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Abstract

Lattice protein models are well studied abstractions of globular proteins. By discretizing the
structure space and simplifying the energy model over regular proteins, they enable detailed studies
of protein structure formation and evolution. But even in the simplest lattice protein models, the
prediction of optimal structures is computationally hard. Therefore, often heuristic approaches are
applied to find such conformations. Commonly, heuristic methods find only locally optimal solutions.
Nevertheless, there exist methods that guarantee to predict globally optimal structures. Currently
only one such exact approach is publicly available, namely the Constraint-based Protein Structure
Prediction (CPSP) method and variants. Here, we review exact approaches and derived methods. We
discuss fundamental concepts like hydrophobic core construction and their use in optimal structure
prediction as well as possible applications like combinations of different energy models.
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1 Introduction

Almost all cellular processes on earth are governed or guided by proteins [85]. Their functionality is
always coupled to the formation of a specific three-dimensional structure named functional, native, or
biological fold/conformation. It was shown via refolding experiments that a protein’s functional fold is
mainly encoded by its sequence of amino acids [1, 28]. Nevertheless, there is a large number of processes,
like crowding effects [45], co-factor binding [93] or chaperons [94], that influence or support the structure
formation process within living cells [24]. Still, the folding process is mainly governed by non-covalent
intramolecular interactions [77] and misfolding can result in reduced or broken functionality [83]. Several
diseases [50, 67, 73] and even cancer [80] are caused by misfolded proteins.

Two connected but independent problems arise: (I) To study the function of a protein, its native fold
has to be identified. This is known as the protein structure prediction (PSP) problem. (II) To understand
the mechanistic details of misfolding, the folding process itself has to be investigated e.g. using folding
simulations. Here, we are focusing on the PSP problem, which resembles the result of the structure
formation process.

In order to study the PSP problem various protein models have been developed. They range from full
atom representations in three dimensions used in molecular dynamics simulations [46]; through off-lattice
bead models [2]; and down to very coarse grained 2D lattice models [49]. Three more or less independent
layers of abstraction can be found: structure space, sequence space, and energy function. The structure
space dictates possible spatial properties of a protein, while sequence space and energy function describe
the distinction of different amino acids and their interacting forces, respectively. Assuming the system to
be in thermodynamic equilibrium [36], the native fold will be the structure with minimal free energy [1].
Thus, structure prediction can be approached with optimization methods for a given model.

Within this work, we will focus on PSP for lattice protein models. We first concentrate on the
widely studied Hydrophobic-Polar (HP) model by Lau and Dill [49]. Even in this simplistic model, the
identification of energy minimal structures is a hard computational problem [14, 27]. Since exhaustive
structure enumeration approaches [43] are restricted to very short sequence lengths, usually heuristic
methods are applied. They apply various techniques, e.g. simulated annealing [86, 87], quantum anneal-
ing [70], ant colonization optimization [64], evolutionary algorithms [84], energy landscape paving [53],
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large neighborhood search [34, 35], constraint programming [29, 31, 32], or dedicated search heuris-
tics [23, 54, 75, 81]. They enable performance-guaranteed approximations close to the optimum for both
backbone-only [38, 65] and side chain models [39, 40]. For a detailed overview of approximating methods
refer to reviews by Hart and Newman [37] or Istrail and Lam [44].

Here, we review exact methods for the PSP problem for lattice protein models, i.e. approaches that
identify energy optimal structures only. Given the large amount of the mentioned recent local search
PSP research, is is surprising that currently only two exact methods are known, both targeting the HP-
model in three dimensions. The first approach was introduced by Yue and Dill and named Constrained
Hydrophobic Core Construction (CHCC) [95]. It is based on the observation that globular proteins show
a densely packed hydrophobic core both in reality as well as in the HP-model. Thus, energy optimal
structures show an almost maximally dense packing of hydrophobic amino acids. This is utilized in
the CHCC method by considering only (decreasingly) compact hydrophobic packings when searching
for optimal structures. While the CHCC approach was the first exact PSP method, it was proven to
be incomplete when enumerating all optimal structures [11]. In contrast, the Constraint-based Protein
Structure Prediction (CPSP) approach [11, 60, 61] was shown to be exact and complete when calculating
optimal structures. CPSP uses a similar strategy as CHCC and is so far the only exact and complete
method for protein structure prediction in lattice protein models. It is often used as reference when
testing local search methods and is discussed in detail within this review.

The CPSP approach facilitates methods for more sophisticated energy models. Among them are its
extension and application to the HPNX model [12], which also takes polar interactions into account [17].
Furthermore, HP-optimal predictions can be used within a hierarchical prediction approach to search for
energy optimal structures within full 20×20 pairwise potential models [74, 86, 87]. The latter requires
the identification of HP-optimal conformations that are structurally diverse. This can be achieved by
the introduction of an equivalence relation based on hydrophobic cores and the restricted enumeration of
representatives for each equivalence class [56].

In the following, we will introduce the necessary formalisms to discuss lattice protein models and sub-
sequently the CPSP approach. Afterwards, we will review the construction of (sub-)optimal hydrophobic
core packings, a central prerequisite for both the CHCC and the CPSP method. Hydrophobic core infor-
mation can be used to define equivalence classes of structures within the HP-model and we will present the
enumeration of class representatives based on an extension of the CPSP method. Finally, the extension
and application of the CPSP approach to enhanced lattice protein models is illustrated.

2 Lattice Protein Models

The strongest abstraction within lattice protein model is the allowed structure space, where conformations
are discretized based on an underlying regular lattice. Such a lattice L is a set of 3D coordinates that
form an additive group for any two points ~u,~v ∈ L, i.e. it holds (~u± ~v) ∈ L. The neighborhood NL ⊂ L
is the minimal subset of vectors to encode the whole lattice by a linear combination of these vectors using
positive integers only, i.e.

∀~u∈L : ~u =
∑
~x∈NL

c~x · ~x with c~x ∈ N (1)

Furthermore, we require NL to contain also the reverse vectors, i.e. ~x ∈ NL → −~x ∈ NL, and only
vectors of equal lengths, i.e. ∀~u,~v ∈ NL : |~u| = |~v|. For instance, a 3D-cubic lattice is defined by
Ncubic = {±(1, 0, 0),±(0, 1, 0),±(0, 0, 1)}. A wide variety of lattice has been studied in the context of
lattice protein models. Common 3D lattices are the cubic (Fig. 1) and face-centered-cubic lattice (12
neighbors per point, Fig. 2) as well as the diamond lattice. For further lattices and details refer e.g.
to [55, 69].

The coordinates of a given lattice define possible placements for protein monomers. Within backbone-
only models, a protein is represented by its backbone Cα-atom positions only, while successive Cα-
monomers have to be neighbored in the lattice according to NL. Thus, a backbone-only lattice protein
structure P of length n is defined by P = (P1, . . . , Pn) ∈ Ln with (P(i+1) −Pi) ∈ NL. In addition, P has
to be self-avoiding, i.e. ∀i 6= j : Pi 6= Pj . Side chain models extend the amino acid abstraction with a
second side chain monomer, which has to be neighbored to the according Cα-monomer. For examples see
Fig. 1. The modeling quality of real protein conformations by lattice protein structures depends strongly
on the underlying lattice used [57, 59, 69]. Figure 1 depicts the exponential lattice-dependent growth of
the structure space that is detailed in [55] for different lattices.

2



S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S

5 10 15 20 25

1e
+

00
1e

+
03

1e
+

06
1e

+
09

nu
m

be
r 

of
 p

os
si

bl
e 

st
ru

ct
ur

es

C
C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

F
F

F

F

F

F

F

F

F

F

F

2

2

2

2

2

2

2

2

2

S
C
F
2

lattice

− SQR
− CUB
− FCC
− 210

backbone−only models

protein length n =

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

5 10 15 20 25

1e
+

01
1e

+
03

1e
+

05
1e

+
07

1e
+

09

nu
m

be
r 

of
 p

os
si

bl
e 

st
ru

ct
ur

es

C

C

C

C

C

C

C

C

F

F

F

F

F

2

2

2

2

S
C
F
2

lattice

− SQR
− CUB
− FCC
− 210

side chain models

protein length n =

Figure 1: Examples for (left) backbone-only and (right) side chain lattice protein models in the 3D-cubic
lattice. Colors encode an HP-model: hydrophobic (green), polar (gray) and backbone monomers (pink).
(center) Sequence-length and lattice-dependent exponential growth of the symmetry free structure space
for different lattices (SQR - 2D-square, CUB - 3D cubic, FCC - 3D face centered cubic, 210 - chess-knight).
Figures are taken from [55].

The sequence space abstraction and energy function are the final determinants for a lattice protein
model. Various reductions of the amino acid alphabet of proteins are known, which have been combined
with according energy functions. Distance-based energy functions either incorporate sequence-based
pairwise potentials scaled by the distance [88] or apply special distance dependent potentials [66]. For
details refer to the review by Hart [37]. In the following, we will discuss contact based energy models,
which can be used to define exact PSP methods. Therein, the energy E of a lattice protein structure P
with sequence S is determined by the summation of all pairwise sequence-dependent contact potentials
e(Si, Sj). Two non-successive monomers Pi and Pj are in contact, if they are neighbored within the
lattice.

E(S, P ) =
∑

1≤i+1<j≤n

∆(Pi, Pj) · e(Si, Sj) (2)

∆(Pi, Pj) =

{
1 if Pi − Pj ∈ NL
0 else.

(3)

Most abstract is the HP-model [49], which models the central impact of hydrophobic forces within
structure formation [71]. Here, hydrophobic amino acids are repelled from water due to their non-polar
nature, resulting in a crowding of hydrophobic residues within the protein core [68] (see Fig. 1). This so
called hydrophobic core is present in almost all globular water-solved protein structures. It is central to
the CPSP approach and was also used in recent local search methods [75, 87]. Beneath the suggested
energy potentials by Dill and coworkers (e(Si, Sj) = −1 if Si and Sj hydrophobic; 0 otherwise [33]), other
potentials have been applied [17, 52].

Banavar and coworkers introduced the THP-model [13] to incorporate context specific hydrophobic
contact contributions. Another extension, the HPNX-model introduced in [12, 17] with different poten-
tials, distinguishes four different amino acid groups, namely H ydrophobic, Positively charged, N egatively
charged, and X for all remaining neutral residues. Still, hydrophobic contacts are the strongest poten-
tials. An improved version, the hHPNX-model [41], follows the amino acid grouping of the YhHX-model
suggested by Crippen [28] where Alanine and Valine are treated as special group (h). Bornberg-Bauer
introduced an integer conversion of the real valued YhHX-model that maintains approximately the same
ratios of entries [17]. His potentials were corrected by Hoque and coworkers [41]. Full 20×20 pairwise
potentials were pioneered by Miyazawa and Jernigan [62, 63] and derived from real protein structure
information. Simplified potentials have been suggested in [15].

In first studies, Chan and Dill found contact-based potentials sufficient to enable realistic distributions
of secondary structure elements in structure space [21] by the study of small molecules in the 3D cubic
lattice. While it is clear to see that very simple lattice models, e.g. in 2D, are hard to map into the real
protein structure space, Vendruscolo and Domany showed general limitations of contact-based potentials
to mimic real protein structures [90]. Thus, to enable lattice proteins to predict real native structures,
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Figure 2: (left) Coherence between an optimal structure (top) and the optimally dense packing of H-
monomers, i.e. its H-core (bottom) in the 3D-face-centered-cubic (FCC) HP-model. (right) CPSP
Workflow. Start and end are marked by open and filled circles respectively. The number of hydrophobic
amino acids within the sequence is denoted by nH and m is initialized by the maximal number of
hydrophobic contacts possible for nH monomers in the underlying lattice. Figures from [55].

additional constraints are needed. For instance, the prediction and incorporation of secondary structure
information yields very promising results [30, 31]. But even without such extensions, lattice protein
models enable studies of general features of protein structure formation and related problems. They have
been used to investigate the folding process [72], native structure properties [37], sequence evolution [18],
cooperative/competitive folding [22], and co-translational folding [42, 79], to name but a few.

In the following, we will first focus on structure prediction the HP-model in three-dimensional lattices.
Later on, exact PSP approaches for enhanced energy models will be discussed.

3 Constraint-based Protein Structure Prediction

As discussed in the introduction, the Constraint-based Protein Structure Prediction (CPSP) approach
is currently the only exact and complete PSP method for lattice protein models. Its basic version is
tailored for 3D backbone-only HP-models [8, 11, 61, 92] but was extended other models too. Among
them the extension to the HPNX-model [7, 12] or to side chain structure models [60] both later discussed
in detail. In contrast to most tools and approaches in the field, a CPSP implementation is available for
local installation [25, 61] as well as ad hoc web usage [26, 60]. Thus, it has spawned the compilation of
extensive benchmark data sets of protein-like sequences with various folding features [58]. Among them
are the existence of a unique optimal fold, proven via CPSP, and the accessibility of this structure via
unrestricted or co-translational folding using the LatPack package [48].

Within the HP-model, only hydrophobic contacts are contributing to the energy. It is therefore
sufficient to consider and optimize H-monomer interactions only. The CPSP approach follows, as the
CHCC method, the observation that HP-optimal structure feature an (almost) optimal packing of H-
monomers and thus maximizing their contacts, see Fig. 2. This spawns the central idea of CPSP: if a
structure shows an optimal packing of H-monomers it is has to be an HP-optimal structure! Following this
idea, the CPSP screens (sub)optimal packings of H-monomers, so called H-cores, for their compatibility
with the given sequence. If it is possible to identify a structure that confines the sequence’s H-monomers
to the current optimal H-core, an optimal structure was found. This structure threading is done via
constraint programming techniques. The overall CPSP workflow is given in Fig. 2.

In the following, we will first sketch the structure threading step for a given sequence and H-core. In
the next section the computation of H-cores is discussed. A detailed presentation of the whole approach
if provided in [92].

3.1 Optimal Structure Identification

The CPSP approach uses constraint programming techniques to solve the PSP problem. Constraint
programming enables the definition of constraint satisfaction problems (CSP) and offers a generic and
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efficient framework for satisfiability checks [78]. A CSP is defined by a set of variables X , their value
domains D and the set of constraints C on X , which define valid variable assignments, i.e. solutions.
A sophisticated iterative reasoning and pruning of violating values from the variable domains combined
with tuned search strategies enables an efficient identification and enumeration of constraint-conform
solutions. For further details on general constraint programming techniques e.g. refer to [78].

The CSP formulated for the optimal structure identification step in the CPSP approach is based
on both the protein’s sequence S of length n and the current H-core of interest H in the underlying
lattice L. An H-core H ⊂ L is a set of lattice points with maximally compact positioning (details on
their generation are discussed later). Only S-compatible H-cores are considered, i.e. the size of the core
equals the number of H-monomers in the sequence.

In the following, for simplicity we will first discuss the CSP for backbone-only models [8, 11, 61, 92].
For each backbone position, a lattice position variable Xi is defined. The domain Di of Xi depends on the
according amino acid Si: if hydrophobic (Si = H), the variable domain is defined by the H-core positions
(Di = H). Otherwise, the monomer has to be placed outside of the core (Di = L\H). As discussed above,
this ensures HP-optimality of any produced structure as long as the H-core shows an optimal packing.
In order to encode valid structures only, additional constraints are enforced. First, self-avoidingness of
the chain via global difference of assigned values [76] and second the chaining of successive monomers
given the neighborhood of the lattice, i.e. ∃~x ∈ Di : ∃~y ∈ Di+1 : ~x − ~y ∈ NL. While formulated here
for domains on lattice coordinates, a coordinate integer encoding can be used in order to apply standard
finite domain constraint solvers [7, 55, 92]. Provided the H-core shows an maximal number of contacts,
any solution satisfying these constraints will represent an optimal structure according to the HP-model.

If no solution was found, the next H-core with similar compactness is tried. If no optimally packed
H-core yields a solution, it is proven that no optimal structure with lower or equal number of hydropho-
bic contacts exists. Thus, the CPSP approach relates to suboptimal H-cores, which show the highest
non-optimal number of hydrophobic contacts and iterates the procedure. Therefore, solutions for such
suboptimal H-cores are still globally optimal, since no solution for more compact H-cores was found. Usu-
ally no or only a few suboptimality iterations are necessary. Note, the constraint programming framework
enables the enumeration of all valid solutions for a CSP. This was, the set of all optimal structures can be
enumerated by the CPSP approach when screening all according H-cores. The full workflow is depicted
in Fig. 2.

The complete enumeration of optimal structures has to exclude symmetric conformation. That is,
identical structures resulting from rotation or reflection in the lattice have to be avoided. The CPSP
approach employs efficient symmetry breaking techniques within the solution search [10] resulting in a
fast and symmetry free solution enumeration. To this end, for each solution the CSP is enhanced by
lattice specific constraints that exclude symmetric assignments within the remaining enumeration [3, 10].
The symmetry free number of optimal structures, known as a sequence’s degeneracy, is often taken as
measure of structural stability of the native fold [82].

When extending the approach to side chain lattice protein models [55, 60], only an adaption of the CSP
is needed while the overall workflow is kept. The contact-based energy computation in side chain models
is restricted to side chain monomers only [55]. In the HP-model, only hydrophobic side chain interactions
are contributing to the energy. All other contacts are neutral. Therefore, the CSP is adapted as follows:
for each amino acid two variables are defined, one for the backbone and one for the side chain monomer
position. The backbone monomer is confined to positions outside of the current H-core, while a sequence
specific domain assignment, analogous to the backbone model, is used for the side chain monomers. In
addition to the connectivity constraints applied to the backbone monomers, also side chain-backbone
connectivity for each amino acid has to be ensured. Self-avoidance is enforced for all variables, i.e. all
monomer positions. This CPSP modeling extension enables for the first time the exact identification
of optimal structures in the side chain HP-model in three-dimensional lattices [55, 60]. The complete
enumeration of optimal side chain structures is enabled too, but the enormous structure space growth
(see Fig. 1) and the high degeneracy of the HP-model yield often hundreds to millions optimal structures.
This problem is faced when extending the CPSP approach for the enumeration of representatives for
H-core equivalence classes, discussed in Sec. 4.

3.2 Hydrophobic Core Construction

An H-core can be generated from an optimal conformation by removing all bonds, and considering only H-
monomers (see Fig. 3A). As introduced, the CPSP approach depends on the availability of (sub)optimal
H-cores for the lattice of interest. This is based on the relation of the number of contacts in the H-core
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Figure 3: H-Core Construction. A) shows an optimal conformation for the sequence PPHPHHPPPPHHHHPPP

in the 3D-cubic lattice together with the associated hydrophobic core and its decomposition into layers.
B) Relation between HH-contacts (blue) and surface contacts (red) exemplified for layer 1.

and the number HH-contacts in a conformation featuring this H-core. Formally, the contact number of
an H-core H is defined by

I(H) = |{ {~x, ~y} | ~x, ~y ∈ H ∧ ~x− ~y ∈ NL }|. (4)

Now let a conformation P for a sequence S have an associated H-coreH. Then the number of HH-contacts
E(S, P ) relates to I(H) by

E(S, P ) = I(H)− number of HH-bonds. (5)

Here, HH-bonds denote the bonds between successive H-monomers in the sequence, which are not con-
tributing to the energy. Thus, optimal conformations have also optimal or near optimal H-cores, where
we define an H-core H ⊂ L to be optimal if its contact number I(H) is maximal for this H-core size |H|.

Figure 3A) shows the basic idea of using a hydrophobic core construction, as first introduced by Yue
and Dill [95]. It also depicts the decomposition of H-cores in order to efficiently determine optimal ones.
Here, an H-core is broken into individual layers (right part of Figure 3A), such that we can dissemble a
cores contacts I(H) into layer and interlayer contacts. Thus, the hydrophobic core construction reverses
direction (indicated with blue arrows). Based on branch-and-bound techniques, (sub)optimal layers are
generated, which are then composed into (sub)optimal hydrophobic cores. Finally, conformations are
threaded onto the optimal cores as described above. Thus, the success of the CPSP approach relies on
good bounds for the layer generation to effectively generate hydrophobic cores.

Therein, the basic question is the following: Given a specific distribution of H-monomers onto each
layer (e.g., in Fig. 3A: n1 = 3 and n2 = 4), what is the maximal contact number of an associated H-core?
As indicated before, one distinguishes between layer and interlayer contacts for this purpose, which we
will illustrate with the example from Fig. 3. So let’s concentrate first on the number of layer contacts
of the three H-monomers in in layer 1 (Fig. 3B). This placement produces two HH-contacts. As shown
by Yue and Dill [95], the number of layer contacts is related to the surface of the minimal rectangle
around all H-monomers. For this, we need to identify the surface contacts of a specific layer, which is the
number of unoccupied neighboring positions of H-monomers. Figure 3B highlights the 8 surface contacts
for layer 1 in red. Since every H-monomer has four neighbors in a 3D cubic layer, we know that four
times the number of H-monomers must be equal to twice the number of HH-contacts plus the number of
surface contacts (4×n = 2×HH+surfaces). Thus, we get the equation 4×3 = 2×2+8. This implies that
minimizing the surface in a layer is maximizing the number of HH-contacts. Furthermore, the number
of surface contacts is exactly the perimeter of the minimal rectangle around all H-monomers (both 8 in
Fig. 3B). For that reason, a placement of n H-monomers that optimizes the number of HH-contacts is
found by using the minimal rectangle (in the following called frame) with height a = d

√
ne and width

b = dna e, or vice versa.
This upper bound can be improved in several ways. If one considers four H-monomers to be placed in

one layer, then the optimal frame has the dimension 2× 2. However, four H-monomers cannot be placed
into this frame if the protein’s subsequence containing this four H-monomers is HHPHH. The reason is that
the enclosed P, which is called P-singlet [95], cannot be placed outside the 2×2 frame, which contains
all H-monomers, while being in contact to its flanking H-monomers. Thus, the optimal frame is not
compatible with the sequence at hand. This can be solved by including these P-singlets in the number of
H-monomers to be placed when calculating the optimal surrounding frame. Another improvement was
introduced in [5] by using a special property of the cubic lattice. Given a point ~p = (x, y, z) in the cubic
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3-points and are indicated with blue circles, together with their possible contacts.

lattice, we define a point to be even if x+ y + z is even, and odd otherwise. Since the neighbors of any
point in the cubic lattice differ by one in exactly one coordinate, an even point has only odd neighbors,
and vice versa. In a sequence, we also have even and odd monomers, and this parity also translates to
the parity of occupied positions. So instead of considering a distribution of the number of H-monomers
per layer, one can consider distributions of even and odd H-monomers to layers [5]. If there are two even
and two odd monomers, as in the case of Fig. 3A for layer 2, then the minimal frame has the dimension
2 × 2, which yields four HH-contacts. If, instead, three even and one odd (or vice versa) monomers are
to be placed, then the optimal frame has dimension 2× 3 with only three HH-contacts [5].

Concerning the number of interlayer contacts, the problem is relative easy for the cubic lattice since
each H-monomer in a layer can have at most one HH-contact to exactly one H-monomer in the following
layer. Thus, given two successive layer frames, one possible upper bound for the number of interlayer
contacts is given by the maximal number of overlap positions between both frames. The dimensions of
this overlap are defined by the minimum of the heights and widths of the associated frames (see Fig. 4).

The problem gets more complicated for the 3D FCC lattice. The layers, when using a corresponding
splitting, are again equivalent to positions in the square lattice. Thus, most of the results for layers
described above for the cubic lattice can be transferred to the layers in the FCC. However, the upper
bound for the interlayer contacts is much more complex. To the best of our knowledge, only one upper
bound for the interlayer contacts in the FCC lattice has been developed so far [4, 6]. The problem is
that an H-monomer can have zero to four contacts to H-monomers in the next layer. For that reason,
Backofen [6] developed bounds for the number of positions in the next layer having one to four contacts
(called 1-, 2-, 3- and 4-points), given a frame with additional properties in the current layer. To give
an example, it was shown that the number of 3-points for a given placement of H-monomers can be
determined by considering the longest intersection of 45◦ diagonals with unoccupied positions in the
frame [6] (see Fig. 4B). This implies that the ∗-point composition of the layers has to be considered for
determining a bound on the interlayer contacts.

Once upper bounds for layer and interlayer contacts are found for a given H-core size, dynamic
programming is used to identify optimal frame sequences for a contact bound [9, 11, 92]. These frame
sequences are then instantiated to optimal H-cores via constraint programming. This frame sequence
and H-core enumeration and its extension to suboptimal H-core generation is beyond the scope of this
review and we refer to the according literature [9, 11, 91, 92].

4 Hydrophobic Core Equivalence

The hydrophobicity-focusing energy function in HP models results on average in a vast number of optimal
structures. Since polar residues do not contribute to the energy, optimal structures usually show a much
higher variation in the placement of polar than hydrophobic residues. While the latter form a compact
core, polar residues are placed arbitrarily loose around it. This is even more severe in side chain models
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show the same relative H-monomer placement (b), i.e. are within one equivalence class. The structure
on the right highlighted in red (d) is also part of this equivalence class when considering reflection. This
exemplifies the symmetry problem for equivalence detection. Figures taken from [55].

where the majority of the monomers is unconstrained by the energy function, namely both backbone and
polar side chains monomers.

When considering the relative positioning of a protein’s hydrophobic monomers only, only few distinct
patterns occur as depicted in Fig. 5. These H-core placements enable the definition of an equivalence

relation
H∼ in order to group optimal structures accordingly. Formally, two backbone-only structures

P = (P1, . . . , Pn) and P̂ = (P̂1, . . . , P̂n) for a sequence S are said to be equivalent if they show identical
H-monomers placements according to some symmetrical shift. This is given by

P
H∼ P̂ ←→ ∃r∈R ∃~t∈L : ∀i|Si=H : Pi = P̂iRr + ~t , (6)

where R denotes the set of all symmetry functions (according to rotation and reflection) within the
underlying lattice L, while Rr represents the rotation/reflection matrix for a symmetry r ∈ R (refer
to [55, 92] for details). The translation vector ~t ∈ L shifts the symmetric structure into mapping. See
Figure 5 for examples. This equivalence definition can be extended to side chain lattice protein models,
see [55, 56]. This results in according equivalence classes within the structure space for a given sequence.

The CPSP approach can be used to enumerate all equivalence classes comprising optimal structures
for a given protein [55, 56]. To this end, one representative structure per class is identified. It is based on
the observation that only optimal structures confined to the same H-core can be equivalent. Thus, the
overall CPSP workflow can be kept and only the CSP solution identification has to be adapted in order
to avoid the enumeration of equivalent structures. This is achieved by a dedicated variable assignment
strategy. Only for hydrophobic monomers, a complete solution enumeration is done excluding symmetries.
For each H-monomer assignment, a satisfiability check for the placement of the remaining monomers is
done, which results in a single representative optimal structure for the equivalence class if possible. Note,
the symmetry problem is already solved within the CPSP workflow as discussed above.

Figure 6 compares the number of optimal structures (a sequence’s degeneracy) with the number of
equivalence classes for a large set of sequences. It reveals that the number of equivalence classes is
several orders of magnitude smaller than a sequence’s degeneracy. Furthermore, it reveals the extreme
increase of optimal structures in side chain HP-models compared to backbone models due to energetically
unconstrained polar and backbone monomers. Here, the difference to equivalence classes is even more
extreme. The distributions of equivalence classes are similar when comparing backbone-only and side
chain models, while backbone-only models show a slightly higher number on average. This results from
the increased freedom in hydrophobic side chain monomer positioning in side chain models, since only
neighborhood to the backbone monomer has to be ensured. In backbone-only models, each H-monomer
has to be neighbored to the preceding and succeeding backbone monomer in the chain. Thus, optimal
side chain model structures show on average a more compact H-core compared to optimal backbone-only
structures for the same sequence. Since the number of H-cores decreases for increasing compactness,
fewer H-cores and thus less equivalence classes are found for side chain structure models.

Since a sequence’s degeneracy, which can be computed by the standard CPSP approach, is a measure
of structural stability [82]. But as discussed, it is flawed in the HP-model due to the missing energetic
constraints on the non-hydrophobic monomers. Thus, the number of equivalence structures was suggested
as a new measure of structural stability in the HP model as an alternative to degeneracy [55, 56].
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Figure 6: Distribution of the number of representatives (green) versus the overall number of optimal
structures (degeneracy, red). They are exemplified for for HP models in the 3D-cubic lattice for sequence
length 27. On the [left], results correspond to backbone-only predictions for 100,000 random sequences,
the [right] figure depicts side chain model predictions for 10,000 random sequences. The distributions
are only shown with exact values for degeneracy below 106, all sequences with a higher degeneracy are
collected in the right most bar in pink representing “> 106”. Figures taken from [55].

5 Enhanced Models

The HP-model implements a strong abstraction of the energetics underlying the protein folding process,
since it only models hydrophobic forces. As discussed above, several more fine grained energy models have
been introduced in literature. While the CPSP is currently the only exact method for protein structure
prediction in lattice protein models, it is intrinsically tailored towards the HP-model. Nevertheless, it can
be extended to HP-related energy models as HPNX-model [7, 12, 92]. Furthermore, it was shown that
the HP-model can be used within hierarchical approaches to enhance the prediction of optimal structures
in more sophisticated energy models providing 20×20-potentials [86, 87]. Both directions are discussed
in the following.

5.1 Prediction in HP-type models

The HPNX model [17] is an extension of the HP-model, where polar amino acids are split into (P)ositively
and (N)egatively charged amino acids and neutral (X) monomers. yields within N-P-contacts Still, it
focuses on hydrophobic interactions, such that H-H-contacts have the strongest energy contribution of 4,
while H-contacts to all other amino acids are neutral. N-P-contacts have an energy contribution of -1,
while P-P- and N-N-contacts are penalized by +1. Contacts to X are neutral (contact potential is 0).

Backofen and Will have introduced an exact constraint programming-based PSP approach for the
HPNX-model [3, 7, 12, 92]. The approach applies a branch-and-bound search on a constraint optimization
problem, which encodes feasible lattice protein structures (similar to the CPSP-model) in concert with
the described HPNX-energy function to be minimized. The performance is based on sophisticated lower
energy bounds for partially defined solution structures, in order to prune energetically unfavorable parts
of the search space. This way, the authors yield an efficient and exact PSP method that allows optimal
structure prediction and enumeration [7, 12, 92].

5.2 Optimized prediction in full potential models

For more sophisticated energy models, as e.g. the 20×20 pairwise potentials by Miyazawa and Jerni-
gan [62, 63], no efficient and exact PSP approach is known so far. Here, usually local search strategies are
applied. Local search is a generic optimization scheme that minimizes a given objective function. Given
a neighborhood relation within the search space to traverse, local search is able to follow the gradient
to identify local or even global minima [47, 89]. Local search approaches work well in practice for more
sophisticated energy functions but usually require a large number of steps to converge. Each search
usually starts with a random start conformation to enable a good coverage of the structure space.
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Ullah and co-workers introduced a protein folding simulation procedure that employs two stages of
optimization in order to find structures of minimal energy [86]. The method mimics the hydrophobic
collapse during protein folding, i.e. the hydrophobicity-driven, fast formation of an initial structure and
the following folding into the functional fold. Thus, the protein sequence is first collapsed into a compact
HP-optimal structure using the CPSP approach. Successively, the CPSP output is given as input to a
Simulated Annealing-based local search procedure which employs the pairwise 20×20 energy potentials
introduced by Berrera and co-workers [15]. Thus, the method combines the efficiency and performance
of exact structure prediction in the simpler HP-model with established local search schemes in the en-
hanced energy model using pull moves [16, 51]. When comparing this two-step optimization pipeline with
standard Simulated Annealing procedures based on random start structures, faster convergence to ener-
getically lower structures is observed. This results from the energetically lower start conformations, since
HP-optimal structures show on average about two orders of magnitude lower energies in the enhanced
energy model compared to random structures [55, 86]. The impact of such an HP-optimal initialization
scheme seems to be strongly connected to the subsequently applied optimization procedure, since Rashid
and colleagues found their genetic algorithm to be more efficient with random initializations [74].

6 Summary

Lattice protein models enable detailed studies of protein folding processes in a discretized, finite but
yet exponentially large structure space. The latter renders exhaustive structure enumeration useless for
interesting protein lengths. In order to find native, i.e. energy optimal, structures, mainly local search
schemes are applied, which neither ensure to find optimal structure nor enable an thorough investigation
of the lowest energy spectrum. Only for hydrophobicity-focusing energy functions, namely the HP- and
HPNX-model, exact methods are known. They are based on the Constraint-based Protein Structure
Prediction (CPSP) approach [8, 11, 60, 61] applying efficient constraint programming techniques [3, 10].

The CPSP approach uses precomputed sets of maximally compact H-cores in order to identify optimal
structures only. The computation of (sub)optimal H-cores is a hard computational problem on its own and
was solved based on dynamic programming and constraint programming, too [3, 6, 9, 92]. The sequence-
independence of H-cores enables a precomputation of an H-core database and its recomputation-free
use within the CPSP workflow. This ensures a fast and reliable prediction of HP-optimal structures in
3D lattices. While tailored for the HP-model, several extensions of the CPSP approach have produced
exact methods for other lattice protein models and applications. Beside the mentioned extension to the
HPNX-model [7, 12, 61, 92], side chain models were targeted too [55, 60].

The CPSP approach is the only method enabling a complete and exclusive enumeration of optimal
structures. This revealed an extremely high degeneracy, i.e. number of optimal structures, within the
HP-model. Most of the optimal structures show an equivalent H-monomer placement, while they are only
differing in the energetically unconstrained monomers. An extension of the CPSP approach enables the
enumeration of according equivalence classes [55, 56], revealing a dramatically lower number of distinct
H-monomer positionings among optimal structures. This phenomenon is most prominent in side chain
lattice models. Given the properties of the hydrophobicity focusing energy function, the number of
equivalence classes was suggested as an alternative measure of structural stability beside the commonly
used degeneracy. Both measures can only be exactly identified using the CPSP method.

The existence of a unique native fold, i.e. lowest energy conformation, is a common criterion to name a
model sequence protein-like. So far, the CPSP approach is the only method to enable the identification of
such sequences. Thus, it was used to generate benchmark sets of protein-like sequences showing different
folding properties [58]. Beside the unique native fold, its accessibility via co-translational and unrestricted
folding is taken into account. Furthermore, the CPSP approach is often used as reference to determine
the lowest energy accessible for a given sequence to evaluate local search schemes [23, 34].

The use of HP-optimal structure samples was shown to boost protein structure prediction in more so-
phisticated models [55, 74, 86, 87]. Here, no exact methods are available and thus local search schemes are
applied. It was shown that the initialization of local search with HP-optimal structures increases conver-
gence and enhances prediction results. Such a two-step optimization scheme resembles the hydrophobic
collapse during globular protein folding.

Beside protein structure prediction, the CPSP approach was also used to tackle the inverse folding
problem [55, 61], i.e. to find a sequence, which has a given structure as its native fold. Here, the CPSP
method was needed for (a) to confirm that the targeted structure is among the optimal ones and (b) to
check if a sequence’s degeneracy is within a targeted upper bound (usually 1). The method can be easily
extended to be constrained by equivalence classes if needed. With such a tool at hand, neutral evolution
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studies are enabled [18–20]. Therein, the sequence space is screened for mutation-connected subsets that
show identical native folds [61, 92].
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