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Abstract

MICA enables the automatic synchronization of discrete data curves. To this

end, characteristic points of the curves’ shapes are identified. These landmarks

are used within a heuristic curve registration approach to align profile pairs

by mapping similar characteristics onto each other. In combination with a

progressive alignment scheme, this enables the computation of multiple curve

alignments.

Multiple curve alignments are needed to derive meaningful representative

consensus data of measured time or data series. MICA was already successfully

applied to generate representative profiles of tree growth data based on intra-

annual wood density profiles or cell formation data.

The MICA package provides a command-line and graphical user interface.

The R interface enables the direct embedding of multiple curve alignment com-

putation into larger analyses pipelines. Source code, binaries and documentation

are freely available at https://github.com/BackofenLab/MICA
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progressive alignment

Background

Biological data is often derived and represented in the form of time series,

curves or profiles. To enable generalization, data of multiple measurements or for

different instances has to be aggregated to derive e.g. statistics or extract com-

mon curve shapes. This is straightforward, if a clear correspondence between5

data points is available. However, in many situations such a correspondence is

unknown or only partially available. Here, alignment or time registration tech-

niques are required, in order to map corresponding data. This so called curve

registration problem [1], also known as time warping [2] or curve alignment,

has many applications in biological research like the study of gene expression10

profiles [3, 4], growth data [5], wood anatomy [6, 7], or medical sensoring [8, 9],

to name only a few.

Here, we present MICA - Multiple Interval-based Curve Alignment - a soft-

ware tool for the global alignment of curves. MICA combines a heuristic pairwise

curve alignment strategy using a landmark registration approach [10, 11] with15

a progressive alignment scheme [12, 13] to generate a multiple curve alignment.

To this end, important curve characteristics like optima and inflection points are

automatically identified, filtered and the resulting curve intervals aligned. MICA

was already successfully applied to study the correlation between weather data

and wood density profiles [6] and to temporarily annotate wood anatomic data20

[7]. It comes with a graphical user interface for interactive usage, a command-

line interface for high-throughput application and an R interface to embed curve

alignment into downstream analyses. Within this manuscript, we introduce the

algorithmic and implementation details of the recent MICA version and discuss

the different user interfaces of MICA.25
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Preliminaries

In the following, we provide the mathematical background and objectives

necessary to introduce the MICA approach.

Curve alignment problem

A curve (or profile) C is defined by the tuple (X,Y ), where X,Y ∈ Rn
30

encode a set of n 2D-coordinates (X has to be strictly monotone, i.e. ∀1≤i<n :

Xi < Xi+1).

In order to compute the alignment, we need to access interpolated curve/slope

coordinates for any x-coordinate within the interval [X1, Xn]. To this end, we

use the interpolation function y(x,C) that provides the y-coordinate for an35

x ∈ [X1, Xn]. If x is a known x-coordinate from X, the according y-coordinate

is returned. If this is not the case, i.e. @i : Xi = x, the value is derived via linear

interpolation between the enclosing coordinates identified by arg maxi : Xi < x

and arg minj : Xj > x. Linear interpolation is applied since it is i) fast to

compute and ii) preserves the min/max characteristics of the curve data. The40

function s(x,C) is defined analogously to provide interpolated slope values,

i.e. first derivatives of the curve. Since we are using a linear interpolation, the

slope values are defined by the slopes of the lines connecting explicit data points

of X. Thus, if x-coordinates are changed during alignment, the slope values are

changing too and have to be updated. Both interpolation functions y and s are45

implemented by the LinearInterpolator class from the Apache commons.math3

package.

Given two curves C,C ′, we define the global slope-based distance function

dsb(C,C
′), which computes the arithmetic mean of absolute slope differences for

b > 0 equidistant x-coordinates within the whole x-ranges of the two profiles,50

i.e.

dsb(C,C
′) = b−1

∑
1≤j≤b

|s(X1 + jδ, C)− s(X ′1 + jδ′, C ′)| (1)

with δ = (Xn −X1)/(b+ 1) and δ′ analogously.
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A distance function based on y-coordinates is defined analogously. Note, a

slope-based distance measure is invariant to general shifts of the y-coordinates

e.g. due to measurement issues. Thus, the slope-based distance function from

Eq. 1 is applied in the following.55

In order to correct for x-coordinate shifts or to align respective data points,

we have to shift the x-coordinates X of a curve C while preserving their order.

Such a shift can be encoded by an injective warping function a(Xi) ∈ [X1, Xn]

that maps each x-coordinate within the overall x-range. In order to keep the

coordinate order, a has to be strictly monotone, i.e. Xi < Xj → a(Xi) < a(Xj).60

Furthermore, since we are interested in global alignments of the whole curves,

the start and end coordinate have to be preserved, i.e. a(X1) = X1 and a(Xn) =

Xn.

Given this, we can define the global pairwise curve alignment problem for

two curves C,C ′ and a global distance function d as the problem to find two

warping functions a and a′ that minimize the distance function. Formally, this

is given by

arg min
a,a′

d ( (a(X), Y ) , (a′(X ′), Y ′) ) . (2)

W.l.o.g., we assume that the start and end coordinates of the curves are already

aligned, i.e. X1 = X ′1 and Xn = X ′n′ .65

The according global multiple curve alignment problem for k curves is to find

according k warping functions that minimize the sum of all pairwise distances

in analogy to Eq. 2.

Given a set of k aligned curves {C1, . . . , Ck}, the representative consensus

profile C̄ = (X̄, Ȳ ) contains one coordinate for each x-coordinate present in at70

least one of the curves. The respective y-coordinates are defined by according

mean y-values, i.e.

X̄ =
⋃

1≤l≤k

X l (3)

Ȳi = k−1
∑

1≤l≤k

y(X̄i, C
l). (4)

An illustration is provided in Fig. 1d+e.
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Landmark-based curve alignment

To reduce the computational cost of curve alignments, one way is to con-75

strain the warping functions under consideration. To this end, one can refer

to landmark-based curve alignments, also named curve or landmark registra-

tion [10, 11]. The general idea is to identify a subset of curve coordinates that

mark important or distinct features of the curves and to find the best map-

ping/alignment of these landmarks only, where aligned landmarks are shifted80

to the same x-coordinate. All other coordinates are then shifted accordingly

via linear interpolation, to preserve the strict monotone character of a warping

function. Since this approach only aligns only the (small) subset of landmarks,

the search space is strongly reduced to the combinatorial subspace of alignable

landmarks.85

To encode whether or not a curve’s coordinate is to be considered as an

alignable landmark, we introduce the curve annotation L(C) ∈ Nn, or abbrevi-

ated by just L. The annotation value Li encodes whether the i-th coordinate of

C is a landmark that can be aligned (Li > 0) or not (Li ≤ 0). The value itself

encodes the type of the landmark. Note, since we do global alignment, start90

and end coordinate are always to be aligned and thus it holds L1, Ln > 0.

To simplify presentation and since we are interested in global curve align-

ments, we assume in the following that all input curves show the same x-range.

Given k curves C1, . . . , Ck, this can be done by a simple preprocessing as fol-

lows. First the mean start coordinate x̄1 = k−1
∑

1≤l≤kX
l
1 and mean over-95

all x-range r̄ = k−1
∑

1≤l≤k(X l
n − X l

1) of all curves are identified. Succes-

sively, the normalized x-coordinates X∗ from X of each curve are computed by

X∗i = r̄(Xi −X1)/(Xn −X1) + x̄1. An illustration is provided in Fig. 1a+b.

Given two curves C,C ′ with n, n′ coordinates, resp., a landmark alignment

A : [1, n] × [1, n′] → [X1, Xn] is a partial injective function that maps pairs100

of coordinate indices (i, i′) to their aligned x-coordinate (assuming normalized

x-ranges). Note, only landmark positions are mapped, i.e. ((i, i′), x) ∈ A →

(Li > 0 ∧ L′i′ > 0). Furthermore, aligned landmarks have to be compatible,

e.g. to ensure curve maxima are mapped to maxima but not to minima. Fi-
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nally, each landmark can only be mapped once, i.e. ∀((i,i′),x) 6=((j,j′),x′)∈A : (i 6=105

j ∧ i′ 6= j′), and the landmark alignment has to be ordered and monotone,

i.e. ∀((i,i′),x)6=((j,j′),x′)∈A : (i < j → i′ < j′) ∧ (i < j → x < x′). Note, start and

end coordinate are per definition a landmark (see above) and have to be part

of the landmark alignment, i.e. A(1, 1) = X1 = X ′1 and A(n, n′) = Xn = X ′n.

Given a landmark alignment A for two curves C,C ′, we can derive two110

warping functions aA and a′A as follows. Coordinates that are mapped land-

marks, i.e. part of A, are shifted to their aligned x-coordinate provided by A.

All other coordinates are shifted according to a linear interpolation within the

new (mapped) range of their flanking aligned landmarks. Note, this is always

possible since start and end points are part of A. Thus, it holds115

aA(X)i =

A(i, i′) if ∃((i, i′), x) ∈ A, i.e. mapped

xAleft +
(Xi−Xl)(x

A
right−x

A
left)

(Xr−Xl)

(5)

with l = arg max
1≤j<i

(∃((j, j′), x) ∈ A) and xAleft = A((l, l′))

and r = arg max
i<j≤n

(∃((j, j′), x) ∈ A) and xAright = A((r, r′))

while a′A(X) is defined analogously to Eq. 5.

Given this, we define the global landmark-based pairwise curve alignment

problem to be the identification of the landmark alignment A for two given

curves C,C ′ with respective annotations L,L′ that minimizes a given global

curve distance function d, i.e.

arg min
A

d ( (aA(X), Y ) , (a′A(X ′), Y ′) ) . (6)

Note, since we constrain the considered warping functions, Eq. 6 will usu-

ally find only suboptimal solutions for Eq. 2. The global landmark-based multiple

curve alignment problem is defined in analogy to the global multiple curve align-

ment problem.120

Algorithm and Implementation

MICA is tailored to align multiple profiles of discretized curve data to de-

rive a representative consensus profile and addresses the global landmark-based
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multiple curve alignment problem. It assumes that start/end points are cor-

responding and thus can be aligned, i.e. the alignment is done globally and125

the whole curves are considered. By doing global alignment we follow the idea

that all curves share a similar pattern or shape. This implies that all curves

are essentially based on the same e.g. growth profile and differences are mainly

distortions as the profile can vary in signal strength (amplitude), character

and spatial/temporal assignment (x-axis) due to noise, measurement problems,130

asynchronicity, etc. A curve can be provided as y-data only (equidistant distant

data points assumed) or with explicit coordinate data.

As an example, we can use intra-annual wood density profiles measured on

a tree stem cross section (disk) from the tree’s pith to the bark along different

radial directions [6, 14]. Each curve is generated by a growth process based on135

the same growth conditions, which are determined for example by the prevailing

weather conditions. Nevertheless, the cambium tissue around a tree stem shows

different growth activities even along the circumference at the same height of an

individual tree. This manifests in multifaceted differences and asynchronicity

within measured data, which makes the generation of a representative consensus140

profile per tree via arithmetic mean impossible even for the sub-profiles of a

single growth period [6]. Here, MICA provides a solution to this problem by

first synchronizing the profiles before a consensus is derived.

MICA applies a progressive alignment scheme based on a heuristic pairwise

interval-based curve alignment strategy (PICA) detailed below. The progressive145

scheme, as known from sequence alignment [12], iteratively evaluates the simi-

larity of subsets of already aligned curves based on pairwise alignments (PICA).

The pairwise alignment information is then also used to merge the curves into

a joint alignment.

To simplify the presentation, we assume that all input curves C1, . . . , Ck are150

normalized to a common x-range as discussed above, i.e. their start and end

x-coordinate are the same. Furthermore, we partition the set of input curves

into singleton sets, each containing exactly one of the input curves. These initial

curve sets are denoted by P = {P1, . . . , Pk} with Pi = {Ci}. The representative
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consensus profile of a curve set P ∈ P is denoted by P̄ . MICA will use these155

consensi to iteratively align and fuse the according aligned curve sets.

PICA workflow

The Pairwise Interval-based Curve Alignment - PICA - implements a greedy

heuristic approach to address the global landmark-based pairwise curve align-

ment problem. That is, given two sets of aligned curves P, P ′ ∈ P and their160

respective consensus profiles P̄ , P̄ ′ with according landmark annotations L,L′,

PICA identifies a landmark alignment A of the consensus profiles that optimizes

a given curve distance function d in accordance with Eq. 6. W.l.o.g., we assume

d to be the slope-based distance function from Eq. 1.

To check whether or not two coordinates of the consensi to align are land-165

marks and can be mapped (e.g. maxima on maxima but not on minima), we

introduce the relation comp ⊆ [1, n] × [1, n′], where n, n′ are the number of

coordinates in P̄ , P̄ ′, respectively. The relation comp contains all combinations

of positive landmark assignments that are compatible. A most simple relation

would be based on identity, i.e. (i, i′) ∈ comp↔ (Li > 0 ∧ Li = L′i).170

Given this, we can sketch the PICA workflow that follows a greedy divide-

and-conquer alignment strategy. First, we initialize the landmark alignment

A = {(1, 1, ), (n, n′)}, i.e. we map the start and end points of each consensus.

This provides the initial search interval boundaries for compatible landmarks

defined by
<
m = 1 =

<

m′,
>
m = n, and

>

m′ = n′. Given this, we search for the pair175

of compatible landmarks within the open interval (excluding the boundaries)

that minimize the distance function when mapped to their mean x-coordinate

(weighted by the number of curves represented by the consensi), i.e.

arg min

(i,i′)∈
(
<
m,

>
m

)
×
(

<
m′,

>
m′
)

(i,i′)∈comp

d
( (
aA∗(X̄), Ȳ

)
,
(
a′A∗(X̄

′), Ȳ ′
) )

(7)

with A∗ = A ∪ { ((i, i′), x∗) } and x∗ =
|P |X̄i + |P ′|X̄ ′i′
|P |+ |P ′|

. (8)

Note, the weighting of the mean coordinate x∗ in Eq. 8 is needed to reduce side

8



effects of the progressive alignment strategy, e.g. when aligning a single curve180

to a set of many curves.

If the optimal landmark pair (i, i′) within the current interval identified via

Eq. 7 provides a better alignment compared to no further alignment, i.e.

d
( (
aA∗(X̄), Ȳ

)
,
(
a′A∗(X̄

′), Ȳ ′
) )

< d
( (
aA(X̄), Ȳ

)
,
(
a′A(X̄ ′), Ȳ ′

) )
,

we fix this alignment decision and replace the current landmark alignment A

with the extended alignment A∗ from Eq. 8. This fixation decomposes the

alignment problem into two independent subproblems, namely the optimiza-

tion of the intervals to the left and right of the aligned landmark pair (i, i′).185

Therefore, we recursively repeat the sketched PICA workflow for the new sub-

interval combinations (
<
m, i) × (

<

m′, i′) and (i,
>
m) × (i′,

>

m′), which is illustrated

in Fig. 1c+d. Note, the PICA workflow does not necessarily map all available

landmarks, which is essential since typically the curves to be aligned feature

different numbers of landmarks.190

The resulting final landmark alignment A is then used to align and merge

the two curve sets P and P ′ into a new curve set P̂ , which is the final output

of PICA. To this end, we add for each curve C = (X,Y ) ∈ P a warped curve

(X∗, Y ) to P̂ , with

X∗i = aA(X̄, Ȳ )j with X̄j = Xi. (9)

That is, we identify for each coordinate of C the respective consensus data with

equal x-coordinate and replace the x-coordinate with the aligned value based

on A. The curves in P ′ are treated analogously such that it holds |P̂ | = |P |+|P ′|.

Note, each tested individual landmark pair shifts curve coordinates (within

the current search interval) and thus changes the respective slope values. Since195

we are optimizing a slope-based distance (Eq. 1), we can therefore not precom-

pute or reuse distance data from previous computation steps. This prohibits

the application of a dynamic programming approach, as e.g. used in the dtw

package [15], to find an optimal solution of the problem, but can be solved by

the introduced heuristic divide-and-conquer optimization strategy used within200
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b

c

d

e

Figure 1: Depictions of the PICA workflow to align two curves (orange/blue) and to derive

an according consensus profile (black). To simplify the presentation, only the x-ranges (double

arrows in orange/blue) of intervals defined by alignable landmarks (vertical ticks) are shown.

Here, we assume all landmarks are of same type and can be mapped. a) Input are two

curves that might differ in length/x-range as well as number of landmarks. b) Initially,

start and end of the curves are aligned (dashed grey bars) and the x-coordinates adapted

via linear interpolation. c) For each pair of mappable landmarks, an according alignment

is computed that shifts the aligned landmarks to their mean x-coordinate (green bar) and

linearly interpolates the curve up to the next aligned pair (dashed grey bars) and the respective

distance of the altered curves is computed. d) The best alignment from (c) is fixed (dashed

grey bar), which decomposes the problem into two independent ones (left and right of last

fixation up to next aligned pair). For each subproblem, (c+d) is applied until either no

landmark pairs can be mapped or an alignment does not lower the curves’ distance. e) Given

(d) as the final alignment, the consensus curve (black) is compiled. It contains one coordinate

for each present in one of the curves in the alignment from (d) where the y-coordinate is

derived as the according mean of both curves.
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PICA.

PICA supports various constraints to further guide the alignment process.

Among them are the minimal length/x-range of an interval to be considered

for further decomposition by alignment, a maximally allowed x-shift of aligned

landmarks, and a maximal interval length warping to restrict the distortions205

resulting from landmark alignments.

MICA workflow

Given the PICA workflow, the progressive alignment scheme of MICA is

introduced for a set of curve sets P that represents the input curves C1, . . . , Ck

or already aligned subsets.210

First, a consensus profile P̄ is computed for each curve set P ∈ P. This

is automatically annotated with landmark information L̄ and filtered according

to user given constraints. Such constraints are a minimal relative y-distance

of neighbored maxima/minima (to reduce noise in the data and to focus on

dominant optima) or a minimal relative slope of inflection points. Next, the

two curve sets P, P ′ ∈ P are identified that show the lowest PICA distance

dPICA(P, P ′), i.e.

arg min
P,P ′∈P

dPICA(P, P ′), (10)

where dPICA(P, P ′) resembles the final distance according to the best landmark

alignment produced by PICA. Finally, both curve sets are removed from P and

replaced by the respective PICA aligned curve set P̂ . Furthermore, an according

consensus profile with filtered landmark annotations is computed for P̂ .

This procedure is repeated until P is a singleton. The curves C∗ ∈ P ∈ P215

are then reflecting the final alignment of the input curves C1, . . . , Ck and are

provided as MICA’s output.

In addition to the sketched MICA workflow, which does an unguided align-

ment, MICA also supports the alignment of curves against a selected reference

profile. In contrast to the depicted workflow, the x-coordinates of the reference220

are not altered and kept static during the PICA alignment. Thus, only the data

points of the remaining profiles are shifted. Technically, this only changes the
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computation of the shifted/aligned x-value x∗ (Eq. 8), which now distinguishes

whether or not the reference profile is represented by one of the curves. If so,

x∗ is set to the respective original value; otherwise the given equation is used.225

Such an alignment mode is of importance when e.g. extrapolating annotations

available for a single profile to other related curves [7].

Implementation details

The MICA implementation is based on Java 8 and established libraries like

Apache Commons Math and Lang as well as JOpt Simple. Extensive unit tests230

of the core algorithm and utility classes are set up via JUnit. The architec-

ture follows a strict separation of algorithm classes and the different application

interface implementations to enable a high level of modularity and maintain-

ability.

User Interfaces235

MICA provides different user interfaces to cover different use cases how curve

alignments are generated.

Graphical user interface

The graphical user interface (GUI), shown in Fig. 2 and implemented in Java,

enables an interactive usage of MICA. When loaded from the command-line,240

the default parameters can be altered by according command-line arguments.

The GUI enables the load of profile data in the common CSV format, whereby

different CSV format parameters like separator etc. can be set. The input

profiles are directly visualized and can be interactively inspected using standard

zoom or drag functionality. After setting the MICA parameters and starting245

the alignment, the GUI is automatically updated with the alignment in a second

screen, to enable a comparison of the initial profiles with their aligned versions.

The instant update assists in the inspection of the effects of different filter and

parameter setups. The final alignment data can be exported in CSV format for

12



Figure 2: MICA’s graphical user interface provides (top right) a depiction of the input

profiles highlighting the identified and filtered alignable points, (bottom right) the final curve

alignment, and (left) profile information and MICA options.

further processing and analyses. Furthermore, images of the input and output250

visualization can be exported.

All landmark registration approaches have in common that their perfor-

mance heavily depends on the correct identification and filtering of the land-

marks available for alignment. While MICA supports various constraints to

control the automatic landmark identification, it still can be improved by ex-255

pert knowledge where available. To this end, the GUI allows for the interactive

prealignment of the curves prior to the automatic MICA alignment. The man-

ually selected data point alignments are in the following treated the same as

if aligned by MICA itself, i.e. they define boundaries for intervals that might

be further decomposed. This feature is of importance if the data set contains260

curves that differ much from other curves. Here, manual alignment based on

expert knowledge can guide the correct alignment of such outliers.

Another use case of the GUI is the manual tuning of parameters and con-

straints for a subsequent automated MICA application to a large number of data
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sets to be aligned. That is, suitable parameters are first manually identified on265

a subset of the data using the GUI and later used within a high-throughput

automatic application of MICA via its command-line interface for all data sets.

Detailed GUI documentation is provided on MICA’s github page (see Availabil-

ity section).

Command-line interface270

Due to the large available amount of biological data, bioinformatics analyses

are often automated. To this end, different tools and filters are combined into

according pipelines, e.g. using systems like Galaxy [16] or by simple scripts.

MICA can also be embedded into high-throughput pipelines via its command-

line interface (CLI). The CLI enables the setup of all MICA parameters including275

landmark filters. Input and output (CSV format) can either be read from or

written to files or respective streams can be used. The latter is especially useful

for the direct piping of temporary output into downstream processing without

the (delaying) generation of temporary files.

R interface280

Another similar use case is the integration of MICA into R-based analyses.

The R framework [17] is a common platform to do semi-automated analyses

and investigation of all type of data. MICA’s R interface is based on the rJava

package [18], which enables the use of native Java data structures from within R.

This way, the computationally most demanding steps of MICA are done within285

the more efficient Java environment while the analyses and visualization can

be done in the easy-to-use R framework [7]. The simple interface comes along

with a small set of utility functions for data pre-/post-processing as well as data

interpolation. According documentation is provided on the github page (see

Availability section) or within the R interface sources.290

Related packages

Within the R framework, other curve alignment approaches are available.

The fda package [19, 20] offers for instance the landmark registration imple-
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mentation landmarkreg, which enables multiple curve alignments for a given

set of landmarks. The major drawbacks of landmarkreg are that landmarks295

have to be provided (no automatic annotation available as in MICA) and that

for each curve the same number of landmarks are to be given (while MICA

aligns only a suitable subset). Thus, the package authors refer to register.fd,

a continuous registration function also part of the fda package, if the landmarks

to be aligned are unknown. Unfortunately, the register.fd function requires300

a template profile to align the provided curves to. If no such profile is provided,

the arithmetic mean curve of all input curves is taken as template. This might

result in a poor template (showing not necessarily the common characteristics)

if the input curves are heavily distorted or shifted, as e.g. the case for wood

density data [6].305

The dtw package [15] joins various “dynamic time warping” (DTW) algo-

rithms in one generic implementation. DTW approaches [1] try to find an

optimal mapping of all data points for two given profiles. One of the profiles

is used as template (data points fixed). The optimization is done via dynamic

programming, similar to a standard sequence alignment, while using dedicated310

scoring functions (e.g. without cumulative gap costs etc.) [8, 15]. Since the dtw

package is tailored for reference-based, pairwise curve alignments, it can nei-

ther be easily used for multiple curve alignments nor for an alignment where no

reference template is available. The latter is intrinsically the case, if the identifi-

cation of a representative consensus profile (which would be the ideal template)315

is to be computed via a multiple curve alignment [6]. Wang and Gasser [21]

proposed an iterative DTW-based approach for consensus profile computation,

but no implementation is available.

Successful Applications

An earlier R-based implementation of the MICA approach was introduced320

in [6] and evaluated on a large data set of intra-annual wood density profiles

similar to the data discussed above. The study investigated the effect of the

MICA application in comparison to non-aligned simple mean profile derivation
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of the initial curves. It was shown that the application of MICA significantly

reduced the sampling error of the slopes. The resulting MICA consensus profiles325

well represented the common characteristics of the input curves, which were

often lost when aggregating initial profiles without alignment. For instance,

sharper curve peaks representing clear environmental signals are observed due

to according alignment.

MICA was recently used in [7] to setup a protocol for a better understand-330

ing of the environmental control of wood formation during the growing season.

The study used xylogenesis data via micro-core wood sampling and dendrome-

ter monitoring to convert spatial scales of wood anatomical profiles to seasonal

time scales. The comparison of the MICA aligned profiles in spatial annotation

and the temporally annotated profiles demonstrated that MICA contributed335

significantly to increase the synchronicity of averaged wood anatomical charac-

teristics.

In addition, it was shown in [7] that MICA could be used to extrapolate

information. Here, temporal annotation of tree-ring development was derived

based on experimental field data, which can only be collected for a few trees due340

to laborious and expensive methodology and time consuming sample prepara-

tion needed. Nevertheless, this data can be extrapolated to other tree samples

(with similar growth characteristics) using the reference-based alignment mode

of MICA. After alignment, the temporal annotation of the reference curve can

be transferred to the newly aligned curves. The temporally annotated curves345

and the derived consensus profile eventually allowed a detailed understanding

on how intra-seasonal drought periods modify intra-annual wood formation dy-

namics and cell-anatomical variables within tree-rings.

Discussion and Conclusions

Curve alignment is a central step to generate representative consensus data350

for a given set of e.g. measured discrete time series. If it is possible to iden-

tify prominent characteristics (landmarks) that are common among the curves
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to be aligned, landmark registration approaches can be used. The latter iden-

tify an optimal time point (and according interval) mapping for the identified

landmarks.355

MICA implements a heuristic landmark registration method in combination

with a progressive alignment scheme to generate multiple curve alignments and

according representative consensus data. In contrast to available implementa-

tions, it automatically identifies landmarks for a given filter setup and generates

an alignment without a predefined reference curve. The latter, i.e. a fixed refer-360

ence, is a common prerequisite for available methods. While not mandatory, also

reference-based alignment is possible using MICA. To face the varying numbers

of identified landmarks for the curves to align, MICA does not enforce the map-

ping of all landmarks provided but identifies a subset mapping that minimizes

the slope or amplitude difference between curves.365

Generally, landmark registration works best if only few and very prominent

characteristics are identified and used for alignment. Thus, a preprocessing of

the data to smooth low amplitude fluctuations and other noise artefacts, e.g. due

to measurement precision, can ease the alignment problem and increase the over-

all quality [6]. Since such preprocessing is non-trivial and very much depends370

on the data at hand, MICA does not provide any smoothing functionality.

Automatic handling of outlier curves among a data set is also a feature not

part of the current MICA tool. While the use of the MICA GUI will easily help

to identify curves that differ much in shape or other curve features, outliers

will be part of the alignment and thus might reduce the alignment quality. An375

according outlier example data set is provided on github. One strategy could be

to simply ignore the curve most dissimilar to all other curves based on average

PICA scores. Such information is available via the R interface, which provides

the pairwise distance table that guides the progressive alignment. Another

strategy would be to investigate the guide tree (fusion order) of the alignment380

for outliers, which is also available via the R interface.

To further speedup the implementation, we are currently investigating the

impact of a parallelized computation of the individual interval optimizations,
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since once separated by mapped landmarks, they represent independent sub-

problems. Furthermore, we are investigating whether a smoothing of the warp-385

ing function [10, 11] shows a significant impact on the heuristic alignment results.

So far, MICA was successfully applied to derive representative consensus

profiles for wood density and cell growth data [6, 7]. Its graphical user interface

enables ad hoc usage while its command-line and R interface are tailored for its

automated application in data processing pipelines of arbitrary discrete time390

series.

Availability of data and materials

The source code of MICA as well as precompiled binary for direct usage are

freely available at https://github.com/BackofenLab/MICA. Here, also manuals

and the R-interface scripts are provided.395
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Nr (executable) Software

metadata description

Please fill in this column

S1 Current software version 2.0.1

S2 Permanent link to executa-

bles of this version

https://github.com/BackofenLab/MICA/releases

S3 Legal Software License MIT

S4 Computing platform / Op-

erating System

Linux, OS X, Microsoft Windows, Unix-like

S5 Installation requirements &

dependencies

Java 8

S6 If available Link to user

manual - if formally pub-

lished include a reference to

the publication in the refer-

ence list

https://github.com/BackofenLab/MICA

Table 1: Table 1 - Software metadata
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Nr Code metadata descrip-

tion

Please fill in this column

C1 Current Code version 2.0.1

C2 Permanent link to code /

repository used of this code

version

https://github.com/BackofenLab/MICA

C3 Legal Code License MIT

C4 Code Versioning system

used

git

C5 Software Code Language

used

Java, R

C6 Compilation requirements,

Operating environments &

dependencies

Java, R

C7 If available Link to devel-

oper documentation / man-

ual

https://github.com/BackofenLab/MICA

C8 Support email for questions https://github.com/BackofenLab/MICA/issues

Table 2: Table 2 - Code metadata
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