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Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous
because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to
the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We
introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-
side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in
addition to the known coordinate RMSD method. We tested LatFit’s accuracy and speed using a large nonredundant set of
high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight’s walk.
Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low
deviation from the original data (∼1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive
study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such
models.

1. Introduction

It is not always computationally feasible to undertake protein
structure studies using full atom representations. The chal-
lenge is to reduce complexity while maintaining detail [1–3].
Lattice protein models are often used to achieve this but in
general only the protein backbone or the amino acid centre
of mass is represented [4–12]. A huge variety of lattices and
energy functions have previously been developed and applied
[4, 13, 14].

In order to evaluate the applicability of different lattices
and to enable the transformation of real protein structures
into lattice models, a representative lattice protein structure
has to be calculated. Man̆uch and Gaur have shown the NP
completeness of this problem for backbone-only models in
the 3D-cubic lattice and named it the protein chain lattice
fitting (PCLF) problem [15].

The PCLF problem has been widely studied for back-
bone-only models [13, 16–24]. The most important aspects
in producing lattice protein models with a low root mean
squared deviation (RMSD) are the lattice coordination
number and the neighbourhood vector angles [18, 23].
Lattices with intermediate coordination numbers, such as the
face-centred cubic (FCC) lattice, can produce high resolution
backbone models [18] and have been used in many protein
structure studies (e.g., [3, 25, 26]). However, the use of
backbone models is limited since they do not account for the
space required for side chain packing.

To overcome this restriction lattice protein models that
include side chains have been introduced [27–33]. Reva et al.
[32] have, to our knowledge, developed the only previous
approach to solve the PCLF problem including side chains.
They apply dynamic programming to find an optimal
solution according to their error function. Unfortunately, the
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Figure 1: The diagram depicts the fitting process of LatFit for side chain models. (a) Original full atom data is given. The five Cα atoms
of the segment are highlighted as balls while the backbone and side chain parts are given in light and dark green, respectively. (b) The
coordinates for each amino acid to fit are extracted, that is, for side chain models the Cα position (light blue) and the centroid of the side
chain (dark blue). (c) These positions are fitted to derive an according lattice protein model in the underlying lattice (here 3D knight’s walk
lattice).

approach is shown to often yield no solution in the 3D cubic
lattice. The CABS tools by Kolinski and coworkers utilize
a hybrid on-lattice (backbone) and off-lattice (side chain)
protein representation to study folding dynamics but do not
attempt to answer the PCLF problem [31, 34].

In this paper we use the side chain model definition
of Bromberg and Dill [28], where each amino acid is
represented by two on-lattice monomers: one represents the
side chain and one the Cα atom. This explicit representation
of side chains prevents unnatural collapse during structural
studies [35] and enables the reconstruction of full atom pro-
tein data [36]. Full on-lattice protein models are constrained
in their possible side chain placement but enable exhaustive
studies of folding kinetics and structure space [11, 37, 38] not
applicable within off-lattice side chain models like the CABS
approach.

To the best of our knowledge, there is only one other pub-
licly available implemented approach, namely, LocalMove,
to derive lattice protein models from real proteins despite
a large number of published methods. LocalMove is a web
interface introduced by Ponty et al. [22] for backbone-only
models in 3D-cubic and FCC lattice and applies a Monte-
Carlo search in order to find lattice protein models.

We present our tool LatFit to tackle this lack of
available implementations. The program is freely available
for academic download and as a webserver: http://cpsp
.informatik.uni-freiburg.de/LatFit/. LatFit solves the PCLF
problem, that is, transforms a protein from full atom
coordinate data to a lattice model, and is available as both
a stand-alone tool for high-throughput pipelines and a
web interface for ad hoc usage. A new fitting procedure
that optimises distance RMSD enables rotation-independent
lattice model creation of protein structures. The method is
applicable to arbitrary lattices and handles both backbone
and side chain representations with equivalent accuracy. A
depiction of the workflow is given in Figure 1.

Utilising LatFit we present the first comprehensive
study of lattice quality for protein models including side
chains. In our test, LatFit fitted the majority of models on
an FCC lattice within 1.5 Å RMSD.

2. Material and Methods

In order to enable a precise formulation of the method we
introduce some preliminary definitions. A lattice L is a set

of 3D coordinates x defined by a set of neighboring vectors
υ ∈ N . The neighboring vectors are of equal length (∀υ,υ′∈N :
|υ| = |υ′|), each with a reverse within the neighborhood
(∀υ∈N : −υ ∈ N), such that each coordinate in L can be
expressed by a linear combination of the neighboring vectors,
that is, L = { x | x = ∑υ∈N d · υ ∧ d ∈ Z+

0 }. |N| gives the
coordinate number of the lattice, for example, 6 for 3D-cubic
or 12 for the FCC lattice.

A lattice protein structure with side chains of length l is
defined by a sequence of lattice nodes Mb = (Mb

1 , . . . ,Mb
l ) ∈

Ll representing the backbone monomers of the protein (one
for each amino acid) and the according sequence Ms =
(Ms

1, . . . ,Ms
l ) ∈ Ll for the side chain positions. A valid

structure ensures backbone connectivity (∀i<l : Mb
i −Mb

i+1 ∈
N), side chain connectivity (∀i : Mb

i − Ms
i ∈ N), as well

as self-avoidance (∀i /= j : Mb
i /=Mb

j ∧ Ms
i /=Ms

j and ∀i, j :

Mb
i /=Ms

j). The two sets together define the lattice protein

structure M = (Mb,Ms).

2.1. Fitting Procedure. Given a protein structure of length l in
Protein Database (PDB) format [39], LatFit builds up the
lattice protein sequentially, one amino acid at a time, starting
from the amino terminus.

First, all neighboring vectors υ ∈ N of the used lattice
L are scaled to a length of 3.8 Å, which is the mean distance
between consecutiveCα atoms and close to the mean distance
between a Cα atom and the associated side chain centroid.
The latter distance was found to be on average ≈3.6 Å
within available PDB structures (data not shown). While this
ignores the shorter CIS-PROCα linkage and the nonexistence
of a side chain for Glycine, this scaling enables a reasonable
mapping of proteins into the lattice, where each amino acid
will be represented by two monomers and all covalent bonds
are scaled to |υ| = 3.8 Å. Therefore, all resulting measures
will be directly interpretable in Å units.

The positions for each amino acid i to be fitted, that
is, the Cα position of the backbone Pb

i , and the centroid Ps
i

(geometric center) of all nonhydrogen atom coordinates of
the side chain, are extracted from the PDB file. They form
the data to fit P = (Pb,Ps).

The lattice model is derived by one of the following
procedures optimising either a distance or coordinate RMSD.
Both methods are introduced for lattice proteins including
side chains but can be used to derive backbone-only lattice
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models as well. A sketch of the fitting workflow is given in
Figure 1.

2.2. dRMSD Optimisation. The fitting follows a greedy
iterative chain-growth procedure. The initial lattice model’s
backbone and side chain position (Mb

1 and Ms
1) are placed

arbitrarily but adjacent (Mb
1 −Ms

1 ∈ N). For each iteration
1 < i ≤ l, all valid placements of the next Mb

i and Ms
i on

the lattice are calculated. A distance RMSD (dRMSD, Eqn.
1) evaluation is used to identify the best nkeep structures
of length i for the next extension iteration. Since dRMSD
is a rotation/reflection-independent measure, symmetric
structures must be filtered.

To calculate the final fit of the initial protein P, a
superpositioning of the dRMSD-optimised structure M
and a reflected version M′ is done using the method by
Kabsch [40]. The superpositioning translates and rotates
M/M

′
in order to achieve the best mapping onto P. The

superpositioning with lowest coordinate RMSD (cRMSD,
(2)) is selected and finally returned.
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(1)
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2.3. cRMSD Optimisation. A cRMSD evaluation according
to (2) depends on the superpositioning of the protein and
its model. Thus, the best relative lattice orientation has to be
identified in addition to the best model. Once the orientation
is fixed, a cRMSD evaluation allows for a fast, additive RMSD
update along the chain extension.

We implement a cRMSD-optimising method following
[6, 18] as an alternative fitting strategy. In general a user
defined number of rotation intervals r are performed for
each of the XYZ rotation axes. For each rotation, we
transform Pb and Ps into P̂b and P̂s, respectively, to obtain
the rotated current target structure.

The fitting procedure follows a chain-growth approach:
Pb

1 is placed onto an arbitrary lattice node Mb
1 . The according

side chain monomer Mb
1 is placed to the adjacent node

closest to the position Ps
1 to be represented. Now, all valid

placements of the next Mb
i and Ms

i on the lattice are
calculated. Using the coordinate RMSD (cRMSD, (2)) we
evaluate all derived models and keep the best nkeep for the
next extension following [18] until all amino acids have been
placed.

By applying the above cRMSD-based fitting procedure
we obtain the best fit for the current rotation. An iter-
ative application of this procedure then results in the
overall best fit for all screened rotations. Since our screen

of XYZ rotations was discretised, the current rotation
might be refineable. Therefore, another rotational refine-
ment can be applied that investigates rref small rotation
intervals around the best rotation from the first screen
[6].

The run time of the cRMSD-method scales with respect
to the lattice coordination number, nkeep, and most impor-
tantly the number of rotation intervals r and rref considered.

2.4. Further Features. Coordinate data in the PDB is often
incomplete. For example flexible loop structures are hard
to resolve by current methods [41]. This results in missing
coordinate data for certain substructures within PDB files.
LatFit enables a structural fitting of even such fragmented
PDB structures and produces a lattice protein fragment for
each fragment of the original protein.

Currently, LatFit supports the 2D-square, 3D-cubic
(CUB, 100), 3D-face centered cubic (FCC, 110), and 3D
knights walk (210) lattice. The modular software design
of our open source program enables an easy and straight
forward implementation of other lattices via a specification
of the according neighboring vectors N .

The implementation is open source and freely avail-
able for academic use at http://www.bioinf.uni-freiburg
.de/Software/LatPack/.

2.5. Webserver. The web interface of LatFit, integrated into
the CPSP web tools [42], enables ad hoc usage of the tool.
Either a protein structure in PDB format can be uploaded or
a valid identifier from the PDB database given. In the latter
case, the full atom data is automatically retrieved from the
database.

Our default parameters enable a direct application of
LatFit resulting in a balanced tradeoff between runtime
and fitting quality. The computations are done remotely
on a computation cluster while the user can trace the
processing status via the provided job identifier and accord-
ing link. Results are available and stored for 30 days after
production.

Supported output formats of LatFit are the PDB
format, the Chemical Markup Language (CML) format, as
well as a simple XYZ coordinate output. The output files are
available for download. In addition, a highly compact string
representation of the lattice protein is also given in absolute
move strings that encode the series of neighboring vectors
υ ∈ N along the structure.

The generated absolute move string can be directly
used to apply other lattice protein tools onto the resulting
structures, for example, from the CPSP package for HP-type
lattice protein models [10, 42] or from the LatPack tools for
arbitrary lattice models [11, 38].

Results are visualised using Jmol [43] for an interactive
presentation of the final protein structure. The final dRMSD
and cRMSD values of the lattice protein compared to the
original protein are given as well as the absolute move string
encoding of the resulting structure. For an example of the
LatFit web interface see Figure 2.
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Figure 2: A screenshot of the LatFit web interface result
visualisation.

Further details regarding the methods implemented, the
output formats supported and the applicable parameteri-
sation are located in the LatFit manual distributed with
the source code. We provide an extensive help page and a
frequently asked questions (FAQ) section within the web
interface. Note, the web server is based on JavaServer Pages
(JSP) technology and requires a connection via the JSP
standard port 8080. A web interface for ad hoc usage is avail-
able at http://cpsp.informatik.uni-freiburg.de/LatFit/ and
http://cpsp.informatik.uni-freiburg.de:8080/.

3. Results and Discussion

In the following, we evaluate the average fitting quality of our
new LatFit tool to results known from literature [6, 8, 13].
Furthermore, we investigate the performance of the new
dRMSD-based fitting procedure implemented in LatFit. To
this end, we compare its results to the cRMSD-optimizing
approach that follows [6, 18], both implemented within
LatFit.

We use LatFit to derive protein models on the
commonly used 3D cubic, FCC, and knights walk lattices

[18] using the dRMSD-based approach, parameterised with
nkeep = 1000. Our test set was taken from the PISCES
web server [44]. We enforced 40% sequence identity cutoff,
chain length 50–300, R-factor ≤0.3, and resolution ≤1.5 Å
to derive a high-quality set of proteins to model. Given our
requirement for side chains, Cα-only chains were ignored.
The resulting benchmark set contains 1198 proteins exhibit-
ing a mean length of 160 (σ = 64).

In accordance with previous studies [18], cRMSD and
dRMSD are used to assess model quality. cRMSD mea-
sures the similarity in according coordinate position of
two structures whereas dRMSD measures the similarity of
intramolecular distances. Due to the scaling of our lattice,
RMSD results are in Å rather than the scaled values provided
by Ponty et al. [22].

Our backbone model RMSD values presented in Table 1
are competitive or superior to known fitting results known
from the literature [6, 13, 18]. Both the new dRMSD- as
well as the reimplemented cRMSD-optimisation method
reproduce the high quality previously achieved by other
methods using the FCC and 210 lattices. The slightly
higher mean cRMSD values for the dRMSD method are
due to the nonoptimisation of that measure. Note, LatFit
outperforms the results reported for LocalMove by Ponty
et al. [22]. We found the LocalMove webserver currently
not working for the proteins tested. Therefore, only results
reported in [22] for the 3D cubic lattice and no FCC results
are available.

LatFit is designed for side chain models and results here
are strong (see Table I(b)). In general, side chain models
produce slightly larger RMSD values than the equivalent
backbone-only model. This is due to the fact that the
variation in distance between consecutive Cα atoms (fitted
in both models) is lower than that between Cα atoms and
their side chain centroid (fitted only in side chain models).
In lattice models every distance is fixed at 3.8 Å which
results in a higher mean displacement of the side chain.
Nevertheless, high accuracy fits are still attained. Results in
our test set have mean dRMSDs of about 1.2 Å and 1.5 Å in
the 210 and FCC lattice, respectively, for both optimisation
strategies. When comparing the dRMSD optimisation with
the cRMSD-optimising version, we observe very similar
results. This is in accordance to our observations from the
backbone-only models.

The strength of LatFit is its ability to produce both
side chain and backbone-only lattice protein models. High
accuracy models can be produced on the FCC lattice within
seconds to minutes depending on the parameterisation.
Fits on the 210 lattice take orders of magnitude longer
for relatively little gain in model accuracy. For this reason
we recommend using the FCC lattice for detailed high-
throughput protein structure studies in both backbone-only
and side chain representing lattice models.

4. Concluding Remarks

LatFit enables the automated high resolution fitting of
both backbone and side chain lattice protein models from
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Table 1: (a) compares the RMSD mean values for backbone-only models for approaches from literature to the results from our LatFit
dRMSD-optimisation method on three different lattices. (b) gives according results for side chain including models. ∗Some reported values
had to be rescaled to Å.

(a) Backbone-only models

Park and Levitt [18] Reva et al. [14, 22] Ponty et al. [22] LatFit

cRMSD dRMSD cRMSD∗ cRMSD∗ cRMSD dRMSD

CUB 2.84 2.34 2.84 (0.748·3.8) 3.46 (0.911·3.8) 2.97 2.08

FCC 1.78 1.46 — — 1.89 1.34

210 1.24 1.02 — — 1.29 0.92

(b) Side chain models

LatFit

cRMSD dRMSD

CUB 4.16 2.78

FCC 2.10 1.50

210 1.60 1.13

full atomic data in PDB format. We demonstrate its high
accuracy on three widely used lattices using a large, nonre-
dundant protein data set of high resolution. Side chain fits
show on average a higher deviation than backbone models,
but both produce high quality fits with results generally
less than 1.5 Å on the face-centred cubic lattice. To our
knowledge, this is the first study and publicly available
implementation for side chain models in this field. Available
via web interface and as a stand-alone tool, LatFit addresses
the lack of available programs and is well placed to enable
further, more detailed investigation of protein structure in
a reduced complexity environment. Even now the LatFit
webserver is in daily use worldwide (monitored via Google
Analytics, http://www.google.com/analytics/), which shows
the need for efficient implementations such as LatFit.
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