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ABSTRACT
Motivation: RNA sequence design is studied at least as long as
the classical folding problem. While for the latter the functional fold
of an RNA molecule is to be found, inverse folding tries to identify
RNA sequences that fold into a function-specific target structure. In
combination with RNA-based biotechnology and synthetic biology,
reliable RNA sequence design becomes a crucial step to generate
novel biochemical components.
Results: In this article, the computational tool antaRNA is presented.
It is capable of compiling RNA sequences for a given structure
that comply in addition with an adjustable full range objective GC-
content distribution, specific sequence constraints and additional
fuzzy structure constraints. antaRNA applies ant colony optimization
meta-heuristics and its superior performance is shown on a biological
datasets.
Availability: http://www.bioinf.uni-freiburg.de/Software/antaRNA
Contact: backofen@informatik.uni-freiburg.de

1 INTRODUCTION
Engineered RNA molecules are of growing importance with
applications ranging from biotechnology to medicine and synthetic
biology. In biotechnology, several applications use engineered
RNAs as scaffolds to optimize reactions or to deliver drugs. For
example, RNA aptamers can serve as protein-docking sites within
scaffolds to organize intracellular reactions (Delebecque et al.,
2011, 2012). Or the bacteriophage phi29 DNA packaging motor can
be used to generate RNA nanoparticles for delivering therapeutic
compounds (Guo, 2010). However, biotechnology applications are
not restricted to scaffold design, but often involve intriguing RNA-
based pathways. For instance, Penchovsky and Breaker (2005)
computationally designed ribozymes to sense oligonucleotides.
Last but not least, the application of the CRISPR/cas9 system
for genetic engineering is emerging and complementing the well
established RNAi technology. This requires the design of specific
RNA-molecules, see the review of Terns and Terns (2014).
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Another important and growing area is RNA synthetic biology, as
reviewed in (Isaacs et al., 2006; Benenson, 2012). Design examples
include RNA-based regulators of translation (Mutalik et al., 2012),
a general, RNA-based framework for microbial engineering on the
level of DNA, protein or mRNA (Qi and Arkin, 2014), sRNA-
based cellular circuits (Rodrigo et al., 2012), the improvement
of functional sRNAs by scaffold engineering (Sakai et al., 2014),
or the de-novo design of synthetic, transcriptional riboswitches
(Wachsmuth et al., 2013).

Many of these approaches use rational design, based on a
secondary structure model of the targeted RNA molecule, and an
increasing number of applications use computational methods for
filtering the initial design. In principle, this is an instance of the
inverse folding problem, which consists of finding a sequence that
fits some secondary structure constraints. RNAinverse (Hofacker
et al., 1994) pursues seed sequence generation with a subsequent
optimization based on local search. The objective function is either
to maximize the similarity of the minimum free energy (MFE)
structure to the target, or to maximize the probability of the
target structure in the ensemble. Several other programs follow the
idea of RNAinverse and try to provide better strategies for either
finding seed sequences or the local refinement step. For instance,
in InFoRNA (Busch and Backofen, 2006, 2007) the seeding was
improved by generating a sequence that is maximally stable for
the target structure and thus has high probability to fold into that
structure. RNA-SSD (Andronescu et al., 2004) extends this by using
stochastic local search. In more recent approaches, new strategies
have been used in order to find sequence solutions: NUPACK
(Zadeh et al., 2011) is using efficient ensemble defect optimization;
RNAfbinv (Weinbrand et al., 2013) employs simulated annealing for
a fragment-based design; fRNAkenstein (Lyngso et al., 2012) applies
a genetic algorithm approach. Similarly, the approach by Dromi
et al. (2008), MODENA (Taneda, 2011) and ERD (Ali et al., 2014)
also apply evolution inspired principles to solve the inverse folding
problem.

There are two necessary conditions an up-to-date inverse folding
tool must fulfill. First, the tool must be able to handle sequence
constraints, in order to capture specific elements like a ligand
binding pocket in riboswitches or RNA aptamers binding a specific
protein. This is provided by most methods available. But second,
the tool has to provide a sequence with a defined GC-content since
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the GC-content has drastic influence on the function of the designed
molecule. For example, it is known that CRISPR/cas9 elements with
too low or too high GC-content do not function optimally (Wang
et al., 2014). Another example is given in (Isaacs et al., 2004,
2006), where the authors engineered an RNA-based regulatory
activator system for bacterial gene expression. They report that
altering the GC-content and further increasing the stability of the
designed element did result in a 19-fold activation. In contrast
to this biological requirements, most of the first generation tools
have an intrinsic GC-bias (Reinharz et al., 2013) that cannot be
compensated by GC-filtering (see Suppl. Mat.). Recently, programs
have been developed, which allow to declare a target GC-value or
to constrain the GC-range for solution sequences. So far, the only
known tools providing this functionality are RNA-SSD (Andronescu
et al., 2004), IncaRNAtion (Reinharz et al., 2013), which is a seed
sequence generator for RNAinverse, and RNAiFold (Garcia-Martin
et al., 2013), a constraint programming approach.

Here we introduce antaRNA, which uses the ant colony
optimization (ACO) meta heuristic to solve the inverse folding
problem of RNA to produce sequences with controlled target GC-
composition. Furthermore, sequence constraints are incorporated.
Accessorily, the introduction and application of implicit structure
constraints allows a design principle that enables the declaration of
RNA structure in a ‘fuzzy’ mode.

Sequences designed by antaRNA show high agreement of their
MFE structures with the targeted structures independently of the
additional objective GC-content constraints.

2 METHOD
antaRNA is based on the Ant Colony Optimization (ACO) heuristic, which
was already successfully applied to solve a broad collection of classical
optimization problems, such as routing (Gambardella and Dorigo, 2000),
scheduling (Socha et al., 2002), assignment (Merkle and Middendorf, 2003),
subset partitioning/clustering (Blum and Blesa, 2005), constraint satisfaction
(Solnon, 2000), classification rules (Parpinelli et al., 2002) and Bayesian
networks (de Campos et al., 2002). Also directly biologically motivated
problems such as protein structure folding (Shmygelska and Hoos, 2005) and
docking simulations (Korb et al., 2006) as well as RNA secondary structure
prediction methods (McMillan, 2006) have been investigated with ACO.

Generally, ACO is a self-adjusting local search strategy, which
automatically adapts to the specific problem instance optimized. Since RNA
structure formation is very sensitive to sequence changes, ACO should be
able to learn the importance of local sequence features, which is an essential
aspect when solving the RNA inverse folding problem.

So in the following, we present the adaptation of ACO to the RNA
inverse folding problem and describe the necessary basic RNA notations
to subsequently describe the algorithm. The algorithm is depicted on a
conceptual level. Please consult the supplement material for more detailed
formal definitions.

2.1 Ant colony behavior
Ants, while foraging for food or exploring new terrain, use pheromones
to indicate the quality of a certain path on their return. They apply a
quality-dependent amount of pheromone to the just examined path (Pasteels
et al., 1987), while the quantity is defined by many (here abstracted) factors
according to the situation: Does the path yield food? Is the amount of food
large/small? What is the quality of the food? Other ants sense the pheromone
on a path and are influenced in their decision whether to follow the same
path or to continue exploring new paths (Goss et al., 1989). The pheromone
itself evaporates over time, such that, if no ant follows the indicated path and

renews its pheromone trail, the path becomes ‘silent’ or ‘unknown’ to the
colony (Deneubourg et al., 1990).

The general principle of ACO (Dorigo and Stützle, 2004; Dorigo et al.,
2006) simulates an ant colony and its foraging behavior on a modeled terrain
to solve optimization problems. Here, ACO is incorporated and exerted to
the problem of RNA inverse folding to generate RNA sequences, which
are optimized to fold into a targeted structure under additional constraints.
In the developed application, the ants of a colony walk subsequently over
the simulated terrain and assemble and evaluate RNA solution sequences.
According to the quality of each solution, the solution generating parts of
the terrain are marked with pheromone, such that the information of prior
solutions contributes to the decisions of subsequent ants. Each pheromone
update also covers ‘environmental’ exposure of the whole terrain, i.e.
globally the pheromone information evaporates with a certain rate. Over
time, one pheromone trail will dominate the terrain and will indicate the
best solution, which is in accordance with the user defined constraints. The
underlaying ACO principle of antaRNA is depicted within Algorithm 1.

Algorithm 1: Ant Colony Optimization Principle in antaRNA

Data: Cstr , Cseq , CGC

Result: Ssol satisfying Cstr , Cseq , CGC

T ← intitializeTerrain(Cstr , Cseq , CGC); Ssol ← ε;
while termination criterion not met do
S ← produceSolution(T);
Q← evaluateSolution(S);
T ← evaporatePheromone(T, ρ);
T ← updateTerrain(T,S, Q);
if S superior Ssol then
Ssol ← S

end
end
return Ssol;

2.2 RNA input
The aim of the heuristic is to obtain an RNA sequence S that is comprised
of n nucleotides. Each sequence position S1 . . .Sn derives from the RNA
nucleotide alphabet Σ = {A,C,G,U}. A base pair (i, j) is an interaction,
in which hydrogen bonds between two nucleotides at sequence positions
Si and Sj within the sequence S were established. antaRNA considers
canonical Watson-Crick and G-U base pairs. A set of base pairs defines a
secondary structure P = {(i, j)|i < j} of S. We consider only nested
secondary structures, i.e. all base pairs fulfill @(i, j), (k, l) ∈ P : i <

k < j < l. In addition, a minimal loop size of 3 is enforced, i.e.
∀(i, j) ∈ P : j − i > 3.

The user can define three types of constraints: The structure constraint
Cstr is used to provide the explicit and implicit secondary structure
constraints, which is encoded in an extended dot-bracket notation. The
explicitly targeted structure parts define the base pairs and single stranded
positions that have to be formed as they are defined. If the definition of an
explicit structure is too rigid for a design problem, more ‘fuzzy’ implicit
structural constraints can be encoded to restrict base interactions to specific
regions. Those regions can be declared by capital letters within the extended
dot-bracket string. One region does not necessarily have to be formed by
consecutive positions, but can also stretch over two or more disjoint areas
(see Fig. 1). All base pairs emerging in the same type of region (same letter)
are implicitly allowed and not penalized during structural distance evaluation
(as discussed later).

The sequence constraint Cseq can restrict certain sequence positions to
specific nucleotides. Furthermore, the GC-content constraint CGC ∈ [0, 1]
provides the targeted GC-ratio within the sequence.
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Fig. 1. Implicit Structure Constraint: Structure constraint example for
a SECIS-like design of Kossinova et al. (2013). Here, the structurally
explicitly constrained SECIS element (S) is further embedded within implicit
structure constraint regions (labeled A-C). Additional base pairs may occur
within individual regions A, B and C but are not allowed to cross them

. This allows a highly flexible context design to minimize the
likelihood of interactions between the context and the functional

hairpin. In the given example, region C allows for the extension of
S, while region A and B ensure this extension to be limited. The

implicit constraint patterns allow a multitude of substructure
combinations. For each region, possible valid substructures are

exemplified in the insets.

2.3 Ant colony optimization of inverse-folded RNA -
antaRNA

During the optimization a large set of sequences S is assembled. The best
solution sequence Ssol is returned, if a termination criterion is reached.

In order to obtain a sequence S, the ants search sequentially in the
simulated terrain represented as a directed graph T = (V, E). Each ant
investigates one terrain path, which corresponds to a sequence assembly
based on the visited vertices. The set of vertices V contains a non-emitting
start vertex v• and nucleotide (σ ∈ Σ) emitting vertices viσ for each
sequence position Si. These are connected by the set of directed edges
E ⊆ V × V , where each edge e(iσ,jσ) = (viσ , vjσ) ∈ E resembles
an available path within the terrain. The vertices v1σ are accessible from
the start vertex v• while vertices viσ (1 < i ≤ n) can be reached
from all preceding nucleotide emitting vertices v(i−1)σ . Each edge holds
pheromonic (τ ) and heuristic (η) information. The resulting terrain graph
contains |V| = 1 + |Σ|n vertices and |E| = |Σ|+ |Σ|2(n− 1) edges when
optimizing a sequence of length n. Figure 2 illustrates the composition of
the terrain graph T .

2.4 Solution Generation
Graph Initialization: Since each solution sequences S is assembled by the
ants according to the information embedded within the terrain, the terrain
must encode the requested constraints. The constraint information is split
into the dynamic pheromonic τ and the static heuristic η contribution of the
edges. Herein, we define the pheromonic contingent to be controlled by the
structure and sequence constraints, Cstr and Cseq , whereas the heuristic
part is encoding the targeted GC-content CGC. The weight of an edge is the
sum of both contingents weighted by two parameter α and β, respectively.

The pheromone τ initialization is of binary character. The pheromone
value of an edge e(iσ,jσ) is set to 0, if the emitted nucleotide σ of the
target vertex vjσ is not in accordance with the sequence constraint Cseqj
at position j. Otherwise, we set τ(e(iσ,jσ)) = 1. Note, we also encode
implicit sequence constraints that arise from the combination of Cstr and
Cseq as follows. If a position is constrained by a specific nucleotide, e.g.
Cseqi = U , and also part of an explicitly requested base pair (i, j) ∈ Cstr ,

1 2 n
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Fig. 2. Terrain T = (V, E): Starting from vertex v•, an ant selects
probability-dependent an outgoing edge until it reaches a final node vnσ .
Hereby, all visited vertices viσ emit the encoded nucleotide σ to the
respective sequence position Si. The assembled solution sequence S is
evaluated and the pheromone information of the corresponding path in the
graph is updated according to the solution’s quality.

we derive an implicit complementarity sequence constraint for the pairing
partner, in our example Cseqj ∈ {A,G}.

The heuristic information η is defined for all edges with τ > 0 by a target
GC-content CGC dependent static edge weighting. Hereby, a differentiation
between edges leading to AU-emitting nodes vj{AU} and edges leading
to GC-emitting nodes vj{GC} is enabled. The heuristic contribution of an
edge is defined by the deviation of CGC from a basis GC-value of 50% and
depends on the edge’s target node.

Sequence Assembly: Each ant compiles a solution sequence S. This is
achieved by the ant’s walk over the terrain. Starting from vertex v•, n edges
are traversed and n vertices in the graph are visited. An edge e(iσ,jσ′)
is selected according to it’s probability p(e(iσ,jσ′)). The probability of
an edge is the relative weight of its terrain information among all edges
originating in its start vertex viσ , as given in Eq. 1.

p(e(iσ,jσ′)) =
α ∗ τ(e(iσ,jσ′)) + β ∗ η(e(iσ,jσ′))∑

σ∗∈Σ

(
α ∗ τ(e(iσ,jσ∗)) + β ∗ η(e(iσ,jσ∗))

) (1)

Each visited vertex viσ emits its assigned nucleotide, i.e. the solution
sequence position is updated by Si = σ (see Fig. 2).

Sequence Evaluation: The actual evaluation of the assembled sequence is
done via a combination of different measures: a structural distance dstr ,
a GC-content aberration distance dGC and a sequence distance dseq are
transformed into a score, with which the terrain is updated.

The structural distance dstr computation is based on the program
RNAfold of the ViennaRNA-package v2.1.3 (Lorenz et al., 2011). In a first
step RNAfold calculates the minimum free energy (mfe)-structure P sol of
the sequence S.

Given P sol, next a solution dependent target structure PC is composed,
since Cstr allows for explicit and implicit structure constraints. Initially,
PC contains all explicitly requested base pairs from Cstr . In the following,
the handling of lonely base pairs, implicit structure constraint and sequence
constraint contributions are discussed.

During the evaluation, explicitly requested lonely base pairs are
temporarily removed from PC, since they are usually energetically
unfavorable and thus counteract the mfe-based design principle. For their
‘soft’ integration into the design, a distance penalty is added for each lonely
base pair that can not be formed by the current solution sequence S. Lonely
‘2 base pair stacks’ are handled equivalently for the same reason.

The ‘fuzzy’ implicit structure constraint allows for all base pairs that are
within one of its defined regions (see Fig. 1). Thus, all base pairs of the
current solution structure P sol that are confined to such blocks of implicit
structure are temporarily added to the target structure PC.

Finally, in some cases, the sequence constraint Cseq induces base pairs
under certain structural folding context. If both positions Si and Sj of a base
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pair of the current solution (i, j) ∈ P sol are constrained by Cseq , this base
pair is added to the target structure PC.

In a final step, the length-normalized base pair distance dstr between
P sol and the compiled target structure PC is determined.

The GC-aberration dGC between the objective and the actual GC-content
of S is determined by subtracting the actual from the target GC value. Due
to the discrete nature of sequence lengths, it is often not possible to precisely
reach the objective GC-content CGC. Thus, sequence length dependent
correction terms are added to the actual GC value for dGC computation.

The sequence constraint distance dseq encodes the violation of the
sequence constraint Cseq given the current solution sequence S. It reflects
the ratio of sequence positions that do not respect Cseq .

The overall quality score Q of the sequence’s features is the weighted
sum of the inverted distance measures. Thus, lower distances result in higher
quality estimates.

Pheromone Update: Given the quality Q of a solution S, the pheromone
information of the solution-associated edges in the terrain graph is increased
by Q. Hereby, only those edges are rewarded that correspond to positions
where the structure information is identical between the resulting solution
P sol and the target structure PC. In order to limit the memorization
and influence of previous solutions, a global evaporation of pheromone is
applied. According to the evaporation rate ρ, the pheromone information of
all edges is reduced. The pheromone information encodes the compliance
of paths in the terrain with all constraints. This way, the solution sequence
assembly of subsequent ants is tuned towards correct sequence designs, since
the local decisions are based on the combination of pheromone and heuristic
information (see above).

Termination: While the ants walk over the terrain, edges, which have
been involved in good solutions get promoted over those, which have
not contributed to good solutions. This solidifying behavior results in
convergence towards optimal or suboptimal quality in respect to the given
constraints. antaRNA uses three termination criteria to stop the ACO:
maximal number of generated solutions, a termination potential and a reset
potential.

The termination potential is initialized and increased every time
subsequent solutions show a structural distance of zero. As soon as a
termination threshold is exceeded, the algorithm is stopped and the best
solution according to Q is returned.

Another possibility to terminate is based on a maximal number of internal
terrain resets. The terrain and all initial values are reset, if the reset potential
exceeds the reset threshold. The reset potential is increased, if the structural
distance of a current solution is not zero but the GC quality is within a margin
of the momentarily best solution, i.e. dGC ≤ 1.5 ∗ dbestSoFar

GC .

3 DATASETS
The underlaying dataset of this study is an extract from the Rfam
database v11.0 (Burge et al., 2013). A training subset has been
used to evaluate and adjust antaRNA’s parameters. A distinct and
larger test set was used to benchmark and compare antaRNA with
other tools. We evaluated the behavior of the algorithms concerning
different complexities of structure and sequence constraints and
their influence and impact on the solution sequences and their
characteristics.

For each selected Rfam family, structure and sequence
information of conserved positions within the respective Rfam
family’s seed alignment were extracted to define Cstr and Cseq . We
applied the following protocol to derive the dataset.

For each Rfam seed-alignment with at least 20 entries, the shortest
ungapped sequence was selected. Subsequently, the alignment’s
consensus structure was mapped to that sequence. The obtained
structure defines the explicit structure constraint Cstr . No implicit

structural constraints were derived. We further ensured a minimal
structural confinement, i.e. a family was discarded, if the fraction of
base pair forming positions within Cstr was below 20%.

For each position i within such a structure, a sequence constraint
Cseqi was set depending on a minimal conservation ratio MR.
If a nucleotide in the according column of the seed alignment
shows a relative abundance larger than MR, the nucleotide is used
as sequence constraint. Otherwise, the position is unconstrained
(Cseqi = N ). A family-specific MR threshold was used such that
the fraction of Cseq-constrained sequence positions was in the range
of 20 to 30%. The GC-content of the Cseq-constrained positions
was not allowed to exceed 15%, to ensure enough flexibility within
the sequence constraint to reach the targeted GC-values of the
benchmark.

In total, this resulted in 83 derived targets from the Rfam
database. The lengths of the obtained constraints range from
34 to 274 nucleotides with varying constraint complexities. The
training subset contains constraints with lengths not longer than 200
nucleotides and length differences of at least five nucleotides to the
rest of all training set members. The remaining entities define the
test set. The training set contains 20, the test set 63 entities. Further
information about the sets can be found in the (Suppl. Mat.).

4 RESULTS AND DISCUSSION
In order to identify the best default parameter values and to study
their robustness, we investigated antaRNA performance for various
settings using a grid search on the training data set. Within the
grid search we optimized: the weighting factors α and β of
the path weight computation, the evaporation rate ρ, the three
distance weighting factors for solution quality Q calculation, and
the termination parameters (see Suppl. Mat. for details).

For each parameter setting, we designed for each test set family
10 sequences with and without sequence constraint Cseq targeting
three different objective target GC values CGC of 25%, 50% and
75%. The resulting 1,200 sequences (20×10×2×3) were used to
calculated a benchmark score for the parameterization.

The score sums the mean structural distance, the mean GC
aberration and a mean of the normalized runtime, i.e. it is in the
range [0, 3]. The parameter set with the lowest score (0.219) was
chosen as default parameter set for antaRNA and was used for all
following comparisons. The values are listed in the supplementary
material.

4.1 Targeting arbitrary GC-content distributions
The parameter optimization revealed for antaRNA a high precision
concerning targeted GC values while it also robustly fulfills
structural and sequence constraints. Thus, we investigated
antaRNA’s potential to produce pools of sequences, whose GC
values are resembling a user defined distribution rather than a single
value. A possible application is the design of sequences that show
a GC-distribution similar to prototype sequences or the organism of
interest.

Here, the application is exemplified and tested for a uniform
(15-40% GC-content) and a normal distribution (µ = 60%, σ =
6%) and compared to a fixed value (70%) sampling. For each
given GC-content target distribution, a set of individual target GC
values is sampled from the distribution and antaRNA is run for
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Fig. 3. antaRNA high-precision GC-content distribution compliance
Given antaRNA’s precision, it is possible for the first time to design
sequences for arbitrary targeted GC-content distributions. The figure
provides three examples, each comprises 100 designs for a tRNA-like
structure (Suppl. Mat.). The targeted distributions are drawn in gray scale
(left: uniform (within interval 15−40%), middle: gaussian (µ = 60%, σ =

6%)). The 75% target value can be found on the right side. The respective
achieved values are given as histograms: uniform distribution (left/1),
gaussian distribution (middle/2), and single target GC value (right/3).

each. Figure 3 presents the results. In all three cases, the achieved
distributions agree very well with their respective targets. Only the
single target shows a small bias towards lower GC-content values.
Distribution distortions derive from the limited sample size and the
aforementioned length-dependence of achievable GC value (see GC
distance computation).

4.2 Comparison to existing tools
All recent RNA inverse folding tools are able to design sequences
for a given structure with or without sequence constraints. In
contrast to that, RNA-SSD, IncaRNAtion and RNAiFold are, beside
antaRNA, the only known tools so far that can also constrain the GC-
content at the same time. Here, we compare IncaRNAtion, RNAiFold
and antaRNA and benchmark their design quality for various target
GC values with and without sequence constraints using our test
dataset. RNA-SSD is not included into this comparison, since
Reinharz et al. (2013) have shown its inferiority compared to
IncaRNAtion.

Please note, the presented RNAiFold data has been kindly
computed externally by the maintainers of RNAiFold, since a
local installation and application was not possible. antaRNA
and IncaRNAtion have been run locally on the same computer
cluster. Note further, RNAiFold is based on the ViennaRNA-package
v1.8.5. Hence, we used the same version to compute the mfe-
structures in order to evaluate the structural distance dstr of
the corresponding predictions. Both, antaRNA and IncaRNAtion
employ the ViennaRNA-package v2.1.3 that was applied for dstr
evaluation accordingly. Finally, RNAiFold requires the definition of
an allowed range around the targeted GC value, which was set to 2%
to ensure correct designs. Due to these different setups, only limited
comparisons can be made.

For each structural constraint Cstr , three different objective
GC-content target values CGC ∈ {25%, 50%, 75%} have been
addressed in this benchmark, each targeted with and without
sequence constraint Cseq . To illustrate length-dependencies, the test
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Fig. 4. Constraint Compliance Quality summary of the sequences
produced by the programs antaRNA (gray), IncaRNAtion (yellow) and
RNAiFold (blue). The runs have been performed with and without the
respective Rfam sequence constraints Cseq . Different target GC-content
value CGC have been tested (top 75%, middle 50%, bottom 25%). For each
constraint set, 100 sequences have been generated targeting the respective
GC-content. The datasets have been split according to sequence length
categories (L1:1-100; L2: 101-200; L3:201-300). (a) Success rates of
RNAiFold for each setting. (b) Structural distance of the sequences’ mfe
structures to the targeted Rfam family derived RNA secondary structures. (c)
GC-aberrations of the sequences. Reference values are the appointed target
GC values.(d) The mean Shannon-Entropy H of unconstrained sequence
positions indicating design diversity for each program with and without
Cseq .

dataset was separated into length categories (L1:1-100, L2:101-
200, and L3:201-300 nucleotides) for visualization. Each tool was
executed 100 times per constraint set, to enable statistics. Different
time limitations were used: maximal one hour for RNAiFold and 10
minutes for antaRNA/IncaRNAtion per single sequence design.

We observe a length dependency for the runtimes of antaRNA
and IncaRNAtion (see Suppl. Mat.), i.e. longer sequences require
more time, which is expected. The current antaRNA implementation
is about one order of magnitude slower compared to IncaRNAtion.
This might result from the different programming languages used.
antaRNA is completely encoded in Python, while IncaRNAtion uses
the C-based RNAinverse for the time expensive optimization and
only generates seed sequences in Python. A runtime comparison
to RNAiFold is not possible due to the external computations.
When investigating the effect of sequence constraints on runtime,
we observe a target GC dependency. While predictions with low
target GC values (25%) seem to be slightly faster when sequence
constraints are applied, the counter-effect is observed for high GC
target values (75%). For moderate GC-values no effect is found.

We encountered strong differences in the success rate of the
different tools, i.e. the rate of successful design attempts that
produce a solution sequence within the given time limits. Both
antaRNA and IncaRNAtion always provide a solution sequence,
independent from time limits, since they are heuristic optimization
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approaches that successively improve solutions. RNAiFold, in
contrast, is based on constraint programming techniques, which
produce only solutions that completely comply with all given
constraints. Otherwise no solution is produced at all. Furthermore,
solution generation in constraint programming frameworks strongly
depends on the used search heuristics, which directly influence the
runtime behavior. Figure 4a) depicts the limited success rates for
RNAiFold. It becomes clear that some constraint sets seem to be too
confining to enable a sequence design for RNAiFold within one hour.
Notably, for some categories the tool fails completely in its design
attempts.

To evaluate the tools’ structure and sequence compliances, we
compare the individual distributions of structural distances dstr , GC
aberrations dGC and sequence distances dseq .

Figure 4b) summarizes the measured structural distances dstr
for all three tools. If no sequence constraint is applied, all tools
show a very good compliance with the target structure. When
sequence constraints are applied, the tools show different behaviors.
antaRNA still shows dstr medians of 0 deviation; except for the
L3 sequences, where the median is 2 and the upper quartile is
about 4. In comparison, the deviations of IncaRNAtion always
show a median of ∼ 2%, but their upper quartiles vary between
2 − 4%. With increasing target GC values, IncaRNAtion shows
increasing variance in its distributions. RNAiFold also exhibits good
structure compliance in the sequence constrained cases, if solution
sequences have been returned. In the case of CGC = 75% and 50%,
RNAiFold fails to return sequences (Fig. 4d) that fulfill the specified
constraints.

Figure 4c) presents the observed GC aberrations dGC. The
sequences designed by antaRNA show a very good target CGC

compliance (mean |dGC| = 0.02%). Only for the extreme setting
CGC=75% including sequence constraints Cseq , the median dGC
drops to -0.7% and the corresponding lower quartile is at -1.8%.
The results for RNAiFold are all within the allowed 2% variance
around the respective CGC while it slightly deviates in almost all
cases (mean |dGC| = 0.7%).

Almost all IncaRNAtion designs do not fulfill the target CGC

constraint (mean |dGC| = 7.1%). Only one constraint set
(CGC=50%, no Cseq) shows a dGC median of zero. All sets show
wide distributions (interquartile ranges are about 5-8% dGC) and
in most cases the interquartile range does not even come close the
targeted CGC. In extreme cases, the dGC median deviate up to 10%.

The sequence constraints Cseq are completely respected by
antaRNA and RNAiFold. Both only design sequences that totally
comply with the respective Cseq (dseq = 0). The sequences
designed by IncaRNAtion do not always comply with their
constraints (mean dseq = 0.9%; data not shown).

So far, we only studied the constraint compliance of the designed
sequences. In the following, we evaluate the sequence diversity
of the designed sequences. This is an important feature to enable
further successive filtering of the designs, e.g. for experimental use.

To this end, we computed the mean Shannon-Entropy for
each sequence position over all according sequences. Positions
constrained by Cseq have been excluded. The resulting mean
mononucleotide entropy is presented in Fig. 4d) for designs with and
without Cseq . Here, a high entropy implies that for unconstrained
positions, most of the possible sequence combinations have been
used. Low entropy implies a sequence bias, which is a undesired
feature for a design tool. antaRNA shows the highest entropy if no

sequence constraint is applied, followed by IncaRNAtion. This is
swapped in the presence of Cseq , but still very high for both tools.
antaRNA sequences have a mean entropy of 1.95 (of maximally 2) in
the sequence unconstrained setup and 1.72 among Cseq-constrained
sequences. For IncaRNAtion the respective values are 1.87 and
1.77. Thus, both tools produce very diverse sequences. In contrast,
RNAiFold shows a mean entropy of 1.01 in the unconstrained
setup and 0.9 for sequence constrained instances. In general, the
respective entropies decline, if sequence constraints are applied.

A manual inspection of the sequences produced by RNAiFold
revealed stretches of common subsequences, which is depicted by
dinucleotide entropies in Fig. 4d). That is, instead of single positions
the entropy of neighbored position pairs was measured. Again,
IncaRNAtion and antaRNA both show high entropy values (>3
of maximally 4) with and without sequence constraints revealing
the same relations observed for mononucleotide entropy. That is,
both tools show high diversity also concerning dinucleotides. In
contrast, the dinucleotide entropies of RNAiFold range below 2
bits, indicating that the respective sequences have a bias towards
common subsequences. Furthermore, note that the dinucleotide
entropy is in relation even lower compared to the mononucleotide
entropy, which even highlights the observation. We expect this to be
an artifact of the constraint programming framework applied within
RNAiFold.

5 CONCLUSION
Within this work we present antaRNA, which solves the RNA
inverse folding problem for given secondary structures under
additional side constraints using an ant-colony optimization
(ACO) approach. Besides the explicit target structure features,
specific target GC-content values, sequence constraints, and newly
developed implicit structural constraints are incorporated and
presented. Target GC-content constraints allow to request sequences
with a desired specific GC-content or from arbitrary controlled GC-
content distributions, while the latter is unique to antaRNA. The
results show that the tool produces on average sequences that exactly
show the targeted GC-content, even when additional sequence
constraints are enforced. The minimum free energy (mfe) structures
of the designed sequences respect the provided structural constraints
for almost all targets tested. This holds for a broad range of targeted
GC values with and without sequence constraints.

The program was optimized, compared and evaluated on various
sets of constraints derived from the Rfam database. The assessment
revealed the superior quality of antaRNA produced sequences over
IncaRNAtion and RNAiFold. The prime feature of a sequence
and its biological functionality is the structure. Thus, it should
be the central objective for sequence design tools. IncaRNAtion
does not achieve this objective and produced on average high
structural distances in our experiments. While it was tailored
to enable specific GC-content optimization, it also shows poor
performance in fulfilling the targeted GC values. Only its high
sequence diversity partially outperforms other compared methods.
IncaRNAtion applies a two stage-optimization approach that first
produces GC-optimized seed sequences that are subsequently
optimized towards the target structure by RNAinverse. Thus, often
the GC-unaware RNAinverse mfe-structure optimization counters
the GC-optimization.
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In contrast, the sequences designed by RNAiFold and antaRNA
show both very good structural as well as GC compliance. While
qualitative comparable on the level of constraint violation, the tools
show significant differences concerning reliability and sequence
diversity. RNAiFold is not always producing sequence solutions
within the allowed runtime. This might be due to the used
constraint programming techniques and results in missing sequence
designs for many constraint sets. In contrast, antaRNA is based
on ACO and applies a parallel optimization of all constraints.
Thus, it always reports a solution sequence with no qualitative
loss. Furthermore, antaRNA produces more diverse sequence
sets compared to RNAiFold, which shows a trend to non-diverse
subsequences.

Summarizing, the capability of antaRNA to reliably produce
highly diverse sequences for a given structure, coupled with the
precise GC targeting, will help to explore the sequence space for
RNA design problems.

The introduced implicit structure constraints enable the user to
define parts of the structure in a very vague way. This can be of
use when the structural context of a specific design target is less
important as long as it does not interact with the important and
maybe explicitly defined structure domains. The improvement and
application of the ‘fuzzy’ constraint concept (e.g. details about
position or constraint type specific weighting) is a focus of our
ongoing work.

In total, the results are promising and encourage further
work, which will include runtime optimization e.g. based on
parallelization approaches. In addition, the implicit structure
constraint is of great use in future work when modeling multi-
structure constraints or pseudo-knot structures. Furthermore,
improving and developing new internal scoring mechanisms and
evaluation patterns is subject of ongoing work, such that the tool can
also handle more complex input structures and their constraints in an
adequate way. This inevitably results in potentially new parameter
setups for which we have to update our understanding of their
synergistic effects on antaRNA.

6 SUPPLEMENTARY MATERIAL
The supplement material provides formal definitions for the
algorithm, dataset descriptions and additional results of done
comparisons.
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