB ID average values minimal values
- chain 〈E(CHP )〉 minE(g(CHP )) minE(r(CHP ))

1BAZ-A -10.67 -33.07 -34.60
1J8E-A -12.45 -29.33 -32.35
1RH6-A -13.09 -35.12 -37.59
1Z0J-B -13.42 -34.71 -37.69
2DS5-A -6.97 -31.00 -32.53
2EQ7-C -6.55 -21.64 -25.10
2HBA-A -11.07 -30.91 -35.56

PDB ID g(CHP ) vs. g(Cfit) r(CHP ) vs. g(Cfit)
- chain dRMSD cRMSD dRMSD cRMSD

1BAZ-A 4.736 Å 8.797 Å 4.762 Å 9.360 Å

1J8E-A 3.384 Å 7.508 Å 3.196 Å 7.052 Å

1RH6-A 4.190 Å 9.645 Å 4.242 Å 10.156 Å

1Z0J-B 5.609 Å 10.166 Å 6.232 Å 11.438 Å

2DS5-A 3.588 Å 8.679 Å 3.425 Å 7.639 Å

2EQ7-C 3.427 Å 7.247 Å 4.177 Å 8.401 Å

2HBA-A 3.832 Å 8.848 Å 4.194 Å 9.075 Å

Table 2. Resulting energies and a structural comparison of the folding results.

reflect the real forces present for models including side chains. This can be ob-
served when comparing the energies E(Cfit) to E(g(Cfit)) (see Table 1). An
energy function that results in a smaller difference would be preferable, i.e. it
would be a better model for the real forces guiding the folding process to CPDB .
In addition we could show, that the derived structures from our simple energy-
optimizing folding simulation procedure are still quite dissimilar to the energy-
optimized lattice fits of the real structures (see Table 2). We assume this mainly
results from the simple energy function as well.

To improve the results, we plan to apply more advanced energy functions, e.g.
following [13]. Most important: the energy function has to consider the backbone
positioning as well, which is not done by the contact-based energy functions from
Sec. 2. Additionally, we want to apply distance based energy potentials that allow
for a more realistic energy evaluation. Another direction of ongoing research is to
further constrain the allowed structures. Here, we will directly benefit from the
CP-based formulation of k-local moves. Since we are formulating a CSP on valid
structural neighbors, it is quite easy to post additional structural constraints.
For instance, we can enforce a restriction on the allowed relative torsion angles
along the protein chain (as e.g. done in [24]), that follows the observation of a
limited degree of freedom in nature.

6 Conclusions and Summary

We introduced a CP-based approach to enumerate k-local neighbors of a lattice
protein structure in backbone-only and side chain lattice protein models. The
generic approach can be applied for any local move length k within arbitrary



lattices. Thus, it enables a fast prototyping of new folding simulation schemes
or can be easily extended with additional constraints, e.g. restricted torsion an-
gles. The CSP formulation enables the enumeration of the whole k-local move
neighborhood Nk(C) of a given structure C or the calculation of a random neigh-
boring structure Cr ∈ Nk(C) when applying a randomized search as possible in
Gecode [11]. The application of symmetry breaking search [2] can be used to
avoid the enumeration of symmetric structures, increasing the efficiency of fold-
ing simulations [10]. We plan the incorporation of the k-local move neighbor
enumeration into our C++ energy landscape library (ELL) [21]. This will open
an easy interface for folding simulations in arbitrary lattices utilizing any energy
function of interest. Furthermore, this will enable full kinetics studies based on
the energy landscape topology.

We will utilize the flexibility of the CP-based approach to incorporate ad-
ditional structural constraints into the neighborhood generation. Following [24,
23], it is beneficial to restrict torsion angles along the backbone or to exploit
secondary structure information.

Another advantage of the CP-based approach is its extensibility to constraint
optimization problems (COP). Currently, we plan to incorporate the energy func-
tion as the objective into the CSP, as e.g. done in [6, 9]. Thus, by solving a COP
while optimizing the energy function, we can directly calculate the lowest energy
neighbor of a structure following the framework of Pesant and Gendreau [26],
which is needed e.g. for a gradient walk in the energy landscape as done in Sec. 4.
Furthermore, this would enable an extension of the work of Zhang et al. [31].
They showed (for backbone-only models) that the performance of Monte Carlo
folding simulations can be significantly increased using a greedy sequential re-
growth of subchains. Thus, we plan to directly apply the sketched COP to calcu-
late the optimal fragments for lattice proteins including side chains. Finally, the
presented CP-based move set formulation can be easily extended to any other
local move definition of interest.
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