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Abstract

Background: Galaxy is a web-based and open-source scientific data-processing platform. Researchers compose pipelines in
Galaxy to analyse scientific data. These pipelines, also known as workflows, can be complex and difficult to create from
thousands of tools, especially for researchers new to Galaxy. To help researchers with creating workflows, a system is
developed to recommend tools that can facilitate further data analysis. Findings: A model is developed to recommend
tools using a deep learning approach by analysing workflows composed by researchers on the European Galaxy server. The
higher-order dependencies in workflows, represented as directed acyclic graphs, are learned by training a gated recurrent
units neural network, a variant of a recurrent neural network. In the neural network training, the weights of tools used are
derived from their usage frequencies over time and the sequences of tools are uniformly sampled from training data.
Hyperparameters of the neural network are optimized using Bayesian optimization. Mean accuracy of 98% in
recommending tools is achieved for the top-1 metric. Conclusions: The model is accessed by a Galaxy API to provide
researchers with recommended tools in an interactive manner using multiple user interface integrations on the European
Galaxy server. High-quality and highly used tools are shown at the top of the recommendations. The scripts and data to
create the recommendation system are available under MIT license at
https://github.com/anuprulez/galaxy tool recommendation.
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Background

Life sciences depend increasingly on high-throughput data,
turning them into data science to a large extent. However, raw
high-throughput data have little value on their own without
proper analysis and interpretation. To simplify the data analy-
sis process and to ensure a reproducible analysis, several work-
flow systems such as Bcbio-nextgen, Omics Pipe, Nextflow, Luigi,
Toil, and many others have emerged [1–3]. The main idea for
workflow systems is based on the observation that any compu-

tational analysis of high-throughput data encompasses multiple
steps such as quality control, preprocessing, quantification, and
statistical analysis to transform raw data into scientific results.
Collectively, these steps form a workflow where each step per-
forms a definite transformation of the data, which can be per-
formed using standardized tools. Using workflow for the analy-
sis is simple and convenient and has several advantages. First,
it is easy to replace individual tools by a newer version or to
assess the influence of the associated step on the final result.
Second, a workflow can be saved, shared, and reused, which en-
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2 Tool recommender system in Galaxy using deep learning

sures reproducible research. Therefore, workflows are becoming
essential in the analysis of scientific data and there are multi-
ple platforms where researchers can create workflows for their
analyses. However, a critical question is how to assess whether a
generated workflow is state-of-the-art or even valid at all. To give
a concrete example, one can use several real-valued input vec-
tors (such as fluorescence-based measurement stemming from
arrays), transform them into integer-based values in the first
step, and combine it with a tool that uses a count-based statis-
tics (such as negative binomial distribution as used in DESeq2
[4]) to determine values that show high differential behaviour.
While this workflow would run on a workflow system without
problems and even produce some results, the generated results
are not valid because the wrong statistical model was applied.
Therefore, it is important to use a tool for each step in a workflow
that can bring desired results. To make this possible, a system
is needed that can recommend useful tools at each step while
creating a workflow.

Galaxy and workflows

Galaxy is an open-source data-processing platform that enables
researchers to create and store their workflows for multiple sci-
entific analyses [5]. A workflow in Galaxy is a directed acyclic
graph and consists of 1 or many tool sequences to analyse scien-
tific data such as DNA and RNA sequences. A tool consumes ≥1
data file as input, produces ≥1 data file as output, and supports
a number of formats of these input and output files. In work-
flows, the tools are connected one after another following a con-
straint that the adjacent tools must have compatible data types.
In other words, the data types of output files of a tool should
match the data types of input files of the following tool. Galaxy
has thousands of accessible tools, and acquiring familiarity and
constructing workflows with these tools can be a complex and
time-consuming task, especially for researchers new to Galaxy.
To assist them in creating workflows and making them aware
of the possible tools for further analyses, a recommender sys-
tem is devised. The benefits of such a system are manifold. First,
it will make researchers more efficient by saving the time they
waste creating erroneous or less optimal workflows by choosing
tools that may produce undesired results. Second, it will help
researchers bypass the step of searching for tools separately,
which will further reduce the time spent in creating workflows
and at the same time increase the accessibility of tools. Third,
it will promote high-quality tools that have been used more of-
ten in the past (last 1 year) to the top of the recommendations
and downgrade those having lower usage frequencies. This is
achieved by assigning each tool a weight derived from its us-
age frequency over a period of time. Finally, it can be extended
to promote the newly added tools in Galaxy by showing them
alongside the recommended tools predicted using the neural
network approach.

Recommender systems

The objective of having recommender systems in fields such
as scientific literature search, online shopping, travel bookings,
media-service providers, and many other fields is to help peo-
ple discover suitable, interesting, and newly released products.
These recommended products are recognized on the basis of
the usage and purchasing patterns of people in the past. In the
field of scientific literature search, the exponential increase in
the number of published articles necessitates having a recom-
mender system to help scientists explore relevant and recent pa-

pers quickly [6–8]. Recommender systems are important in the
world of commercial applications too. Companies such as Ama-
zon and Netflix have appropriately used them to learn the pref-
erences of their respective customers in selecting products such
as their favourite books or movies and to propose a few products
out of a large catalogue. By enabling users and customers to dis-
cover reasonable and customized products, recommender sys-
tems have helped them grow as organizations [9, 10]. In short,
recommender systems make it faster for users and customers
to look through a few suggested products to find the most suit-
able ones. These successful implementations of recommender
systems by organizations across the world working in diverse
areas to assess the needs of their respective users in proposing
relevant products motivated us to create a tool recommender
system in Galaxy.

Related work

To simplify creating workflows for scientific analyses, a few ap-
proaches have been proposed that suggest alternative tools and
workflows. EDAM and semantic annotations of tools are used to
compose workflows automatically for mass spectrometry–based
proteomics [11]. The annotations include the names, function-
alities, and input and output data types of tools. The PROPHETS
program generates suitable candidates of workflows that match
the goal of the proposed workflow and its annotations [12].
WINGS offers multiple variations of a workflow created using
different tools. It makes use of the input parameters, types of
datasets, and functions of tools to build the variations [13, 14].
The approach used by DiBernardo et al. [15] uses data types
to facilitate the automatic creation of workflows. All these ap-
proaches depend on either annotations or matching input and
output data types of adjacent tools in workflows, and they pose
challenges such as the addition and maintenance of the mean-
ingful annotations of tools and extracting input and output data
types of adjacent tools. Moreover, these approaches have their
workflow generation restricted to a few specific bioinformat-
ics analyses such as proteomics or proteogenomics. In addition,
they do not discuss the presence of higher-order relationships
[16] in tool sequences of workflows. Our approach to recommend
tools in workflows aims to overcome these challenges in the
following manner. First, it does not require collecting and stor-
ing information about tools. Second, it takes into account the
higher-order relationships among tools (Fig. 1) in tool sequences.
Finally, it incorporates workflows from multiple scientific anal-
yses to produce the recommender system.

Sequential learning on workflows

Workflows, created by many researchers in Galaxy for differ-
ent scientific analyses, are decomposed into numerous tool se-
quences (Fig. 1). The sequential nature of these tool sequences
where tools are connected one after another inspires us to ap-
ply similar learning techniques used for other sequential data
such as text and speech. There are multiple studies in the fields
of natural language processing, clinical research, and speech
recognition that apply deep learning techniques on sequential
data to obtain good accuracy in predicting future items. The ap-
proach used by Yin et al. [17] finds context in long sequences of
words for sentiment analysis and part-of-speech tagging using
recurrent neural network (RNN) and achieves 85% and 93% accu-
racy, respectively. For clinical data, learning on long sequences of
health states proves to be beneficial [18]. The health states of pa-
tients recorded at different time points are analysed by access-
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Kumar et al. 3

Figure 1: An example workflow consisting of 5 different tools (a) is decomposed
into multiple tool sequences (b–d). Each tool sequence shows higher-order de-
pendencies where a tool is dependent on all of its prior tools. These dependen-

cies are indicated by the dashed arrows.

ing their electronic health records. The future health states of
patients could be predicted by training RNN on the sequences of
their past health states to achieve 85% accuracy. Moreover, vari-
ants of RNN are used to model speech and music signals [19, 20].
These successful studies benefit from sequential learning tech-
niques using different variants of RNN. Therefore, in our work,
a variant of RNN—gated recurrent units (GRU)—is used to create
the tool recommender system in Galaxy.

A Bayesian network can also be used for modelling directed
acyclic graphs (workflows) [21, 22]. It requires the computation
of joint and conditional probabilities of nodes in graphs, and
an increase in the number of nodes can lead to a higher cost
to compute these probabilities. In addition, making predictions
by learning a probabilistic network is a hard problem [23–25].
Because of these drawbacks of using a Bayesian network, it is
not used in our approach to create the recommender system in
Galaxy.

Data Description

More than 18,000 workflows from different scientific analyses
such as RNA-seq, variant-calling, Hi-C, assembly, single-cell,
proteomics, and so on in the European Galaxy server [26] have
been used to create the recommender system. A workflow con-
sisting of 5 tools is shown in Fig. 1a. It is divided into smaller
tool sequences as shown in Fig. 1b–d. The last tool, shown in
green, of each tool sequence (of length n) is assigned as the la-
bel of the subsequence (of length n − 1) shown in blue in Fig. 1.
A label is an output that is learned and predicted by the rec-
ommender system. In the neural network learning, a tool is a
label. For example, in Fig. 1b, Tools D and E are the labels of the
subsequence Tool A → Tool B → Tool C. They show higher-order
dependencies in their connections, which implies that a tool is
dependent not only on its immediate predecessor but also on all
prior tools in the tool sequence. For example, in Fig. 1c, the Tool
C is dependent on Tools B and A. By analysing multiple work-
flow fragments in this way, the neural network learns that the
label of a tool sequence Tool A → Tool B is Tool C. It is expected
that dividing a tool sequence into fragments with a minimum

Figure 2: The usage frequencies of 4 tools collected over the past 1 year. Tools
B and D have high usage frequencies almost every month, while Tools C and E
have much lower usage frequencies. Tool A is absent from the plot because it is
not the label of any tool for the workflow shown in Fig. 1.

Figure 3: Top-k (precision@k) non-shared precision for DNN, CNN, and GRU neu-

ral networks with cross-entropy loss function in (a), (c), and (e) respectively .
Top-k (precision@k) non-shared precision for DNN, CNN, and GRU neural net-
works with weighted cross-entropy loss function in (b), (d), and (f) respectively
.

length of 2 tools, as shown in Fig. 1c and d, will improve the gen-
eralization performance of the neural network because it gets
more tool sequences with a variety of lengths to learn from. The
dependencies shown in Fig. 1b–d present in tool sequences are
learned using the GRU neural network by modelling the condi-
tional probability given by Equation 1 [27]. Using the approach
explained above, >229,000 tool sequences are extracted.

Usage pattern of tools

Tools in Galaxy have different usage patterns. Some tools are
used more often than other tools for multiple reasons such as
differences in their functions and availability of similar but bet-
ter tools. It is essential to analyse the usage patterns of tools be-
cause the recommender system proposes tools for researchers
and these tools should have high relevance to their analyses.
One of the key indicators of the relevance of tools can be their
high usage frequencies. If a tool has been used often in the re-
cent past, it implies that the tool is relevant. However, if a tool
was used often a few years ago but has been used less often
in the past 6 months, then the relevance of that tool has cer-
tainly declined. The usage frequencies of tools (shown as labels
in Fig. 1) over the past year are shown in Fig. 2.
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Figure 4: Top-k (precision@k) shared precision for DNN, CNN, and GRU neural
networks with cross-entropy loss function in (a), (c), and (e) respectively. Top-
k (precision@k) shared precision for DNN, CNN, and GRU neural networks with
weighted cross-entropy loss function in (b), (d), and (f) respectively .

Shared and non-shared workflows

The set of workflows may have low-quality workflows that
have not been published or are deleted or may have errors in
their tool connections. To distinguish between high- and low-
quality tool connections, the labels for each tool sequence are
divided into 2 categories—shared and non-shared labels. The
shared labels come from the published, non-deleted, and non-
erroneous workflows while the non-published labels come from
other workflows. While recommending tools for a tool or tool
sequence, the shared labels are promoted to the top of the rec-
ommendations if available, followed by the non-shared labels.
This enables high-quality tools to be shown as the top recom-
mendations.

Imbalance in workflows

Tool sequences from these workflows may vary in number—
some may occur more frequently and others may not. Therefore,
the complete set of tool sequences may not be equally repre-
sentative of all workflows coming from different scientific anal-
yses. Learning on the imbalanced set of tool sequences can in-
duce bias, which may have an undesired outcome—high accu-
racy in recommending tools coming from highly frequent tool
sequences and low accuracy for tools coming from less frequent
ones. To mitigate this bias, all tool sequences are chosen with
uniform frequency while training the neural network, which al-
lows it to attain comparable accuracy in recommending tools in
different scientific analyses. This uniform sampling strategy is
discussed in the “Implementation” section in detail.

Results

Three different neural network architectures—dense neural net-
work (DNN), convolutional neural network (CNN), and gated re-
current units neural network (GRU)—are compared on their per-
formances in predicting tools (Figs 3 and 4). The models obtained
after training all the neural network architectures are used to
predict tools for the tool sequences in the test data after ev-
ery training iteration. Top-k precision (precision@k) is a popu-
lar metric for evaluating a recommender system [28–30]. Preci-
sion@k implies how many of the k predicted tools are correct.
The correctness here refers to the compatibility of the predicted

Figure 5: Usage frequencies of (top-k) predicted tools for DNN, CNN, and GRU
neural networks with cross-entropy loss function in (a), (c), and (e) respectively.
Usage frequencies of (top-k) predicted tools for DNN, CNN, and GRU neural net-

works with weighted cross-entropy loss function in (b), (d), and (f) respectively.

tools with the tool for which predictions have been made. For
example, k = 2 implies that there are 2 predicted tools with
the highest predicted scores. If only 1 of them is correct, then
the precision@2 is 1/2 = 0.5. In this way, precision@1 and pre-
cision@2 are computed for all the tool sequences in the test
data and then averaged. Precision@1 and precision@2 metrics
are used in this approach to evaluate the quality of the tool rec-
ommender system. The precisions of recommended tools are
computed separately for the non-shared and shared recommen-
dations and shown in different plots (Figs 3 and 4), but for usage
frequencies, they are combined into 1 plot (Fig. 5). The preci-
sion and usage frequencies of the predicted tools for the preci-
sion@1 and precision@2 (top-1 and top-2) metrics are computed
over 10 training iterations for each experiment run. They are av-
eraged and their respective standard deviations are computed
over 10 experiment runs. Mean precision and usage frequencies
are shown by the respective line plots, and the shaded regions
span the area between 1 standard deviation above and below the
mean (Figs 3–5).

Comparison of GRU neural network with other
approaches

The GRU neural network with the weighted cross-entropy loss
function shows superior performance to CNN (Figs 3d, and f, 4d
and f) by achieving 98% top-1 non-shared and shared precision,
which proves that the GRU layers in a neural network are bet-
ter for learning on tool sequences than the convolutional layer.
Moreover, it shows a lower divergence in non-shared and shared
precision and usage frequencies (Figs 3d and f, 4d and f, 5d and
f), establishing that its predictive strength is more stable than
CNN over multiple experiment runs. Surprisingly, the weighted
cross-entropy loss function does not have any beneficial effect
on the CNN architecture as its non-shared and shared precision
and usage frequencies show higher divergence over multiple ex-
periment runs (Figs 3c and d, 4c and d, 5c and d). Therefore, CNN
is not used in our approach. In contrast to CNN, DNN achieves
a similar non-shared and shared precision to the GRU neural
network with a small divergence (Figs 3a, b, and f and 4a, b,
and f). However, due to higher divergence in accumulated us-
age frequencies, it is not used in our approach (Fig. 5a, b, and
f). Weighted cross-entropy loss function in the GRU neural net-
work (Fig. 5f) drives it to classify tools more robustly with higher
usage frequencies. In other words, it predicts tools with higher
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Kumar et al. 5

precision than CNN and lower divergence in usage frequencies
than DNN. Therefore, it is used in our approach to learn on tool
sequences and recommend tools.

To compare the performance of the GRU neural network with
approaches that do not use any neural network, 2 ideas are ex-
plored. The first approach simply stores all the sequences of
tools [31] formed using the technique shown in Fig. 1 to cre-
ate a model. To recommend tools using this model, all the tool
sequences are searched for a given tool or a sequence of tools.
The second approach uses the ExtraTrees classifier [32] to rec-
ommend tools. These two approaches are discussed in section
S1 of the supplementary document in detail.

Benefit of regularization

Using regularization minimizes overfitting by assisting the GRU
neural network to make better recommendations by predicting
tools that have low usage frequencies but are useful in addi-
tion to tools with high usage frequencies. For example, the rec-
ommendations of “UMI-tools count” [33] tool with the regular-
ized model include the “Seurat” [34] tool, which is absent from
recommendations by the non-regularized model. Another ex-
ample is for “RaceID, Lineage computation using StemID” tool
sequence, which gets “Lineage Branch Analysis using StemID”
[35] tool as one of the recommendations by the regularized
model while the non-regularized model makes no recommen-
dation at all. The recommendations for a popular mapper, RNA-
STAR [36], are featureCounts [37], MultiQC [38], Infer Experi-
ment [39], and a few others by both the models. But, in ad-
dition to these recommendations, the regularized model rec-
ommends the Read Distribution [39] tool, which is not pre-
dicted by the non-regularized model. More details are provided
in Supplementary Table 1 in section S4 of the supplementary
document.

Examples of tool recommendations

To illustrate the real-time use of the recommender system in
the European Galaxy server, 2 examples are provided. The first
shows recommended tools for a tool sequence with 3 tools,
Trimmomatic [40] → BWA-MEM [41] → FreeBayes [42], in the
workflow editor of the European Galaxy server (Fig. 6). Trimmo-
matic is used to trim sequencing data such as DNA and RNA
sequences. One of the useful analyses after trimming the se-
quences is to map them on a reference genome using a map-
per. Several mappers such as BWA-MEM [41], Bowtie2 [43], and
RNA-STAR [36] are predicted. BWA-MEM is chosen from the pre-
dicted mappers and connected to Trimmomatic. After mapping,
for further analysis of mapped sequences, many tools are pre-
dicted such as MultiQC for summarizing the quality of mapping,
featureCounts for counting the reads mapped to different re-
gions on the genome, or FreeBayes for detecting variants, and a
few others. FreeBayes is chosen and a list of recommendations
is shown as a dropdown containing tools such as bcftools norm
[44], VcfAllelicPrimitives [45], and many others for the Trimmo-
matic → BWA-MEM → FreeBayes tool sequence. Another exam-
ple of tool recommendations after using RNA-STAR is shown in
Fig. 7. It shows follow-up tools such as bamCoverage [46] for
calculating read coverage, MultiQC, featureCounts, and a few
others. In summary, the tool recommendations provide useful
knowledge about tools to Galaxy users and researchers to con-
tinue multiple scientific analyses.

Table 1 lists a few shared and non-shared recommended
tools for multiple tool sequences in different scientific analyses

Figure 6: Recommended tools, listed in the “Tool recommendations” dropdown,
in the workflow editor of the European Galaxy server for the Trimmomatic →
BWA-MEM → FreeBayes tool sequence. The recommended tools for the tool se-
quence can be seen in a dropdown while hovering on the right arrow button
visible in the top right corner of the “FreeBayes” tool. Clicking on any recom-
mended tool such as “bcftools norm” in the dropdown opens a new block for the

chosen tool that can be connected to the tool sequence.

Figure 7: The figure shows recommended tools as leaves (on the right) of the tree
after executing the RNA-STAR tool. Clicking on any recommended tool opens
its definition in Galaxy and can be used for further analysis with the data files
produced by the previous tool (RNA-STAR).

such as computational chemistry, epigenetics, machine learn-
ing, proteomics, RNA sequencing, and a few others. The recom-
mended tools shown in this table are frequently used for stan-
dard scientific analyses as highlighted in multiple Galaxy Train-
ing Network tutorials [60].

Implementation

To create a tool recommender system in Galaxy, workflows are
collected from the European Galaxy server. A workflow may have
1 or many tool sequences where tools are connected one after
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Table 1. Shared and non-shared recommendations for tool sequences in different scientific analyses

Scientific analysis Tool/Tool sequences
Recommended tools
Shared Non-shared

Computational
chemistry

Molecule to fingerprint [47] Taylor-Butina clustering, NxN
Clustering [48], Similarity Search

Epigenetics hicBuildMatrix [49] hicSumMatrices hicMergeMatrixBins, hicPlotMatrix
[50], hicPCA, hicTransform

multiBamSummary [46] plotCorrelation [51] plotPCA
Bowtie2 MASC2 CallPeak [51] bamCoverage, FreeBayes

Machine learning Create a deep learning model
architecture

Create deep learning model [52], Build
Deep learning Batch Training Models

Proteomics Msconvert [53] Search GUI, FlashLFQ PeakPickerHiRes [54]
RNA Sequencing Cutadapt [55] FastQC, RNA-STAR, MultiQC [56] Bowtie2, Hisat2, BWA-MEM

Cutadapt [55], RNA-STAR featureCounts, MultiQC, Infer
Experiment [56]

bamCoverage, RmDup

Single-cell UMI-tools extract [33] RNA-STAR [57] Bowtie2, Hisat2, BWA-MEM,
UMI-tools group

Initial processing using RaceID [35] Clustering using RaceID [58]
Initial processing using RaceID,
Clustering using RaceID [35]

Cluster Inspection using RaceID [58],
Lineage computation using StemID

Variant-calling FreeBayes VcfAllelicPrimitives [59] Gemini load
FreeBayes,VcfAllelicPrimitives SnpSift Filter, VT normalize SnpEff eff [59]

another. Tool sequences are transformed into matrices and pro-
duced as input to a GRU neural network to learn patterns in the
connections of tools.

p(xT |x1, x2, ...., xT−1) (1)

The probability of a tool (xT) is estimated given all other prior
tools (x1, ..., xT − 1) for a tool sequence (x1, ..., xT − 1, xT). Neural net-
work learning is classification because there are labels for tool
sequences, which are learned and then predicted. Moreover, the
classification is multi-class (multiple tools as labels) and multi-
label (multiple tools as labels for a tool sequence) [61]. To ensure
unbiased learning and evaluation by the neural network, the set
of tool sequences is divided into 2 parts—training and test. The
training data are used for learning a model and the test data are
used for evaluating the model.

Uniform sampling

Workflows in Galaxy come from different scientific analyses. It
may happen that the numbers of workflows from these analyses
are not comparable—some analyses may have a large number of
workflows while some may have only a small number of work-
flows. This can cause some tools to be present very frequently
in workflows while other tools are less frequent. Learning on
these workflows and recommending tools may exhibit bias by
showing better recommendations for the frequently occurring
tools and poorer recommendations for the less frequent ones.
To showcase this imbalance, the frequencies of the last tool in
each tool sequence in training data are calculated and it is found
that only a few tools have large frequencies and most of the tools
are present in low frequencies (Supplementary Fig. 3). For exam-
ple, the tools with very high frequencies (>10,000) are “Concate-
nate datasets”, “Cut”, “Grouping”, and “Join” while the tools with
very low frequencies (<5) are “Cluster inspection using RaceID”,
“rDock cavity definition” [62], and “ChiRA collapse”. Therefore,
to overcome this drawback, the training data created after ex-
tracting tool sequences should be balanced to make the neural
network learn on a similar number of tool sequences from differ-

ent scientific analyses in each training iteration. To implement
this strategy, a set of last tools in all tool sequences from the
training data is collected. Furthermore, for each tool in this set,
a list of indices of tool sequences in the training data are stored
for which it is the last tool (Supplementary Table 3). Only the last
tools are considered for implementing this strategy because of 2
reasons. First, the smallest tool sequences contain only 2 tools,
and second, all tools become the last tool in ≥1 tool sequence
and the computed frequencies of these last tools suggest their
overall frequencies in the training data.

In the neural network training, for each iteration (which con-
sumes all tool sequences in the training data), small batches
containing an equal number of tool sequences are created. For
example, if the batch size is 100 and the size of training data is
2,000, then 20 (2,000/100 = 20) batches are created, each contain-
ing 100 tool sequences. In each batch, 100 tools from the set of
last tools are uniformly selected (Column 2 in Supplementary
Table 3) and for each selected tool, a tool sequence is chosen
uniformly from its respective list of tool indices (Column 3 in
Supplementary Table 3). After selecting tool sequences for many
batches for each iteration of training (epoch), it is expected that
all the tools from the set of last tools and their respective tool
sequences are chosen. Performing this uniform selection of dif-
ferent tool sequences for each iteration, the training data be-
come balanced. Supplementary Fig. 4 shows that each last tool
is present ∼1,670 times on average in each iteration (epoch). The
order of tools in Supplementary Figs 3 and 4 is the same.

Data transformation

Tool sequences extracted from workflows are transformed into
vectors because neural networks require input data to be rep-
resented as vectors and matrices. Each tool sequence has 1
or more labels (Fig. 1), and they are transformed into differ-
ent vectors—a tool sequence vector (Fig. 8b) and a label vector
(Fig. 8d). To form these vectors, a dictionary of tools is needed,
which stores an index for each tool. Using the indices of tools, a
tool sequence vector is created preserving the original order of
tools as in the tool sequence. For example, Tool A has an index
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Figure 8: The figure shows how a tool sequence and its labels are transformed
into vectors.

Figure 9: The figure shows the architecture of the GRU neural network. It has
4 components as layers. The first layer is the input layer (yellow), followed by 2
stacked layers of GRU (cyan), and the last layer is the output layer (lavender). The

dropout layers are added between the embedding and GRU layers, between the
2 GRU layers, and between the second GRU and dense layers.

of “12” in the dictionary; therefore it is replaced by “12” in the
vector (Fig. 8b). The vector is padded with trailing zeros to keep
the length of the vector the same across the varying lengths of
tool sequences. The size of this vector is 25, which means that
a tool sequence can have a maximum of 25 tools. The tool se-
quences larger than this size are discarded. The labels (Fig. 8c)
are transformed into a bit vector (Fig. 8d) in which the positions,
stored as indices in the dictionary of tools, of the labels (tools) are
turned “on” (set to 1), specifying that these tools are the labels
of the tool sequence and others are not (set to 0). The bit vec-
tor has the same size as the dictionary of tools. In the machine
learning field, it is also known as a multi hot-encoded vector.
Together, these 2 vectors form a training sample for the neural
network. A pair of vectors are created in this manner for each
tool sequence, and for all the tool sequences, they are combined
to form 2 matrices, one for tool sequences and another for their
respective labels. Internally, the label vectors have 2 subsets,
one for shared labels (from the published, non-deleted and non-
erroneous workflows) and another for non-shared labels (from
the rest of the workflows). These matrices form input data to the
neural network.

Neural network architecture

GRU neural network, a variant of RNN, is used for creating a
model to recommend tools. The neural network architecture has
multiple components such as different layers (Fig. 9), activation
functions, class weights, loss function, and hyperparameter tun-

ing technique, which are discussed in detail in the following
paragraphs.

Embedding layer
The first component of the neural network architecture is an in-
put layer (Fig. 9), which learns an embedding, a fixed-size vector,
for each tool. This vector is used by the neural network as an in-
ternal representation of a tool. The embedding vector replaces
the indices of tools in each tool sequence. The size of the em-
bedding vector is fixed for all tools. For example, the vector of a
tool sequence [12, 6, 75, 0, 0, ..., 0] is transformed into [[0.3, 0.01,
0.003, ..., 0.23], [0.5, 0.1, 0.005, ..., 0.9], [...], 0, 0, ...,0] by the embed-
ding layer. The same embedding vector represents a tool in all
tool sequences in which the tool is present.

GRU layer
The stacked layers of GRU learn deeper structures in the tool se-
quences by modelling the conditional probabilities of tools (la-
bels) given all other prior tools (Fig. 9). GRU has certain advan-
tages that help it to learn on sequential data. First, it avoids the
problems of vanishing and exploding gradients that commonly
occur in traditional RNN [63]. This is important because learning
higher-order dependencies depends on the gradients of errors
concerning the parameters (recurrent and input weight matri-
ces) of GRU layers. Second, GRU has slightly fewer parameters
than the long short-term memory network (LSTM), another vari-
ant of RNN, which makes using GRU simpler than LSTM. Finally,
it achieves accuracy similar to that of LSTM [19].

Output layer
The last component of the neural network architecture is a
dense layer that computes predictions (Fig. 9). The dimension
of this layer is equal to the number of unique tools because it
predicts a score for each tool (label). The predicted score of each
tool is considered as its probability of being the label of an input
tool sequence. The closer the predicted score of a tool is to 1, the
more probable it is to be the recommended tool and the closer
it is to 0, the less probable it is to be the recommended tool.

Dropout layer
Overfitting happens when a neural network performs exception-
ally well on the training data but its performance on test (un-
seen) data remains poor. To minimize the effect of overfitting, a
dropout layer is used between 2 layers of the neural network. It
sets a few randomly chosen connections to 0 in the neural net-
work to introduce some randomness to minimize overfitting [64,
65]. Three dropout layers are used in our approach, one between
the embedding and the first GRU layers, one between 2 GRU lay-
ers, and the last between the second GRU and dense layers.

Activations
These are mathematical functions that are used in neural net-
works to transform inputs to a layer into its outputs. Two activa-
tions are used in our approach—one is exponential linear units
(ELU) [66] and another is sigmoid (Equation 2). ELU is used for
both the GRU layers and has a special feature of being negative
when the input is negative, which allows mean activation (out-
put) to get closer to 0 compared to other activation functions
such as ReLU [67], which is always positive. As mean activations
approach 0, the approximated and actual gradients get closer
to each other. Therefore, using ELU in our neural network as an
activation can be useful to achieve faster training, an improved
reduction in loss, and better accuracy. Sigmoid is used in the
output layer, which normalizes any real number to lie between
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0 and 1, and this resulting quantity is considered the probability
of each tool:

f (x) = 1
1 + e−x

. (2)

Usage frequencies of tools as weights
To incorporate the usage frequency of tools in the recommender
system, the usage frequencies of all the tools used in the past
1 year have been collected and are used in the neural network
training as the weights of tools. A tool that has been used of-
ten (e.g., Tool B in Fig. 2) in the past 1 year is assigned a higher
weight than a tool (e.g., Tool C in Fig. 2) that has been used less
often in the past 1 year. When tools are recommended a score is
assigned to each tool by the neural network. It is expected that
a tool with a higher weight gets a higher score and a tool with a
lower weight gets a lower score. To summarize, the relevance of
a tool to be used in a workflow decays if its usage decreases in
Galaxy over time. This weighting scheme filters out tools from
the list of recommendations that have not been used in the past
1 year irrespective of their origin, either shared or non-shared
workflows.

Alternatively, the relevance of tools can also be ascertained
by counting the occurrence of each tool in all workflows and
these occurrences can be used as their weights in the neural
network training. But, it may happen that some tools that were
used often in the past to create workflows are not used anymore.
Therefore, assigning weights to these tools in the neural net-
work training based on their occurrences in workflows may not
be a good indicator of their relevance and, overall, may not be
optimal.

A curve is fitted through the usage frequencies of each tool
using support vector regression (SVR) to display a trend of the
usage of the tool over time. Using this trend, the usage of the
tool for the next month is predicted and its logarithm is used
as the weight for this tool in the neural network training. The
logarithm of usage frequencies is computed to normalize them
because only a few tools have a significantly large magnitude
of usage compared to that of the remaining tools, which may
lead the neural network to learn and predict only tools with a
very large magnitude of usage and ignore other tools. Learning
a trend for each tool involves 5-fold cross-validation and opti-
mizing 2 hyperparameters of SVR, kernel and degree, using grid
search. The values used for the kernel are “rbf,” “poly,” and “lin-
ear” and the values of degree used are 2 and 3. By following the
grid search, there are 3 (kernels) × 2 (degrees) = 6 different com-
binations of hyperparameters to be verified to find the best curve
for each tool [68].

Loss function
A neural network learns patterns from data by minimizing a loss
function. Cross-entropy is a popular choice for a loss function in
classification problems [69]. In our approach, the cross-entropy
function is used in the GRU neural network to compute the loss
between the true and predicted label and is weighted by the la-
bel’s weight. The loss is summed up over all labels of a tool se-
quence and then averaged (Equation 3). The term T is the to-
tal number of labels (size of the label bit vector). The term wi is
the weight of the ith label. The terms pa and pb refer to the true
and predicted label vectors for a tool sequence, respectively. In
general, the loss is large when pa and pb are far away from each
other, which means that the learning by the neural network is
not good. If they are close, the loss is low and the predictions are
better. When an unweighted cross-entropy is used as the loss

function for any classification problem [70], then it is assumed
that all the predictions have the same weight and it does not
differentiate between the more and less dominant labels. In our
approach when it is used as a loss function in the neural net-
work, then even though the predicted labels are correct they may
not necessarily have large weights and thereby may be less rel-
evant. Therefore, to reduce the possibility of less relevant labels
appearing in recommendations, loss is weighted by the weights
of labels. This means that if a label with a larger weight is mis-
classified, which means that the true and predicted values are
different, then the overall loss is higher. In this way, the wrong
classification of a label with a larger weight is penalized more
than the wrong classification of a label with a smaller weight.

loss = − 1
T

∑T

i=1

[
pa

i · log(pb
i ) + (1 − pa

i ) · log(1 − pb
i )

] ∗ wi (3)

The loss in Equation 3 is computed for all tool sequences in
training data and is minimized using a root mean square prop-
agation (RMSProp) optimizer. It follows an adaptive approach to
estimate the learning rate by keeping knowledge of gradients in
prior iterations. The learning rate is updated by dividing it with
an average of the square of the prior gradients [71].

Hyperparameter tuning
The hyperparameters in our approach are optimized using
Bayesian (sequential model-based) optimization [72]. It learns
from the previously evaluated configurations, which ensures
faster convergence. Reasonable ranges of all the hyperparame-
ters to be optimized are given and the best configuration is found
after 20 evaluations. More details are given in section S7 of the
supplementary document.

Learning and predictions

More than 229,000 tool sequences collected from >18,000 work-
flows are divided into training and test data. A neural network
learns patterns in the tool sequences from the training data and
creates a model. The ability of the model to recommend tools is
evaluated on the test data, which are unseen by the neural net-
work during training. The training data form 80% (∼185,000) of
all tool sequences and are iterated over 10 epochs of neural net-
work training. The remaining 20% (∼45,000) is used as the test
data. The running time of the training is ∼50 hours on a high-
performance compute cluster provided by bwCloud [73] with
multiple cores. After learning on the training data, the model is
used to predict tools. Each predicted tool gets a probability score
of being the recommended tool of a tool or tool sequence. Two
sets of predictions are made—shared and non-shared. Each set
is sorted in descending order of their probabilities and the top
ones in both sets are combined to show them as recommenda-
tions.

Summary and Future Work

A system to recommend tools in Galaxy is built by analysing
workflows using a variant of RNN (GRU) and a weighted cross-
entropy loss function. The recommended tools are relevant for
multiple scientific analyses with high accuracy as shown by the
high similarities between the tools used in Galaxy Training Net-
work tutorials and the recommended tools for similar analyses
(Table 1). Moreover, they are easily accessible through simple
UI integrations in Galaxy (Figs 6 and 7). Collectively, they im-
prove user experience by helping researchers to easily create
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correct workflows. In addition, the approach does not store any
information about tools and the recommendations are made by
learning only the patterns of tool connections in workflows. The
model [74] created using this approach and an API [75] are in-
tegrated into the European Galaxy server. The API resides with
other Galaxy APIs and accesses a tool or a tool sequence spec-
ified by researchers to show its recommendations in real time
using the model. The API is used at 2 different user interfaces
in Galaxy—one shows recommendations in the workflow editor
(Fig. 6) and another shows them after each tool execution (Fig. 7).
The recommendation system should be potentially helpful for
researchers who are new to the Galaxy platform. It shows them
a few follow-up tools from a big collection of >3,000 tools and
enables them to perform multiple exploratory data analyses.

Different Galaxy servers maintain different sets of tools and
workflows. The present approach can be used to create differ-
ent recommendation models for different Galaxy servers. Al-
ternatively, all the workflows can be collected from multiple
Galaxy servers and using the present approach, 1 recommen-
dation model can be created by learning on the complete set of
workflows and the model can be distributed to different Galaxy
servers. To improve the quality of recommendations, the anno-
tations of tools can be incorporated in the learning mechanism
by assigning higher weights to the annotated tools in compar-
ison to tools that are not annotated. Tools containing similar
annotations may have similar functionalities, and using these
similarities, tool recommendations can be further enhanced by
showing similar tools for each recommended tool. In addition to
learning tool connections to recommend tools, the knowledge of
tools connecting to different tools based on their respective pa-
rameters can also be incorporated.

Methods
Library, model, and code repositories

The Keras deep learning library is used for producing the neural
network architectures [76]. The trained model [74] is saved as an
H5 file to simplify its distribution to different Galaxy instances
(Galaxy, RRID:SCR 006281). The file is an HDF5 store containing
the weights of different layers of the neural network and their
configurations, a dictionary of tools and their indices, and the
weights of tools. The weights and configuration of the neural
network are needed to recreate the trained model. The dictio-
nary is used to replace IDs of the predicted tools by their in-
dices in a tool sequence. All data and python scripts used in
our approach are stored at GitHub for all approaches—GRU [77],
CNN [78], and DNN [79]. In each of these repositories, the pro-
cess to create a tool recommendation model is explained. All
these repositories are provided with a script (“extract data.sh”)
for collecting raw input datasets from a Galaxy instance. These
datasets are workflows and usage frequencies of tools and are
also provided in each repository. The values of multiple hyperpa-
rameters of neural networks, number of training iterations, and
sizes of training and test data can be altered using a bash script
(“train.sh”). To execute the scripts on a GPU-enabled machine,
the “tensorflow-gpu” package should be installed instead of
“tensorflow” as mentioned in the conda package dependencies
file (“environment.yml”). To see recommended tools, an ipython
script (“tool recommendation gru wc.ipynb” for GRU repository)
is also provided that loads and recreates a trained model to pre-
dict tools for a tool or a tool sequence. The result files storing
precision, training, and validation losses and usage frequencies,
which are used for generating line plots (Figs 3–5), for all ap-

proaches are also available at GitHub [80]. The code repositories
of 2 other approaches that do not use neural networks are avail-
able at simple approach [31] and ExtraTrees [32].

New recommendation model

On a usual Galaxy server, tools and workflows are dynamic as
they are added and updated regularly. Therefore, it is important
to train the GRU neural network on the complete set of work-
flows periodically to keep the tool recommendation model up-
dated with the latest tools and workflows. Using a Galaxy tool
[81], a new recommendation model can be created after collect-
ing workflows and tool usage data from a Galaxy server. The tool
runs for several hours (>24 hours) and creates a model, which is
pushed to an online repository [74]. From this repository, Galaxy
downloads it using an API [75] to recommend tools. The recom-
mendation model is created periodically every 3–4 months to
accommodate new workflows and tools. Galaxy administrators
can decide upon the frequency of creating a new model. It can
be created every month or every 6 months.

New tools as recommendations

Galaxy administrators can overwrite the recommended tools
predicted using the trained model by a different set of tools using
the configuration option described by Kumar [82]. In addition, to
highlight the newly added tools, which are not part of the model,
they can be appended to the recommendations using this addi-
tional configuration option.

Availability of Supporting Source Code and
Requirements

Project name: Tool recommender in Galaxy using deep learning
Project home page: https://github.com/anuprulez/galaxy tool r
ecommendation
Operating system: Linux
Programming languages: Python, XML, JavaScript
Other requirements: Tensorflow, Keras, Scikit-learn, Numpy,
H5py, Csvkit, Hyperopt
License: MIT License

RRID:SCR 018491
Biotools ID: tool recommender system in galaxy

Data Availability

A snapshot of the source code is available in the GigaScience Gi-
gaDB repository [83].

Additional Files

Supplementary Table 1. Comparison of recommendations be-
tween the GRU neural network, a simple model, and ExtraTrees
classifier.
Supplementary Table 2. Comparison of recommendations be-
tween the regularized and non-regularized GRU neural network.
Supplementary Table 3. The strategy of uniform sampling of
training data.
Supplementary Figure 1. Architecture of convolutional neural
network (CNN) used in the article.
Supplementary Figure 2. Architecture of dense neural network
(DNN) used in the article.
Supplementary Figure 3. Original frequencies of last tools in
training data.
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Supplementary Figure 4. The frequencies of last tools in training
data after uniform sampling.
Supplementary Figure 5. Top-1 non-shared precision for less fre-
quent tools in test data.
Supplementary Figure 6. Top-1 shared precision for less frequent
tools in test data.
Supplementary Figure 7. Top-1 and top-2 precision (non-shared
and shared recommendations) of the ExtraTrees classifier for
test data.
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