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Summary

Src homology 2 (SH2) domain is an important subclass of modular protein

domains that plays an indispensable role in several biological processes in

eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue

of their binding peptides to facilitate various molecular functions. For de-

termining the subtle binding specificities of SH2 domains, it is very im-

portant to understand the intriguing mechanisms by which these domains

recognize their target peptides in a complex cellular environment. There

are several attempts have been made to predict SH2-peptide interactions

using high-throughput data. However, these high-throughput data are of-

ten affected from a low signal to noise ratio. Furthermore, the prediction

methods have several additional shortcomings, such as linearity problem,

high computational complexity etc. Thus, computational identification of

SH2-peptide interactions using high-throughput data remains challenging.

Here, we propose a machine learning approach based on an efficient semi-

supervised learning technique for the prediction of 51 SH2 domain medi-

ated interactions in human proteome. In our study, we have successfully

employed several strategies to tackle the major problems in computational

identification of SH2-peptide interactions.
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1 Introduction

In 1986, Tony Pawson and co-workers first discovered the Src homology

2 (SH2) domain from the oncogenic v-FPS/FES cytoplasmic tyrosine kinase

encoded in the Fujinami sarcoma virus [1]. Since then a number of SH2 do-

mains have been identified in several eukaryotic species [2, 3]. Although

SH2 domains are found across the eukaryotes, they are more abundant in

metazoans [4, 5]. Currently, 122 SH2 domains from 112 unique human pro-

teins have been reported in the UniProtKB/Swiss-Prot database, release

2015-06 [6]. SH2 domains are approximately 100 amino acids in length,

and are structurally conserved domains that contain a central β sheet and
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two α helices [7]. These domains are known to mediate intracellular signal-

ing pathways by specifically recognizing short linear phosphotyrosine (pY)

containing peptides [8]. Although SH2 domains mainly target phospho-

tyrosine (pY) residue of the binding peptides, their binding specificity is

determined by the neighbor residues of the pY, particularly from −2 to +4

(pY at 0th position) [8, 9]. For example, a Leu or Pro residue at position

+3 (xx-pY-xx[L/P]x) is strongly preferred by CRK SH2 domains, where x

represents any naturally occurring amino acid. Alternatively, a hydropho-

bic residue (Φ) at position −2 (Φx-pY-xxxx) is preferred by PTPN11 SH2

domains [10]. Previous studies showed that the mutations in some SH2

domains can cause several human diseases, such as XLP syndrome [11], X-

linked α-gammaglobulinemia [12], Noonan syndrome [13] etc.

In recent years, various high-throughput techniques, such as peptide ar-

ray, microarray etc., have been introduced to define the binding specificities

of SH2 domains. The enormous amount of data generated by these tech-

niques are invaluable to build efficient computational methods. However,

these data are often affected by false positive and false negative interactions.

Most of the popular computational methods, that use high-throughput data

as their training sets, are based on the position weight matrices (PWMs),

which do not consider the dependencies among the amino acids in the pep-

tide sequences [14, 15]. Here, we present a machine learning algorithm to

build non-linear models that can exploit the dependencies between the amino

acids in the binding peptides. In addition, these PWM-based models are es-

sentially generative models, as they rely only on the information on positive

interaction data and completely ignore the information on negative inter-

action data; whereas machine learning methods rely on both positive and

negative interaction data and produce discriminative models, which have

advantages over generative models [16, 17].

One of the major problems of using high-throughput data is, in general,

the available information on positive interactions is much higher than the

negative interactions, which lead to a severe data imbalance problem. For

example, the positive interaction data can be up to 15 times more abundant

than negative interaction data for an SH2 domain [18]. In the machine learn-

ing literature, it is known that the severely imbalanced class distribution in

a training set negatively affects the performance of the predictive model;

generally, these models are biased towards the majority class. To mitigate
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this problem, we employed an efficient semi-supervised technique where the

self-training strategy was used to balance the training sets. Therefore, as a

consequence, we achieved powerful discriminative models. Finally, we per-

formed a genome-wide prediction of the SH2 domain mediated interactions

in human proteome to uncover the biologically relevant interactions. The

prediction tool (SH2PepInt) has been implemented in a newly developed

web server, namely MoDPepInt [19].

2 Materials

2.1 Dataset

In our study, all the high-throughput interaction data were obtained mainly

from three sources; one high-density peptide array [20] and two protein mi-

croarray experiments [21, 22]. Additionally, we extracted interaction data

from a manually curated high-quality PhosphoELM database [23] for evaluat-

ing our models. To unveil novel interactions by genome-wide prediction, we

extracted all the tyrosine containing proteins from UniProtKB/Swiss-Prot

database [6].

1. Peptide array data: The observed binding interaction data in the

peptide array experiment was deposited in the NetPhorest database [20].

From NetPhorest database, a total 14678 positive interactions that

involved 61 SH2 domains and 920 peptides were retrieved. After re-

moving all the redundancy, we finally obtained 7544 positive interac-

tions (Dataset I).

2. Microarray data: We incorporated the interaction data from two

protein microarray experiments [21, 22]. From the microarray experi-

ment in [21], we retrieved 2100 interactions with 160 positive and 1940

(2100 − 160) negative interactions, which involved 115 SH2 domains,

and 20 peptides from ErbB2 and ErbB3 receptor proteins (Dataset II).

Note that in Dataset II, we did not consider the interactions related

to the ErbB1 receptor protein (see Note 1).

From other microarray experiment in [22], we considered 3485 inter-

actions with 314 positive and 3171 (3485 − 314) negative interactions,

involving 85 SH2 domains, and 41 singly phosphorylated peptides from

EGFR, FGFR, and IGIFR receptor proteins (Dataset III).
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3. Manually curated data: For evaluating our models, we retrieved

the binding information of SH2 domains from a manually curated

database, called PhosphoELM database. We have extracted a total 878

binding interactions that involved 63 SH2 domains and 359 peptides

(Dataset IV).

4. Genome-wide prediction data: All the human protein sequences

were derived from UniProtKB/Swiss-Prot database [6]. A total 20225

proteins, which contain 298 637 tyrosine residues, were considered.

Finally, a total 298 637 tyrosine containing peptides were generated as

our test set for genome-wide prediction.

2.2 Data compilation

We have combined all the high-throughput data derived from peptide array

and microarray experiments together, but surprisingly, we found there were

several disagreements on the binding information between different exper-

iments. Furthermore, these high-throughput data are often affected by a

high rate of false positive and false negative interactions. The refinement of

these noisy data from our training set is explained below.

1. In the two microarray experiments, i.e., Dataset II and Dataset III,

there were 10 proteins that contained two SH2 domains (N and C

terminal) each. Since these datasets do not report the assignment of

which peptide specifically binds with which of the two SH2 domains of

a protein, we discarded all the interactions related to these double-SH2

domain containing proteins.

2. We combined these two microarray data, and collected a total 474

(160 + 314) positive and 5111 (1940 + 3171) negative interactions.

The apparent equilibrium disassociation constant (KD value) or affin-

ity constant was applied to determine the positive and negative inter-

action classes. We used the same KD cutoff as mentioned in [21, 22],

and thus the SH2-peptide interactions with KD values less than 2

µM were considered as binding (positive data) interactions, while re-

maining interactions were considered as non-binding (negative data)

interactions. Nevertheless, various inconsistencies in the SH2-ErbB1

(ErbB1 or EGFR protein was common in both experiments) interac-

tions were observed between Dataset II and Dataset III (see Note 1).
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3. We could only consider 7544 positive data from the peptide array

experiment [20], since there was evidence only for positive interac-

tions (see Note 2). Surprisingly, we also observed 149 interactions

for which there is a conflict between the peptide array experiment [20]

and the microarray array experiments [21, 22], i.e., these interactions

are positive in Dataset I, but negative in Dataset II and Dataset III.

To reduce the noisy and conflicting information from our training sets,

we discarded these 149 interactions. Therefore, as a consequence, the

positive data in Dataset I was reduced to 7395 (7544 − 149), and the

negative data in Dataset II and Dataset III was reduced to 4962 (5111

− 149).

4. Among the 474 positive interactions collected from microarray exper-

iments, 247 interactions were already present in Dataset I. After re-

moving the redundancy, we comprised 227 (474 − 247) positive inter-

actions from Dataset II and Dataset III. These non-redundant positive

interactions were kept for the validation.

5. We only considered those SH2 domains that have at least 40 positive

interaction data, otherwise no complex model can be reliably fit. We

used positive interaction data from Dataset I and the negative inter-

action data from Dataset II and Dataset III, and finally, we composed

our training sets with 6742 positive interactions and 2523 negative

interactions for 51 human SH2 domains.

3 Methods

Here, we present a machine learning method to produce non-linear mod-

els, which can exploit the inter-dependencies between the amino acids in

the binding peptides. Additionally, we present a semi-supervised technique

that can efficiently refine the high-quality negative interactions from a noisy

dataset.

3.1 Feature encoding

1. Although SH2 domains specifically bind to the phosphotyrosine (pY)

residue of their binding peptides, the neighbor residues of the pY are

known to be highly predictive for domain-peptide interactions [14, 15].
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2. We restricted the peptide sequences to 7 amino acids in length, namely

we extracted the amino acids in position from −2 to +4 where the pY

holds the 0th position.

3. In the feature encoding, we did not include the central residue (pY),

since it was always same in the peptides from both classes (positive

and negative) and thus not holding any discriminative information.

Therefore, a peptide sequence was mapped into a binary vector x

living in a 120 × 6 = 120 dimensional space, i.e., for each position, we

reserved 20 dimensions for each amino acid, and encoded the amino

acid type with a 1 in the corresponding dimension and 0 elsewhere.

4. A data set for each domain Dj was compiled, which was encoded as

a set of pairs (x1, c1), .., (xn, cn) where xi is the binary feature vector

for peptide Pi with the class label ci ∈ {−1, 1}. If the domain Dj

interacts with the peptide Pi, then the correspondence class label is 1,

otherwise in case of non-interaction, the class label is −1.

3.2 Data modeling

Previous research showed that the contextual dependencies between the

amino acids in the cognate peptide sequences are highly important to de-

scribe the binding specificities of SH2 domains (see Note 3) [24]. Any

methods that ignore these kind of dependencies often produce sub-optimal

models (see Note 4). Therefore, in order to build the predictive mod-

els, which allow the dependencies between the amino acids in the binding

peptides, a polynomial kernel support vector machine (SVM) has been em-

ployed. We have used the SVM implementation in C language provided in

SVMlight [25].

1. A polynomial kernel is a kernel function that computes the similarity

between training samples (vectors) in the polynomial feature space

to learn a non-linear model. The polynomial kernel function for two

vectors: X and X ′ with degree d is defined in [26] as:

K(X,X ′) = (1 + 〈X,X ′〉)d, (1)

where “1” is a constant, which is required to consider the effects of all

degrees that are less than d. A feature space with two inputs: X1 and

X2, and d = 2 (see Note 5) is, therefore, defined as:
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K(X,X ′) = (1 + 〈X,X ′〉)2

= (1 +X1X
′
1 +X2X

′
2)

2

= 1 + 2X1X
′
1 + 2X2X

′
2 + (X1X

′
1)

2 + (X2X
′
2)

2 + 2X1X
′
1X2X

′
2.

(2)

2. One of the main hyper-parameters in SVM is the cost parameter or

C, which is used to trade off generalization of data fitting. Basically,

it provides some flexibility in an enlarged feature space for data sepa-

ration.

3. All the model parameters, i.e., d ∈ {1, 2, 3} and C ∈ {0.01, 0.1, 1, 10},
have been optimized on training sets under a stratified cross-validation

setting (see Note 6).

4. The optimization of these hyper-parameters is important to counter

balance the overfitting phenomena (see Note 7). More specifically,

for each model, the best parameter combination was chosen on a held

out data set (validation set). However, the model performance was

evaluated on a separate test set, which was never seen in the validation

or training phase.

3.3 Semi-supervised negative data

Data imbalance is one of the major problems in high-throughput experi-

ments where availability of the data from one class is much higher than

the other class (see Note 8). To deal with this problem, we employed a

semi-supervised learning (SSL) approach (see Note 9).

1. We resorted to the self-training strategy (see Note 10), although there

are several strategies available to tackle the SSL problem.

2. For each domain, the initial high-throughput data was extracted from

high density peptide array and microarray experiments (see dataset

compilation) to train the base classifiers.

3. As an unlabeled data set, we considered the SH2-peptide pairs that

did not show any positive signals in the peptide array experiment (see

Note 11). Note that randomly generated negative peptides were not

considered (see Note 12).
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4. For each domain, a polynomial SVM was used to predict confidence

negative instances from the unlabeled data set, and iteratively added

them to the main training set until the data set was balanced (see

Note 13). Here, the confidence of negative data was scored as the

distance from the hyperplane.

5. Finally, the model selection process was performed to select the best

model complexity for each specific SH2 domain. Fifty one models were

built for 51 domains.

6. The flowchart for iterative balancing technique for positive and nega-

tive data is depicted in Figure 1.

3.4 Predictive performance

1. For measuring the predictive performance, we computed 5 measures,

i.e., sensitivity, specificity, precision, area under the receiver operating

characteristics curve (AUC ROC), and area under the precision recall

curve (AUR PR) (see Note 14).

2. Two different strategies were taken to evaluate the predictive perfor-

mance of our models: (i) a stratified 5-fold cross-validation and (ii) we

randomly split the data where we considered 75% as training set and

25% as test set; we repeat the process 10 times to create 10 train/test

data sets.

3. We compared our methods with PWM-based SMALI approach [15]

and the energy model [27], and in 5-fold cross-validation setting, we

achieved an average AUC ROC of 0.83 and an average AUC PR of

0.93, which outperformed other two methods; SMALI and the energy

model achieved an average AUC ROC of 0.71 and 0.62, respectively,

and an average AUC PR of 0.87 and 0.81, respectively [18].

4. In order to achieve same specificity as SMALI (0.95 on average), we

identified our threshold accordingly, and as a consequence, our models

achieved an average sensitivity of 0.45, outperforming SMALI and the

energy model, which achieved an average sensitivity of 0.26 and 0.17,

respectively [18].
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5. For the validation purpose, we evaluated our models on a manually

curated and highly reliable data set, namely PhosphoELM (Dataset

IV). Our models achieved a true positive rate (TPR) of 0.64, which is

much better than the TPR of 0.33 achieved by SMALI [18]. Note that

the comparison with energy model could not be possible, as the class

determination threshold was not specified in [27].

6. Our method efficiently predicts the binding partners of most of the

SH2 domains, however, it might get challenged for some SH2 domains

whose training data are very small or have within-class imbalance prob-

lem (see Note 15).

3.5 Genome-wide prediction

It is always interesting to see the interactions that are novel and biologically

relevant. In order to uncover such interactions, we performed a genome-wide

prediction. Subsequently, a term-centric enrichment analysis was performed

to unveil novel functionalities of the predicted interactions.

1. All the generated peptides were restricted to 7 amino acids in length,

i.e., −2 to +4 amino acids with Tyr at 0th position.

2. We used our models to predict the binding partners of all 51 human

SH2 domains.

3. All the predicted interactions were filtered based on some criteria to

achieve more confidence interactions. We have used two filters: (i)

phosphotyrosine (pY) (see Note 16) and (ii) co-cellular localization

(see Note 17).

4. For each SH2 domain, we considered top 50 predictions and performed

a term-centric enrichment analysis using DAVID tool [28] to unveil the

novel and biologically relevant interactions (see Note 18). By doing

this, several biologically meaningful interactions were observed [18].

5. All the top predictions and their term-centric analysis for all 51 hu-

man SH2 domains are available under the URL: http://www.bioinf.

uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.

tar.gz

 http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar .gz
 http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar .gz
 http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar .gz
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3.6 MoDPepInt web-server

We implemented our prediction tool (SH2PepInt) for SH2-peptide interac-

tions into a newly developed web server, called MoDPepInt (Modular Domain

Peptide Interaction) [18, 19]. Currently, the MoDPepInt web server offers

three different tools: (i) SH2PepInt, (ii) SH3PepInt, and (iii) PDZPepInt for

predicting the binding interactions of three different modular domains, SH2,

SH3, and PDZ, respectively [18, 17, 29].

1. The web server has two different modes: (i) basic mode and (ii) expert

mode. We designed a meta-web server for the basic mode, where only

the input is required. The input is submitted simultaneously to all

tools, and a summary table is produced. The expert mode is more

flexible, where user can choose the SH2 domains of interest and use

desired filters to obtain high confident interactions.

2. For SH2-peptide interactions, two filters have been used in order to

increase the prediction accuracy. The filters are: (i) phosphotyrosine

and (ii) cellular localization (see Note 16 and 17).

3. The MoDPepInt server is available under the URL: http://modpepint.

informatik.uni-freiburg.de/SH2PepInt/Input.jsp

4 Notes

1. Eleven peptides from ErbB1 proteins were used in both microarray

experiments [21, 22]. We retrieved the interaction data, which in-

volved those 11 peptides and 85 SH2 domains (also common in both

microarray experiments). Interestingly, we observed there were severe

inconsistencies in the interaction data produced by these two microar-

ray experiments, as in similar settings, one microarray experiment [21]

showed positive signals (KD < 2 µM) for 32 interactions, whereas other

microarray experiment [22] showed positive signals for 120 interactions

(see Figure 2). All the 32 positive interactions observed in [21] were

also observed in [22]. The possible reason for the lack of interactions

in [21], could be caused due to low concentration of proteins on the

surface of the slides, which can happen when the protein printing tip

is slightly mis-aligned. In this case, there is just not enough pro-

http://modpepint.informatik.uni-freiburg.de/SH2PepInt/Input.jsp
http://modpepint.informatik.uni-freiburg.de/SH2PepInt/Input.jsp
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tein present on the surface of the slide that can cross the background

threshold, even though there is, however, a tight interaction.

2. From peptide array experiment, we retrieved the interaction informa-

tion for 61 domains and 920 peptides. Thus, the possible domain-

peptide interactions should be 920 × 61 = 56120. Among them, a

total 7544 interactions showed the binding signals in the experiment,

and remaining 48576 (56120 − 7544) interactions did not show any

signals. However, one should not assume all these 48576 interactions

as non-binding type, since the binding signal could not be observed

may be due to some experimental stringencies. For example, an in-

teraction might be considered as non-binding, if the binding threshold

value is less than the detection limit, even though there is, however, a

weak interaction. Poor domain folding and/or peptide synthesis prob-

lem could also be the reason for these kind of error (false negative) in

the data. Thus, refinement of these false negative interactions is vital

to build a good predictive model.

3. In 2010, Liu et al. published an interesting study where they ex-

plained the importance of the contextual dependencies between the

amino acids in the binding peptides [24]. More precisely, the binding

peptides are composed of permissive and non-permissive amino acids

where permissive amino acids allow the interaction and non-permissive

amino acids inhibit the interactions [24, 9]. It is known that CRK SH2

domain interacts peptides where Leu or Pro amino acid is present at

+3 (pY at 0th position), but surprisingly, presence of other amino

acids in other positions can also influence the binding specificity. For

example, basic residues (Arg and His) are disfavored at position +1

and +2, whereas Pro is prohibited at position +1. More interestingly,

the acceptance of Ala at +1 completely depends on the amino acid at

+3. Ala is accepted only if there is a Pro at +3, where as it is rejected,

in case, there is a Leu at +3 [9].

4. All the approaches that based on position weight matrices (PWMs) [14,

15] and linear machine learning models [30] do not consider the posi-

tional dependencies between the amino acids in the binding peptides,

and therefore can not accurately determine the binding specificities of

SH2 domains and eventually, produce sub-optimal results.
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5. As d = 1 only provides linear model, we used the d > 1 for building

non-linear models. However, the degree of the polynomial kernel is

optimized via cross-validation, and therefore a simpler linear model (d

= 1) can still be chosen for some SH2 domains when it offers better

performance.

6. In a cross-validation setting, a stratification procedure is used to main-

tain approximately the same proportion of the two types of class la-

bels, i.e., positive and negative, in each fold. Cross-validation with

stratification procedure is known as stratified cross-validation.

7. Overfitting is a common problem in machine learning methods. It nor-

mally occurs when the machine learning algorithms capture the noise

of the data. If the model fits too well to the data, it causes overfitting,

and eventually, produce sub-optimal predictive model. Unfortunately,

this important aspect is often ignored in the bioinformatics prediction

methods. To overcome this overfitting problem, we used an appropri-

ate technique, called regularization. The regularized predictor is more

robust to noise, and guarantees better prediction quality on unseen

data. Although there are several ways to counter balance the overfit-

ting issue, we adopted an efficient strategy where we minimized the

model complexity by tuning the degree of the polynomial (d) and the

cost parameter (C).

8. It is known that machine learning algorithms work poorly on highly

imbalanced data, and negatively affect the performance of adaptive

predictors [31]. These algorithms are generally biased towards the

majority class, and hence often produce poor discriminative models.

9. In semi-supervised learning, a small amount of labeled data and a large

amount of unlabeled data are trained. Note that for using the small

amount of labeled data, a strong model assumptions need to be made.

It is very important step as if the model assumptions do not match

the nature of the problem, then it would be critical for the predictive

performance. There are several techniques, such as expectation max-

imization (EM), co-training, self-training, and graph-based methods,

have been developed to handle the SSL problem. Each technique is

used based on the requirements of the problems.
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10. The self-training strategy relies only on the good discriminative prop-

erties of the base classifier. This is a simple wrapper method, which

iteratively uses the initial labeled data to train the classifier, which

then assigns a label to the remaining previously unlabeled data. In

our application, this is the most suited strategy that can efficiently

tackle the semi-supervised problem. Note that this approach is only

applicable when at least a few confidence positive and negative data

available to train the base classifier.

11. In theory, if an SH2 domain does not show a positive signal for a

peptide in a peptide array experiment, the SH2 domain is considered

to be a non-binder to that particular peptide, and the SH2-peptide pair

is believed as a negative interaction pair. However, it is known that

high-throughput data are highly affected by false negative interactions.

Therefore, in order to filter high-confidence negative, we applied self-

training strategy.

12. In common practice, random peptides are used to generate artificial

negative instances. However, previous research showed that the ran-

domly generated instances significantly decrease the prediction quality

of a model [32]. Hence, instead of taking random peptides, we used

experimental data.

13. For some domains, negative data was already much higher than the

positive data in the base classifier. In these cases, we used a rebalancing

technique where we over-sampled the positive class to balance the base

classifier. Note that we did not under-sample of the positive class in

order not to throw away the valuable information.

14. One major problem in machine learning is that the mainstream al-

gorithms are not designed to efficiently deal with the skewed class

distribution; these algorithms are more accurate only on the major-

ity class. For example, if a data set is imbalanced, containing a few

positive and many negative data, a rational choice based on maxi-

mizing the predicted accuracy (in an equal cost scenario) would most

certainly be biased towards the majority class, and therefore the pre-

dictive model will almost always predict a negative response. Hence,

in a binary classification, a single standard statistical measurement
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(e.g., accuracy, AUC ROC) will not be appropriate and can mislead

the predictive performance. In this case, the model will achieve high

specificity, precision, and AUC ROC but very poor sensitivity and

AUC PR. Thus, it is always important to show multiple statistical

measures to describe the performance of a predictive model.

15. The within-class imbalance and the small-disjuncts problem typically

occur when the class concept is composed by many sub-clusters/sub-

concepts, and each of the sub-cluster represented by a very small

number of examples. If a small sub-cluster in training set is over-

represented in the test set, our models sometimes might fail to iden-

tify those interactions. However, we could tackled this problem for the

negative data, as we could select many peptides from different array

experiments for which no definitive interaction information was avail-

able. Unfortunately, the information for the positive interactions was

very limited for some SH2 domains, and therefore the total number of

positive interactions were very few in the training set for those SH2

domains. Since this is a standard problem in machine learning, some

oversampling techniques (e.g., SMOTE) have been proposed in the lit-

erature to tackle this problem, however, they have several drawbacks,

e.g., requiring an explicit instance representation [18, 33].

16. This filter was used to get all the tyrosine containing peptides whose

phosphorylation evidence was experimentally verified. At the time of

analysis, the phosphorylation evidence of a total 30 228 peptides from

10 688 proteins was available in the PhosphoSitePlus database [34].

Note that we ignored some phosphopeptide containing proteins that

were not present in the UniProtKB/Swiss-Prot database. Finally, a

total number of 27 481 phosphopeptide from 9621 human proteins were

used. Since SH2 domains are known to interact with phosphopeptides,

this filter will provide more probable interactions.

17. It is highly unlikely to see an SH2-peptide interaction where the SH2

domain and the peptide containing protein reside different compart-

ments of the cell. To filter out all these kind of unlikely interactions,

we implemented a co-cellular localization filter. In this setting, we only

considered an SH2-peptide interaction, if the SH2 domain containing

protein and the peptide containing protein share at least one GO-term
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that is annotated in the Gene Ontology (GO) database [35].

18. The DAVID [28] tool allows to perform a term-centric enrichment anal-

ysis on more than 40 different annotation categories, and reports en-

riched annotation terms associated with the predicted proteins. p-

value is used to determine the enrichment; the smaller p-values indi-

cate higher enrichment.
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Figure legends

Figure 1: For the imbalanced data sets, we encountered two types of problems: (i)

for most of the domains, the positive data was much higher than the negative data

and (ii) for some domains, the different scenario was occurred when the negative

data was higher than the positive ones. To solve the first problem, we used a self-

training strategy to predict confidence negative interaction data. The process was

iteratively done until a balanced data set was reached (left branch). To solve the

second problem, we applied a rebalancing technique and over-sampled the positive

class (right branch). This figure is adapted from [18].
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Figure 2: Comparison of the outcome of two different microarray experiments.

Eleven peptide sequences from ErbB1 protein and 85 SH2 domains were considered.

The green bars indicate the number of SH2-peptide interactions observed in [21],

and the red bars indicates the number of SH2-peptide interactions observed in [22].

This figure clearly shows that almost 4 times more interactions were observed in

Dataset III (120 interactions observed) in comparison to Dataset II (32 interactions

observed).
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