
GigaScience, 2023, 12, 1–7

DOI: 10.1093/gigascience/giad028

TECH NOTE

An accessible infrastructure for artificial intelligence
using a Docker-based JupyterLab in Galaxy

Anup Kumar 1,*,†, Gianmauro Cuccuru 1,†, Björn Grüning 1,† and Rolf Backofen 1,2,†

1Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
2Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
∗Correspondence address. Anup Kumar, Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110
Freiburg, Germany. E-mail: anup.rulez@gmail.com
†Contributions follow the order of the names of authors.

Abstract

Background: Artificial intelligence (AI) programs that train on large datasets require powerful compute infrastructure consisting of
several CPU cores and GPUs. JupyterLab provides an excellent framework for developing AI programs, but it needs to be hosted on
such an infrastructure to enable faster training of AI programs using parallel computing.

Findings: An open-source, docker-based, and GPU-enabled JupyterLab infrastructure is developed that runs on the public compute
infrastructure of Galaxy Europe consisting of thousands of CPU cores, many GPUs, and several petabytes of storage to rapidly prototype
and develop end-to-end AI projects. Using a JupyterLab notebook, long-running AI model training programs can also be executed
remotely to create trained models, represented in open neural network exchange (ONNX) format, and other output datasets in Galaxy.
Other features include Git integration for version control, the option of creating and executing pipelines of notebooks, and multiple
dashboards and packages for monitoring compute resources and visualization, respectively.

Conclusions: These features make JupyterLab in Galaxy Europe highly suitable for creating and managing AI projects. A recent scien-
tific publication that predicts infected regions in COVID-19 computed tomography scan images is reproduced using various features
of JupyterLab on Galaxy Europe. In addition, ColabFold, a faster implementation of AlphaFold2, is accessed in JupyterLab to predict the
3-dimensional structure of protein sequences. JupyterLab is accessible in 2 ways—one as an interactive Galaxy tool and the other by
running the underlying Docker container. In both ways, long-running training can be executed on Galaxy’s compute infrastructure.
Scripts to create the Docker container are available under MIT license at https://github.com/usegalaxy-eu/gpu-jupyterlab-docker.

Keywords: JupyterLab, Galaxy Europe, artificial intelligence, remote model training, ONNX, Elyra AI, GPU, CUDA

Findings
Background
Bioinformatics comprises many subfields, such as single cell,
medical imaging, sequencing, proteomics, and many more, that
produce a huge amount of biological data in myriad formats.
For example, the single-cell field creates gene expression pat-
terns for each cell that are represented as matrices of real num-
bers. The medical imaging field generates images of cells and tis-
sues, radiography images such as chest x-rays, and computed
tomography (CT) scans. Next-generation sequencing generates
DNA sequences that are stored as FASTA and FASTQ [1] files. Ma-
chine learning (ML) approaches are being increasingly used with
these datasets [2] for predictive tasks such as medical diagno-
sis, imputing missing features, augmenting datasets with artifi-
cially generated ones, estimating gene expression patterns, and
many more. To be able to use ML algorithms on such datasets,
a robust and efficient compute infrastructure is needed that can
serve multiple purposes. They include preprocessing raw datasets
to transform them into suitable formats that are compatible with
ML algorithms, creating and executing their complex architec-
tures on preprocessed datasets, and making trained models and
predicted datasets readily available for further analyses. To fa-
cilitate such tasks, a complete infrastructure is developed that
combines JupyterLab [3], augmented with many useful features,

running on the public compute infrastructure of Galaxy [4] Eu-
rope to perform end-to-end AI analyses on scientific datasets.
The infrastructure consists of 3 major components: first, a Docker
container [5] that encapsulates JupyterLab together with multiple
packages and plugins used for developing AI programs, data ma-
nipulation, and visualization (section S2 in the supplementary file
lists all such packages and plugins with their respective versions);
second, a Galaxy interactive tool [6, 7] that downloads this Docker
container to serve JupyterLab on Galaxy Europe; and third, the
compute infrastructure [8] of Galaxy Europe and the de.NBI cloud
[9].

Docker container
Docker [10] containers are popular for shipping packaged soft-
ware as complete ecosystems, enabling them to be reproducible
in a platform-independent manner. Software executing inside a
Docker container is abstracted from the host operating system
(OS) as most of the requirements necessary for them to run suc-
cessfully are already configured inside its container. A container
runs in an isolated environment having minimal interactions with
the host OS. Therefore, running software in a container is more
secure. Using a Docker container leverages the security benefits
necessary for online program editing software executing arbitrary
code. Arbitrary code may contain some malicious script, posing

Received: August 24, 2022. Revised: January 23, 2023. Accepted: April 11, 2023
C© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0002-2068-4695
http://orcid.org/0000-0002-5335-545X
http://orcid.org/0000-0002-3079-6586
http://orcid.org/0000-0001-8231-3323
mailto:anup.rulez@gmail.com
https://github.com/usegalaxy-eu/gpu-jupyterlab-docker
http://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2023, Vol. 12, No. 0

security risks. Using Docker containers can minimize their conse-
quences. Further, in our Docker container, a nonroot user is cre-
ated that can execute and manage projects inside the JupyterLab
environment, which further minimizes security risks. In addition
to minimizing security risks, Docker containers provide perfor-
mance benefits compared to running programs on a virtual ma-
chine [11]. Motivated by such benefits, a Docker container is used
in this project to encapsulate JupyterLab along with many use-
ful packages such as Git [12], Elyra AI [13], TensorFlow-GPU [14],
Scikit-learn [15], ONNX [16], and many others. The Docker con-
tainer inherits many packages such as CUDA [17], NumPy [18],
SciPy [19], and a few more from its base container, nvidia/cuda
[20], and augments them with many other packages suitable for
ML, data manipulation, and visualization. The Docker container
is decoupled from Galaxy and can independently be executed for
serving JupyterLab with the same set of packages on a different
compute infrastructure or any personal computer or laptop hav-
ing approximately 25 GB of disk space. Moreover, the Docker con-
tainer is easily extended by adding the names of packages to the
dockerfile [21]. Adding new packages requires the container to be
rebuilt and added to Docker hub [22]. The approach to extending
the Docker container is discussed in the Methods section.

JupyterLab
JupyterLab is a web-based, robust editor used for varied purposes
such as data science, scientific computing, and ML. It is a pro-
gram editor that supports more than 40 programming languages,
including Python, R, Julia, and Scala. Python is one of the most
popular languages used by researchers for performing numerous
scientific and predictive analyses. Therefore, it is used as the pro-
gramming language in Galaxy’s JupyterLab because many popular
packages such as Scikit-learn and TensorFlow for ML, data ma-
nipulation packages such as Pandas, and visualization packages
such as Seaborn [23], Matplotlib [24], Bokeh [25], and many others
are readily available as Python packages. Moreover, the extensible
architecture of JupyterLab makes it possible to add many exter-
nal packages as its plugins such as Git, Elyra AI, dashboards, and
many others that have a user interface as necessary components.
Such editors, integrated with several useful packages, provide a
favorable platform for rapid prototyping and end-to-end develop-
ment and management of AI projects. To harness the benefits of
JupyterLab, it is used as the editor for the interactive tool in Galaxy.

Features of JupyterLab infrastructure
Many features such as easy accessibility, support of a wide vari-
ety of programming languages on JupyterLab, and extensibility to
install useful plugins make it a desirable editor for researchers
for creating project prototypes rapidly. Many such features have
been integrated into our JupyterLab infrastructure that is served
online on Galaxy Europe, enabling researchers to create proto-
types and end-to-end artificial intelligence (AI) projects (Fig. 1).
A few important features are discussed here. To allow GPU com-
putation from JupyterLab, TensorFlow-GPU interacts with Nvidia
GPU hardware using another software, CUDA, when the compute
resource has GPU(s) for accelerating ML programs. Faster execu-
tion of ML programs is one of the significant features of Jupyter-
Lab hosted on Galaxy Europe. However, if the hosted machine on
which a Docker container runs does not have GPUs, then the pro-
gram in JupyterLab relies on CPU cores. Other useful features in-
clude ONNX for transforming trained TensorFlow and Scikit-learn
models to ONNX models; Open-CV [26] and Scikit-image [27] for
processing images; Nibabel [28] for reading image files stored as

ONNXTensorflowJupyterlab CUDA ...

Docker containerBase
container

Extensible on other
compute

infrastructure

Galaxy interactive tool
Galaxy

compute
resources

Remote training(A)

(B)

(C)

(D)

Figure 1 Architecture of Galaxy’s JupyterLab. (A) Packages and features
wrapped inside a Docker container. (B) A base Docker container [41]
from which the customized container [5] is derived. (C) Galaxy’s
interactive tool downloads the customized container. The customized
Docker container can also be hosted on a different compute
infrastructure. (D) Galaxy’s JupyterLab.

“.nii”; Bioblend [29] for accessing Galaxy’s datasets, histories, and
workflows in a JupyterLab notebook; visualization packages such
as Bqplot [30] and Bokeh for plotting interactive charts; Voilà [31]
for displaying output cells of a JupyterLab notebook in a differ-
ent tab; and dashboard such as NVDashboard [32] for monitoring
GPU usage and performance. Support for file extension such as
H5 [33], efficient for storing matrices, enables ML researchers to
save model weights and input datasets for AI algorithms. Other
packages such as ColabFold [34] together with JAX [35] are used
for predicting 3-dimensional (3D) structures of proteins, which are
discussed in the Results section. In addition, it is possible to create
a long-running training job that runs remotely and stores trained
models and output datasets permanently in a newly created
Galaxy history. The trained model is saved as an ONNX file, and
tabular datasets are in an H5 file. It is discussed in the Methods
section.

Related infrastructure
There are a few other infrastructures available, free and commer-
cial, that offer JupyterLab or similar environments for developing
data science and AI projects. A few popular ones are Google Colab
[36], Kaggle Kernel [37], and Amazon Sagemaker [38]. Google Co-
lab is partially free and offers an online editor similar to Jupyter-
Lab. The free version of Google Colab offers dynamic compute re-
sources. The disk space is around 70 GB and the memory (RAM) is
around 12 GB. AI projects that deal with high-dimensional scien-
tific data [39, 40] may require more resources. In addition, these
resources offered by Google Colab are variable and depend on a
user’s past usage. More compute resources are assigned to those
users that have used less in the past for a more equitable shar-
ing of resources. Moreover, there is a limitation of only 12 hours
of running time, which may be inadequate for training AI models
on large datasets needing longer running time. However, Google
Colab pro and pro+ offer better compute resources, but they
come at a price; EUR 9.25 and EUR 42.25 per month, respectively.

An accessible infrastructure for AI using a Docker-based JupyterLab in Galaxy | 3

In contrast, Kaggle Kernel is free of charge, but its computing
resources are comparable to Colab. The total disk space is ap-
proximately 73 GB and RAM is 16 GB for a CPU-based kernel.
For the GPU-based kernel, the disk space is of the same size as
that of the CPU-based kernel, but the RAM of the CPU decreases
to 13 GB. An additional RAM of 15 GB is added through a GPU,
and computation time is limited to 30 hours a week. It also sup-
ports tensor processing unit (TPU), but the computation time is
further limited to only 20 hours a week. Amazon Sagemaker is
also a commercial software for developing AI algorithms that is
free of charge but only for 2 months. Overall, these notebook in-
frastructures do not offer unrestricted compute resources free of
charge. In addition, compute resources offered free of charge can
be insufficient for training AI models on high-dimensional scien-
tific datasets. To address the drawbacks of these notebook infras-
tructures and provide researchers and users with large compute
resources more reliably, Galaxy JupyterLab infrastructure [8] of-
fers an unlimited computation time on GPU and many CPU cores
for each session as shown in Table 1. The offered resources for
JupyterLab running in Galaxy stay constant and are independent
of the user’s past usage. To make it more useful, JupyterLab opens
a tab for each notebook that allows researchers to develop and
execute several notebooks inside the same session of the allot-
ted compute resource rather than having them connect to a dif-
ferent session for each notebook as in Google Colab and Kaggle
Kernel.

Implementation
JupyterLab infrastructure is developed in 2 stages. First, a Docker
container is created containing all the necessary packages such as
JupyterLab itself, CUDA from the base Docker image [41], Tensor-
Flow, Scikit-learn, ONNX, and many more. The Docker container is
inherited from a base container that has all the necessary CUDA
packages installed for working with NVIDIA GPUs. Many packages
are added to the Docker container with their compatible versions.
Compatible packages for CUDA, CUDA DNN, and TensorFlow are
necessary so that they together interact with the GPU on the host
machine for accelerating ML programs. The versions of all pack-
ages installed in the Docker container are listed in Supplementary
Section S5. Second, the container can be downloaded to any pow-
erful compute infrastructure, and JupyterLab can be served in an
internet browser via the URL that it generates. In addition, to run
this container in Galaxy, an interactive tool is created that down-
loads this container on a remote compute infrastructure and gen-
erates a URL used to run JupyterLab in an internet browser. The ar-
chitecture of JupyterLab infrastructure in Galaxy is shown in Fig. 1.
The running instance of JupyterLab in Galaxy contains a default
IPython notebook that summarizes several of its features. Further,
there are other notebooks available, each describing a feature of
JupyterLab with code examples such as how to create ONNX mod-
els for Scikit-learn and TensorFlow classifiers, how to connect to
Galaxy using Bioblend, how to create interactive plots using Bq-
plots, and how to create a pipeline of notebooks using Elyra AI. In
addition, the notebooks explaining the use-cases are also avail-
able in the Docker container. To access JupyterLab in Galaxy Eu-
rope, a ready-to-use hands-on Galaxy training network (GTN) [42]
tutorial [43] has been developed that shows all the steps such as
opening the notebook, using Git to clone a code repository from
GitHub, sending long-running training jobs to a remote Galaxy
cluster, and how this notebook can be used as a tool in a Galaxy
workflow. The approach of remote model training is explained in
the Methods section. The 2 use-cases are also discussed in the tu-

torial along with their respective notebooks. The steps to access
this resource on Galaxy Europe are elaborated in Supplementary
Section S1.

Results
JupyterLab infrastructure in Galaxy Europe is used to reproduce
the results of 2 recent scientific publications. They demonstrate
its robustness and usefulness to develop ML models using COVID-
19 CT scan images [44] and predict the 3D structure of proteins
using ColabFold, a faster implementation of AlphaFold2 [45].

COVID-19 CT scan image segmentation
In [44], COVID-19 CT scan images have been used to develop and
train an ML model architecture that predicts COVID-19 infected
regions in those images with high accuracy. An open-source im-
plementation of the work is available that trains a Unet deep
learning architecture [46] distinguishing between normal and in-
fected regions in CT scan images. Scripts of this implementation
are adapted and executed on Galaxy’s JupyterLab infrastructure.
Adaption only involves the transformation of all CT scan images,
used in [44], into an H5 file so that they can directly be used as
an input to the Unet architecture defined in a notebook avail-
able in [47]. All the notebooks available in [47] are also available
in the Docker container in the “usecases” directory. A compos-
ite H5 file [48] is created using a script [49] that contains multi-
ple datasets inside, and each dataset is a real-valued matrix cor-
responding to the training, test, and validation sets as used in
[44]. The entire analysis of [44] can be reproduced using multiple
notebooks in [47]. They achieve similar precision and recall (ap-
proximately 0.98) metrics, as mentioned in [44]. In [47], the first
notebook (1_fetch_datasets.ipynb) downloads the input dataset
as an H5 file. Additionally, it also downloads the trained ONNX
model. The second notebook (2_create_model_and_train.ipynb)
creates and trains a Unet model on the training dataset ex-
tracted from the H5 file. Training, accelerated by GPU, for 10 it-
erations over the entire training dataset finishes in a few min-
utes. The third notebook (3_predict_masks.ipynb) extracts the
test dataset and predicts infected regions of the CT scan im-
ages in the test dataset using the trained model created by the
second notebook. Fig. 2 shows the comparison of ground-truth
infected regions in the second column and the predicted in-
fected regions in the third column. A few original CT scan im-
ages from the test dataset are shown in the first column of
Fig. 2.

Predict 3D structure of proteins using ColabFold
AlphaFold2 has made a breakthrough in predicting the 3D struc-
tures of proteins with outstanding accuracy. However, due to their
large database size (a few TBs), it is not easily accessible to re-
searchers. Therefore, a few approaches have been developed to
replace the time-consuming steps of AlphaFold2 with slightly dif-
ferent steps. They predict 3D structures of proteins with similar
accuracy while consuming less memory and time. One such ap-
proach is ColabFold, which replaces the large database search
in AlphaFold2 for finding homologous sequences by a signifi-
cantly faster (40–60 times) MMseqs2 API [50] call to generate in-
put features based on the query protein sequence. ColabFold’s
prediction of 3D structures in batches is approximately 90 times
faster. It is integrated into the Docker container [5] by adding
2 packages: ColabFold and GPU-enabled JAX, which is a just-in-
time compiler for making mathematical transformations. Note-

4 | GigaScience, 2023, Vol. 12, No. 0

Table 1. Comparison of Galaxy JupyterLab with other notebook infrastructures

Indicators/infrastructures Google Colab [36] Kaggle Kernel [37] Galaxy JupyterLab

Memory/disk space (GB) 12/70 16/73 20/250
GPU/TPU Yes/Yes Yes/Yes Yes/No
Max usage time (hours) 12 12, 30 hours of GPU/week, 20 No time restriction on GPU

hours of TPU/week and CPU cores usage,
notebook sessions, and job execution

Dynamic compute resources Yes Yes Fixed and guaranteed
Remote model training No No Yes
Run multiple notebooks (as
tabs) in 1 session

No No Yes

(A) (B) (C)

Figure 2 Original CT scan images (A), corresponding ground-truth masks of original CT scan images (B), and the predicted masks (C). Masks are
COVID-19 infected regions in the corresponding CT scan images. The ground-truth and predicted masks show high similarity [44].

book “7_ColabFold_MMseq2.ipynb” in [47] predicts the 3D struc-
ture of a protein sequence using ColabFold by making use of the
pretrained weights of AlphaFold2. Fig. 3 shows the 3D structure of
4-oxalocrotonate tautomerase [51], a protein sequence of length
62, along with its side chains. This 3D structure is extremely simi-
lar to the structure predicted by the JupyterLab notebook [52] from
ColabFold [34].

Methods
Remote model training
For large datasets, ML model training may need several hours or
even days. In such cases, it would be cumbersome to keep Jupyter-
Lab open in a browser’s tab until the training finishes. There-
fore, another Galaxy tool [53] is developed to enable researchers

An accessible infrastructure for AI using a Docker-based JupyterLab in Galaxy | 5

Figure 3 Figures shows a 3D structure of 4-oxalocrotonate tautomerase
enzyme (protein) [51] predicted by ColabFold.

to send long-running training jobs to a remote Galaxy cluster.
The tool can be executed from JupyterLab using a custom Python
function [54], part of each JupyterLab notebook, that takes in-
put datasets and a training script as input parameters. The in-
put datasets to be used for training, testing, and validation must
be provided in H5 format. It allows the standardization of in-
put data format for AI models that train on matrices in Jupyter-
Lab. Input data to an AI model can be in multiple formats such
as images, genomic sequences, or gene expression patterns. H5
files can be created using any of these data formats and fed to
the AI model in JupyterLab. Long-running training happens in
a remote Galaxy cluster as a regular Galaxy job. Upon comple-
tion of the job, the resulting datasets and the trained model be-
come available in a newly created Galaxy history [55]. The trained
model and other resulting datasets can either be downloaded to
a local machine or imported from the Galaxy history for further
analysis using “get” (for fetching datasets directly into a Jupyter-
Lab notebook from Galaxy history) and “put” (for saving datasets
directly into a Galaxy history from JupyterLab notebook) meth-
ods into a JupyterLab notebook [56]. In [47], a few notebooks are
available that showcase the approach of remote model train-
ing. Notebook “4_create_model_and_train_remote.ipynb” con-
tains code for developing and training a Unet architecture.
Notebook “5_run_remote_training.ipynb” executes the previ-
ous notebook on a Galaxy cluster remotely after creating a
Galaxy history and then uploading the script extracted from
“4_create_model_and_train_remote.ipynb” notebook and input
datasets. Custom Python function, “run_script_job,” creates a
Galaxy history using Bioblend and then uploads the datasets to
the same history. After the upload is finished, the Python script
from the specified notebook is executed dynamically. It trains
an ML architecture on the uploaded datasets to create a model
and saves it as an ONNX file in the Galaxy history. Using “6_pre-
dict_masks_remote_model.ipynb” notebook from [47], the trained
model can be downloaded from the Galaxy history and used for
predicting infected regions of the CT scan images from the test
dataset. A significant advantage of training ML models remotely
is that researchers do not have to keep the JupyterLab session
running as long as the model is being trained as the model train-
ing becomes decoupled from JupyterLab. Using such a feature, ML
models that take several hours or even days to train can be con-
veniently trained.

Extend Docker container
The customized Docker container developed as shown in Fig. 1
can be easily extended to have more or different packages. To up-
date the container, a package or a list of new packages should be
added to the dockerfile and then the new container should be built
and pushed to Docker hub [5]. After pushing the new container,
when Galaxy’s JupyterLab interactive tool is accessed on Galaxy
Europe, it downloads the new container, and all the newly added
packages are available in JupyterLab. Similarly, versions of exist-
ing packages can be updated or existing packages can be removed
if no longer needed. The simplified extension procedure of the en-
tire infrastructure incurs low maintenance costs as any change to
this entire infrastructure is reflected only in the container with-
out updating Galaxy’s codebase. In addition, packages can also be
added or updated using “pip” in any JupyterLab notebook, but such
changes remain as long as the JupyterLab session runs as they do
not update the underlying Docker container.

Collaborative notebooks
Notebooks created in Galaxy’s JupyterLab infrastructure can in-
stantly be shared with other researchers and collaborators only
by sharing the public URL of a notebook. Researchers and users
who share a notebook can collaborate on the same notebook with-
out having to store it anywhere as it is directly served by Galaxy
Europe.

Workflow of notebooks
Resembling many tools in Galaxy, JupyterLab can also be used in
any Galaxy workflow where it can accept datasets from different
tools and then executes an IPython notebook to process the in-
put datasets. It outputs a collection of datasets, which can fur-
ther be used by other Galaxy tools [43]. In addition, using the Elyra
AI package, a workflow of notebooks can be created using exist-
ing notebooks in a JupyterLab session and executed as one unit
of software similarly as Galaxy workflows are created using sev-
eral tools. It is possible to execute such workflows of notebooks
on the same compute resource on which the JupyterLab session
runs. In addition, a few other services such as Kubeflow [57] or
Apache Airflow [58] can also be used to deploy, run, and manage
such workflows on a cloud but are not explored in our work.

Summary
JupyterLab is integrated as an interactive tool in Galaxy Europe
running on a public and powerful compute infrastructure com-
prising several CPU cores and GPUs having large memory and disk
space. A Docker container is created that wraps JupyterLab along
with packages such as TensorFlow-GPU, Scikit-learn, Pandas, and
many others to provide a robust architecture for the develop-
ment and management of projects in ML and data science. Re-
mote model training makes it convenient to run multiple analyses
in parallel in different Galaxy jobs by executing the same Galaxy
tool. The resulting datasets of each job become available in differ-
ent Galaxy histories. Features such as Git integration are useful
for managing entire code repositories on GitHub and Elyra AI for
creating pipelines of notebooks working as one software unit. All
notebooks created by a user run on the same session of JupyterLab
in different tabs. The entire infrastructure of JupyterLab is read-
ily accessible through Galaxy Europe. In contrast to commercial
infrastructures that host editors similar to JupyterLab and offer
powerful and reliable compute only through paid subscriptions,
this infrastructure provides large compute resources free of cost

6 | GigaScience, 2023, Vol. 12, No. 0

that are invariant to usage and has an unlimited usage time while
ensuring a constant amount of compute resources across succes-
sive usages. Sustaining and improving such an openly accessi-
ble infrastructure would highly benefit ML practitioners and re-
searchers from various fields of science.

Availability of Supporting Source Code and
Requirements
Project name: GPU-enabled Docker container with JupyterLab for
artificial intelligence
Project home page: https://github.com/usegalaxy-eu/gpu-jupyte
rlab-docker
Galaxy interactive tool: https://github.com/usegalaxy-eu/galaxy
/blob/release_22.05_europe/tools/interactive/interactivetool_m
l_jupyter_notebook.xml
Operating system: Linux
Programming languages: Python, XML, Docker, Bash
License: MIT License
RRID: SCR_022695
Biotools ID: gpu-enabled_docker_container_with_jupyterlab_for_ai

Data Availability
All supporting data and materials are available in the GigaScience
GigaDB database [59].

Additional Files
Supplementary Material: An accessible infrastructure for artificial
intelligence using a Docker-based JupyterLab in Galaxy.

Abbreviations
AI: artificial intelligence; CT: computed tomography; CUDA: Com-
pute Unified Device Architecture; EUR: Euro; GPU: graphical pro-
cessing unit; GB: gigabyte; GTN: Galaxy training network; JAX:
accelerated linear algebra; ML: machine learning; ONNX: Open
Neural Network Exchange; OS: operating system; RAM: random-
access memory; PB: petabyte; TB: terabyte; URL: uniform resource
locator; 3D: 3-dimensional.

Competing Interests
The authors declare that they have no competing interests.

Funding
This work was supported by the German Research Founda-
tion (DFG) under Germany’s Excellence Strategy (CIBSS–EXC-
2189–Project ID 390939984), German Federal Ministry of Edu-
cation and Research (BMBF grant 031A538A de.NBI), and the
European Commission (HORIZON–INFRA–2021–EOSC–01–EOSC–
EuroScienceGateway–101057388). We acknowledge support by the
Open Access Publication Fund of the University of Freiburg.

Authors’ Contributions
A.K. developed the project and wrote the manuscript. G.C. de-
ployed the project on Galaxy Europe. B.G. devised the idea of the
project and helped in creating the resource’s access method. R.B.
provided the necessary support for the entire project. All authors

contributed to and approved the manuscript. R.B. and B.G. pro-
vided funding for the project.

Acknowledgments
We thank Daniel Blankenberg for his suggestions to improve the
Docker container. In addition, we thank Galaxy Europe team for
running and maintaining the project.

References
1. Pearson, W, Crusoe, M, et al. The FASTA package—protein and

DNA sequence similarity searching and alignment programs.
GitHub. 2016. https://github.com/wrpearson/fasta36. [Accessed
June 30, 2022].

2. Kumar, I, Singh, SP, Shivam., Machine learning in bioinfor-
matics. Bioinformatics,Dev BS and Pathak RK , Academic Press;
Dehradun 2022:443–56. https://www.sciencedirect.com/scienc
e/article/pii/B9780323897754000201.

3. Kluyver, T, Ragan-Kelley, B, Pérez, F, Granger, B, Bussonnier, M,
et al. Jupyter Notebooks—A Publishing Format for Reproducible Com-
putational Workflows. IOS Press; Amsterdam. 2016:87.

4. The Galaxy Community. The Galaxy platform for accessible, re-
producible and collaborative biomedical analyses: 2022 update.
Nucleic Acids Res 2022;50(W1):W345–51.

5. Kumar, A. Container for machine learning and deep learning in
Jupyter notebook. Docker. 2021. https://hub.docker.com/r/anupk
umar/docker-ml-jupyterlab. [Accessed June 29, 2022]

6. Galaxy Europe. Live instance of the European Galaxy server.
Galaxy Europe. 2019. https://live.usegalaxy.eu/. [Accessed June
30, 2022]

7. Kumar, A, Grüning, B. GPU enabled interactive Jupyter notebook for
machine learning. GitHub 2021. https://github.com/usegalaxy-e
u/galaxy/blob/release_22.05_europe/tools/interactive/interact
ivetool_ml_jupyter_notebook.xml. [Accessed April 24, 2023]

8. Compute resources in Galaxy Europe. GitHub. 2023.
https://galaxyproject.org/news/2023-01-24-gpu-jupyterlab
-galaxy/#current-resources-will-be-updated-regularly. [Ac-
cessed April 24, 2023]

9. German Network for Bioinformatics Infrastructure. de.NBI.
2015. https://www.denbi.de/cloud. [Accessed April 24, 2023]

10. Merkel, D. Docker: lightweight linux containers for consistent
development and deployment. Linux J 2014;2014(239):2.

11. Baset, S, Berger, S, Bottomley, J, et al. Docker and container secu-
rity white paper. 2016. https://dominoweb.draco.res.ibm.com/re
ports/rc25625.pdf. [Accessed April 24, 2023]

12. Collonval, F, Rheines, A, Zhang, J, et al. A JupyterLab extension for
version control using Git. https://github.com/jupyterlab/jupyte
rlab-git. [Accessed June 29, 2022]

13. Resende, L, Chin, A, Titzler, P, et al. Elyra is a set of AI-centric
extensions to JupyterLab notebooks. 2018. https://github.com/e
lyra-ai/elyra. [Accessed June 29, 2022].

14. Abadi, M, Agarwal, A, Barham, P, et al. TensorFlow: large-scale
machine learning on heterogeneous systems. 2015. https://ww
w.tensorflow.org/. [Accessed 24 April 2023]

15. Pedregosa, F, Varoquaux, G, Gramfort, A, et al. Scikit-learn: ma-
chine learning in Python. J Machine Learn Res 2011;12:2825–30.

16. Bai, J, Lu, F, Zhang, K, et al. ONNX: Open Neural Network Ex-
change. GitHub. 2019. https://github.com/onnx/onnx. [Accessed
June 29, 2022].

17. NVIDIA, Vingelmann, P, Fitzek, FHP. CUDA, release: 10.2.89.
2020. https://developer.nvidia.com/cuda-toolkit. [Accessed June
29, 2022]

https://github.com/usegalaxy-eu/gpu-jupyterlab-docker
https://github.com/usegalaxy-eu/galaxy/blob/release_22.05_europe/tools/interactive/interactivetool_ml_jupyter_notebook.xml
https://github.com/wrpearson/fasta36
https://www.sciencedirect.com/science/article/pii/B9780323897754000201
https://hub.docker.com/r/anupkumar/docker-ml-jupyterlab
https://live.usegalaxy.eu/
https://github.com/usegalaxy-eu/galaxy/blob/release_22.05_europe/tools/interactive/interactivetool_ml_jupyter_notebook.xml
https://galaxyproject.org/news/2023-01-24-gpu-jupyterlab-galaxy/#current-resources-will-be-updated-regularly
https://www.denbi.de/cloud
https://dominoweb.draco.res.ibm.com/reports/rc25625.pdf
https://github.com/jupyterlab/jupyterlab-git
https://github.com/elyra-ai/elyra
https://www.tensorflow.org/
https://github.com/onnx/onnx
https://developer.nvidia.com/cuda-toolkit

An accessible infrastructure for AI using a Docker-based JupyterLab in Galaxy | 7

18. Harris, CR, Millman, KJ,van der Walt, SJ, et al. Array programming
with NumPy. Nature 2020;585(7825):357–62.

19. Virtanen, P. SciPy 1 0 Contributors. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat Methods
2020;17:261–72.

20. NVIDIA Corporation. CUDA and cuDNN images from git-
lab.com/nvidia/cuda. Docker. 2014. https://hub.docker.com/r/nvi
dia/cuda. [Accessed June 29, 2022].

21. Kumar, A. Jupyter container used for Data Science and Tensor-
flow. GitHub. 2021. https://github.com/anuprulez/ml-jupyter-no
tebook/blob/master/Dockerfile.[Accessed June 29, 2022].

22. Docker Hub. Docker. 2013. https://hub.docker.com/
23. Waskom, ML. Seaborn: statistical data visualization. J Open

Source Softw 2021;6(60):3021.
24. Hunter, JD. Matplotlib: a 2D graphics environment. IEEE Comput

Soc 2007.9 3 90–95
25. Bokeh Development Team. Bokeh: Python library for interactive

visualization. GitHub. 2018. https://bokeh.pydata.org/en/latest/.
[Accessed April 24, 2023]

26. Alekhin, A, Lavrenov, I, Shabunin, M, et al. OpenCV: Open Source
Computer Vision Library. GitHub. 2012. https://github.com/openc
v/opencv. [Accessed April 24, 2023]

27. Van der Walt, S, Schönberger, JL, Nunez-Iglesias, J, et al. scikit-
image: image processing in Python. PeerJ 2014;2:e453.

28. Brett, M, Markiewicz, CJ, Hanke, M, et al. nipy/nibabel: 3.2.2. Zen-
odo. 2022. https://doi.org/10.5281/zenodo.6617121.

29. Sloggett, C, Goonasekera, N, Afgan, E. BioBlend: automating
pipeline analyses within Galaxy and CloudMan. Bioinformatics
2013;29(13):1685–6.

30. Corlay, S, Cherukuri, C, Renou, M, et al. 2-D plotting library for
Project Jupyter. GitHub. 2015. https://github.com/bqplot/bqplot.
[Accessed June 29, 2022]

31. Tuloup, J, Breddels, M, Corlay, S, et al. Rendering of live Jupyter
notebooks with interactive widgets. GitHub. 2018. https://github
.com/voila-dashboards/voila.. [Accessed 29 June 2022]

32. Tomlinson, J, Schmidt, AJ, Zamora, R, et al. A JupyterLab exten-
sion for displaying GPU usage dashboards. GitHub. 2021. https:
//github.com/rapidsai/jupyterlab-nvdashboard. [Accessed June
29, 2022].

33. The HDF Group. Hierarchical Data Format, version 5; 1997–2022.
https://www.hdfgroup.org/HDF5/. [Accessed June 29, 2022]

34. Mirdita, M, Schütze, K, Moriwaki, Y, et al. ColabFold: mak-
ing protein folding accessible to all. Nat Methods 2022;19:
679–82.

35. Johnson, M, Hawkins, P, Vanderplas, J, et al. JAX: Autograd and
XLA. 2020. https://github.com/google/jax. [Accessed June 29,
2022]

36. Bisong, E. Google Colaboratory. 2019. https://doi.org/10.1007/978-
1-4842-4470-8_7. [Accessed April 24, 2023]

37. Kaggle., Kaggle. 2020. https://www.kaggle.com. [Accessed June
29, 2022]

38. Amazon SageMaker. Amazon SageMaker. 2017. https://aws.amaz
on.com/sagemaker/. [Accessed June 29, 2022]

39. Moon, KR, van Dijk, D, Wang, Z. Visualizing structure and
transitions in high-dimensional biological data. Nat Biotechnol
2019;37:1482–92.

40. Boileau, P, Hejazi, NS, Dudoit, S. Exploring high-dimensional bi-
ological data with sparse contrastive principal component anal-
ysis. Bioinformatics 2020;36(11):3422–30.

41. Nvidia/Docker. nvidia/cuda:11.8.0-cudnn8-runtime-
ubuntu20.04. 2014. https://hub.docker.com/r/nvidia/cuda

/tags?page=1&name=11.8.0-cudnn8-runtime-ubuntu20.04.
[Accessed April 24, 2023]

42. Batut, B, Hiltemann, S, Bagnacani, A, et al. Community-driven
data analysis training for biology. Cell Systems 2018;6(6):752–8.

43. Kumar, A. A Docker-based interactive Jupyterlab powered by GPU for
artificial intelligence in Galaxy (Galaxy Training Materials). 2022.
https://training.galaxyproject.org/training-material/topics/
statistics/tutorials/gpu_jupyter_lab/tutorial.html. [Accessed
January 23, 2023]

44. Saeedizadeh, N, Minaee, S, Kafieh, R, et al. COVID TV-Unet: seg-
menting COVID-19 chest CT images using connectivity imposed
Unet. Comput Methods Programs Biomed Update 2021;1:100007.

45. Jumper, J, Evans, R, Pritzel, A, et al. Highly accurate protein struc-
ture prediction with AlphaFold. Nature 2021;596:583–9.

46. Ronneberger, O, Fischer, P, Brox, T. U-Net: convolutional net-
works for biomedical image segmentation. Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015. Springer,
Cham 2015;9351. 234–-241 https://doi.org/10.1007/978-3-319-
24574-4_28.

47. Kumar, A. Jupyterlab notebooks. GitHub. 2022. https://gith
ub.com/anuprulez/gpu_jupyterlab_ct_image_segmentation.
[Accessed June 29, 2022]

48. Kumar, A. COVID Image segmentation datasets and trained
model. Zenodo. 2022. https://doi.org/10.5281/zenodo.6091361.
[Accessed April 24, 2023]

49. Saeedizadeh, N, Minaee, S, Kafieh, R, et al. COVID TV-Unet:
Segmenting COVID-19 chest CT images using connectivity im-
posed Unet. GitHub. 2021. https://github.com/narges-sa/COV
ID-CT-Segmentation/blob/main/main_TV_Unet_Split1.py. [Ac-
cessed June 30, 2022]

50. Steinegger, M, Söding, J. MMseqs2 enables sensitive protein se-
quence searching for the analysis of massive data sets. Nat
Biotechnol 2017;35:1026–8.

51. Chen, L, Kenyon, G, Curtin, F, et al. 4 Oxalocrotonate tau-
tomerase, an enzyme composed of 62 amino acid residues per
monomer. J Biol Chem 1992;267(25):17716–21.

52. Mirdita, M, Schütze, K, Moriwaki, Y, et al. ColabFold: making pro-
tein folding accessible to all. GitHub. 2022. https://github.com
/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb. [Accessed
June 30, 2022]

53. Kumar, A. Run long-running jupyterlab script. Github. 2022.
https://github.com/bgruening/galaxytools/blob/master/tools/j
upyter_job/run_jupyter_job.xml. [Accessed June 30, 2022]

54. Kumar, A. Custom jupyterlab notebook function to
start model training job in Galaxy. Github. 2021. https:
//github.com/anuprulez/ml-jupyter-notebook/blob/master
/galaxy_script_job.py#L43. [Accessed June 30, 2022]

55. Kumar, A. Remotely trained image segmentation model. Galaxy.
2022. https://usegalaxy.eu/u/kumara/h/image-segmentation-f
rom-galaxy-jupyterlab. [Accessed August 23, 2022]

56. Galaxy’s Interactive Environments. GitHub. 2016. https:
//github.com/bgruening/docker-jupyter-notebook/blob/ma
ster/default_notebook.ipynb. [Accessed April 24, 2023]

57. Kubeflow. GitHub. 2017. https://github.com/kubeflow/kubeflow.
[Accessed April 24, 2023]

58. Apache Airflow. GitHub. 2019. https://github.com/apache/airflo
w-site. [Accessed April 24 2023]

59. Kumar, A, Cuccuru, G, Gruening, B, et al. Supporting data for
“An Accessible Infrastructure for Artificial Intelligence Using a
Docker-Based JupyterLab in Galaxy.” GigaScience Database. 2023.
http://dx.doi.org/10.5524/102381.

https://hub.docker.com/r/nvidia/cuda
https://github.com/anuprulez/ml-jupyter-notebook/blob/master/Dockerfile
https://hub.docker.com/
https://bokeh.pydata.org/en/latest/
https://github.com/opencv/opencv
https://doi.org/10.5281/zenodo.6617121
https://github.com/bqplot/bqplot
https://github.com/voila-dashboards/voila
https://github.com/rapidsai/jupyterlab-nvdashboard
https://www.hdfgroup.org/HDF5/
https://github.com/google/jax
https://doi.org/10.1007/978-1-4842-4470-8_7
https://www.kaggle.com
https://aws.amazon.com/sagemaker/
https://hub.docker.com/r/nvidia/cuda/tags?page=1&name=11.8.0-cudnn8-runtime-ubuntu20.04
https://training.galaxyproject.org/training-material/topics/statistics/tutorials/gpu_jupyter_lab/tutorial.html
http://arxiv.org/abs/1505.04597
https://github.com/anuprulez/gpu_jupyterlab_ct_image_segmentation
https://doi.org/10.5281/zenodo.6091361
https://github.com/narges-sa/COVID-CT-Segmentation/blob/main/main_TV_Unet_Split1.py
https://github.com/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://github.com/bgruening/galaxytools/blob/master/tools/jupyter_job/run_jupyter_job.xml
https://github.com/anuprulez/ml-jupyter-notebook/blob/master/galaxy_script_job.py#L43
https://usegalaxy.eu/u/kumara/h/image-segmentation-from-galaxy-jupyterlab
https://github.com/bgruening/docker-jupyter-notebook/blob/master/default_notebook.ipynb
https://github.com/kubeflow/kubeflow
https://github.com/apache/airflow-site
http://dx.doi.org/10.5524/102381

