1	Supplementary:
2	"An archaeal sRNA targeting <i>cis</i> - and <i>trans</i> -encoded mRNAs via two distinct
3	domains"
4	
5	
6	Dominik Jäger ¹ , Sandy R. Pernitzsch ^{1,2} , Andreas Richter ³ , Rolf Backofen ³ , Cynthia M.
7	Sharma ² , and Ruth A. Schmitz ¹
8	
9	¹ Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Am
10	Botanischen Garten 1-9, 24118 Kiel, Germany
11	
12	² Zentrum für Infektionsforschung, Universität Würzburg, Josef Schneider-Str. 2 /Bau
13	D15, 97080 Würzburg, Germany
14	
15	³ Institut für Informatik, Albert-Ludwigs-Universität zu Freiburg, Georges-Koehler-Allee,
16	79110 Freiburg, Germany
17	

2 Figure S1. Northern blot analysis of total RNA of wt and sRNA₁₆₂ mutant strains. RNA was 3 isolated form early exponential phase (OD₆₀₀ of 0.2, lanes 1), mid exponential phase (OD₆₀₀ of 0.5, lanes 2) and 4 stationary phase (OD_{600} of 0.7, lanes 3). (A) Northern blot analysis of sRNA₁₆₂ (oligoprobe) in cells grown on 5 trimethylamine (TMA). (B-C) To discriminate between sRNA₁₆₂ and its homolog sRNA₁₇₁ Northern blot with 6 full length RNA probes against sRNA₁₆₂ (B) and sRNA₁₇₁ (C) were performed. The three 5'-fragments of 7 sRNA₁₆₂ and the primary transcript are indicated by arrows. Cross-hybridization of the sRNA₁₆₂ probe is 8 indicated by an asterisk. The lower panel shows the expression of 5S rRNA of the respective RNA preparation. 9 wt, wild type strain; sRNA₁₆₂ OE, sRNA₁₆₂ overexpressed from pWM321 in wt; and Δ sRNA₁₆₂, chromosomal 10 sRNA₁₆₂ deletion mutant.

11

12 Figure S2. Structure mapping of 5'end labelled sRNA₁₇₁ and proposed secondary structure of 13 sRNA171. (A) 5 nM 5'-end labelled sRNA171 was subjected to RNase T1, lead(II) and RNase A cleavage. The 14 cleavage was performed for 2, 3 or 5 min, respectively. Lane OH: alkaline hydrolysis laddar. Lane T1: RNase 15 T1 laddar under denaturing conditions. Lane A: RNase A ladder. The position of the cleaved G's is given on the 16 left of the gel. Lane C: untreated sRNA₁₇₁. The approximate positions of stem-loop structures SL1, SL2 and SL3 17 according to the sRNA₁₇₁ structure shown in (B) are depicted by vertical bars on the right of the gel. (B) 18 Proposed secondary structure of sRNA₁₇₁ determined by in vitro structure mapping. Cleavages according to (A) 19 are indicated by blue circles for RNase T1 cleavage under native, by red squares for native RNase A cleavage 20 and by black arrows for native lead(II) cleavage.

21

Figure S3. Hammerhead ribozyme fusion of sRNA₁₆₂. (A) A DNA template for T7 polymerase was synthesized with the T7 promotor fused to an artificial hammerhead ribozyme sequence followed by sRNA₁₆₂ sequence. (B) Predicted folding into the ribozyme shape of the DNA template after transcription. The unpaired C between stem loop (SL) 1 and SL3 represents the autocatalytic cleavage site. Folding was predicted by RNAfold (83). (C) 6% denaturing PAA gel of the in vitro transcription reaction. The arrows indicate the respective products. SL, stem loop; HH, hammerhead ribozyme; M, RNA ladder.

28

Figure S4. Gel retardation assays of $sRNA_{162}$ or derivates with mRNA MM2440-41 or compensatory mutants. Electrophoretic mobility shift assays were performed using approximately 5 nM of radioactively 5'end labelled $sRNA_{162}$ or a mutated derivates. The reactions were performed as described in Materials and Methods with increasing concentrations of unlabelled (m)RNA as indicated (and depicted in Fig.
 3) from 0 to 2 µM. After 15 min incubation, samples were run on a native 6% PAA gel. An autoradiograph of
 the gels is shown.

4

- 5 Figure S5. Growth of sRNA₁₆₂ mutant strains. Growth of wt, wt/pWM321 (plasmid control), sRNA₁₆₂
 6 overexpressed from pWM321 in wt (sRNA₁₆₂ OE) and sRNA₁₆₂ deletion mutant (ΔsRNA₁₆₂).
- 7

8 Figure S6. Operon structure and differential expression of methyltransferases in *M. mazei*.
9 Differentially expressed genes are indicated in light or dark grey for mRNA levels detected by microarray- or
10 qRT-PCR analysis, respectively. Cells were grown with methanol as sole carbon and energy source to mid
11 exponential phase.

12

Figure S7. Gel retardation assays of sRNA₁₆₂ or sRNA₁₇₁ with MM2440-41_{LONG}, MM2442 or MM2446 mRNA. Electrophoretic mobility shift assays were performed using approximately 5 nM of radioactively 5'end labelled sRNA₁₆₂ (or a /mutated derviate) and sRNA₁₇₁. The reactions were performed as described in Materials and Methods with increasing concentrations of unlabelled MM2440-41 (E), MM2442 (A-C, F) or MM2446 mRNA (H & G) from 0 to 2 μ M After 15 min incubation, samples were run on a native 6% PAA gel. An autoradiograph of the gels is shown.

19

Figure S8. Identification of sRNA₁₆₂ binding sites of MM2442 mRNAs by *in vitro* probing. (A) 5 nM 5'-end labelled MM2442 mRNA was subjected to RNase T1, lead(II) and RNase A cleavage. The cleavage was performed for 2, 3 or 5 min, respectively. Lane OH: alkaline hydrolysis laddar. Lane T1: RNase T1 laddar under denaturing conditions. Lane A: RNase A ladder. The position of the cleaved G's is given on the left of the gel. (B) 5 nM 5'-end labelled MM2442 mRNA was subjected lead(II) cleavage in the absence (-) or presence (+) of approximately 2μ M of cold sRNA₁₆₂ RNA. The cleavage was performed for 2, 3 or 5 min, respectively.

- 27
- 28

Figure S9. Characterization of sRNA₁₇₁. (A) Genomic context of sRNA₁₇₁. (B) Promotor and terminator
region of sRNA₁₇₁. The 5'-end (+1) of sRNA₁₇₁ was determined by 5'-RLM RACE, as well as the 3'-end (*) by
3'-RACE analysis. (C) IntaRNA predictions of sRNA₁₇₁ interactions with MM2440-41, MM2442 and
MM2446. Additionally the predicted interaction for sRNA₁₆₂ and MM2446 is shown (C lower right panel). (DG) EMSA experiemnts were performed as described. Here, ~5 nM 5'end-labelled target mRNA (D) MM244041; (E), MM2446; (F & G), MM2446 were incubated with increasing amounts of sRNA₁₇₁ (D-F) or sRNA₁₆₂
(G). The respective autoradiographs of the gels are shown.

9

10 Figure S10. Genomic context of sRNA₁₆₂ and its homologs in *M. mazei* and related 11 *Methanosarcina spec.*. The locus encoding sRNA₁₆₂ and its homologs is depicted in *M. mazei* and its close 12 relatives *M. actetivorans* and *M. barkeri*. Unless otherwise stated, the respective colour codes indicate 13 functional conservation of the genes. Red flags specify potential sRNA₁₆₂ (homolog) binding sites.

14

15 Figure S11. The 5'UTR of MM2442 potentially encodes for two small peptides. The promotor 16 region and selected parts of MM2442 are depicted. The proposed ribosome binding site (RBS) is indicated in 17 bold letters, whereas the binding site of sRNA₁₆₂ (sRNA₁₇₁) is boxed. Below, the amino acid sequence of the 18 potential ORFs is shown. TLS, translational start site.

19

3 Table S1. Strains and plasmids used in this study

Strain/ plasmid	Genotype/description	Source/reference	
M. mazei strain Göl Wild type		DSM7 No. 3647	
M mazei*	potential cell wall mutant	(37)	
M mazei AsRNA.	M mazei* AsRNA pac purR	This study	
F coli DH5a	general clonig strain	(84)	
$E coli \lambda pir IM109$	general clonnig strain	(74)	
	general cioning stam	(/-)	
Plasmids			
pBluescript SK ⁺	General cloning vector	Stratagene, La Jolla, US	
pCR4-TOPO	General cloning vector for PCR products	Invitrogen, Darmstadt, GER	
pMCL210	General cloning vector for PCR products		
pRS474	pWM321 ({Metcalf, 1997 #53}) containing sRNA ₁₆₂ (IGR MM2441 – MM2442)	This study	
pRS648	pBluescript SK+ containing ~ 1 kbp upstream fragment of sRNA ₁₆₂	This study	
pRS649	pBluescript SK+ containing ~ 1 kbp downstream fragment of sRNA ₁₆₂	This study	
pRS650	pBluescript SK+ containing up- and downstream fragments with pac-cassette replacing sRNA162 to construct chromosomal ΔsRNA162	This study	
pRS765	pCR4-TOPO containing sRNA162 under the control of the T7 promoter	This study	
pRS766	pCR4-TOPO containing sRNA162∆63-88 under the control of the T7 promoter	This study	
pRS699	pCR4-TOPO containing sRNA ₁₆₂ (IGR MM2441 –MM2442)	This study	
pRS700	pCR4-TOPO containing 3' end of sRNA162 (Δ 5')	This study	
pRS701	3' end of sRNA162 (Δ 5') in pWM321	This study	
pRS702	pCR4-TOPO containing M1 mutant of sRNA162	This study	
pRS703	M1 mutant of sRNA162 in pWM321	This study	
pRS704	pCR4-TOPO containing M2 mutant of sRNA162	This study	
pRS705	M2 mutant of sRNA162 in pWM321	This study	
pRS706	pCR4-TOPO containing M3 mutant of sRNA162	This study	
pRS707	M3 mutant of sRNA162 in PWM321	This study	
pRS708	pCR4-TOPO containing 5' end of sRNA162 (Δ 3')	This study	
pRS709	5' end of sRNA162 (Δ 3') in pWM321	This study	
pRS767	pCR4-TOPO containing MM2440-41 under the control of the T7 promoter	This study	
pRS768	pCR4-TOPO containing MM2440-41 compensatory M1 mutant under the control of the T7 promoter	This study	
pRS769	pCR4-TOPO containing MM2440-41 compensatory M2 mutant under the control of the T7 promoter	This study	
pWM321	oriR6K, pC2A replicon, pur ^R , bla ^R	(38)	
pRS207 Pac-cassette in pBluescrint SK+ (37)		(37)	

Table S2. Oligonucleotides used in this study

Designation	Sequence (5' → 3')	used for
Mutant construction		
s162-XhoI.for	CAT TAG CTC GAG ACA TTC CCT TTA ACT GAT C	Construction sRNA162- overexpression
s162-KpnI.rev	GAA TTC GGT ACC CAA CTC CAC TTG CAG TG	Construction sRNA162- overexpression
s162 Del1 XhoI	TTT CGC AAT ACT CGA GTT C	construction AsRNA162::pac
s162 Del2 EcoRI	CTT CGA TGT TTG GGA ATT CC	construction AsRNA162::pac
s162 Del3 EcoRI	GCC CAA AGG CAA GAA TTC AA	construction AsRNA162::pac
s162 Del4 XbaI	GTT TCT AGA TAT CCA TAT GTT CC	construction AsRNA162::pac
s162-Mut1-for	CTG CAG AAC ATT CCG TGA TTT GAA AAC CC	construction of sRNA162 M1
s162-Mut1-rev	GGG TTT TCA AAT CAC GGA ATG TTC TGC AG	construction of sRNA162 M1
s162-Mut2-for	TCC CAC ATT TGA AAA CCC GTA AAT CCT TTA AAA GTT	construction of sRNA162
s162-Mut2-rev	AAA CTT TTA AAG GAT TTA CGG GTT TTC AAA TGT GGG	construction of sRNA162
s162-Mut3-for	TTT TTT TTT TTT TTA AAA GTT TTA TGT GTA AAC	construction of sRNA162
s162-Mut3-rev	AAA AAA AAA AAA AAG GGA ATG TTC TGC	construction of sRNA162
s162-Mut4-for	GAA TTC GGT ACC CAA CTC CAC TTG CAG TG	construction of $\Delta 3'$ end of sPNA 162
s162-Mut4-rev	TTT CTC GAG TGG GAA TGT TCT GCA GGA TTC	construction of $\Delta 3'$ end of PNA 162
s162-Mut5-for	AGA AAC AAA TTA CTT TAA AGC TAT TTT AAG	construction of $\Delta 5^{\circ}$ end of
s162-Mut5-rev	AT TTG AAA ACC CCA TAA TCC TT	construction of $\Delta 5^{\circ}$ end of
2441-com_Mut1for	GGA ATC GGT TAC ACG AAC CGA GGA CTA	construction of
2441-com_Mut1rev	TAG TCC TCG GTT CGT GTA ACC GAT TCC	construction of
2441-com_Mut2for	AAG CTG GGA GTT CAA GGT TTT ACG GGA ATC	construction of T7::MM2440-41 M2
2441-com_Mut2rev	GAT TCC CGT AAA ACC TTG AAC TCC CAG CTT	construction of T7::MM2440-41 M2
Northern blot analysis		
s162-NB	TGCCGGATATCTGACCTGGTC	Probe against sRNA162
s171-NB	GGA TTA TGA GTT TTT TGA ATG TGG	Probe against sRNA171
asPs162 for	TGC CTT TGG GCA CGC AGG ATT CAG GG	generate antisense full length riboprobe against sRNA162
asPs162 rev	GAA ATT AAT ACG ACT CAC TAT AGG GTA GCT TCT GTG TAA G	generate antisense full length riboprobe against
asPs171 for	TGC CTT CGG GTA TGC AGG ATT CAG GGG	generate antisense full length riboprobe against
asPs171 rev	GAA ATT AAT ACG ACT CAC TAT AGG GTA GCT TCT GTG TAA G	generate antisense full length riboprobe against sRNA171
RACE-experiments		
5'-RACE 2441	GTA TTC TTC TCT TAT GCC TGA TTG TTT GAG AGT TTA	5'end determination
3'-RACE 2441 #2	CAC GCA GGA TTC AGG GGG CTC	3'end determination
5'-2441-RLM-out	GGGCCAGCCACAGGAGGAAC	5'end determination
5'-2441-RLM-in	GAAGCTCCAGATTGATCGCTCGG	5'end determination

		MM2442
5'-RLM 2446-out	CCC TTG GAA ATT CCA ATC TCA CGC GC	5'end determination MM2446
5'-RLM 2446-in	GGA CTG TCC TCC TGT TCA AGC CAG	5'end determination MM2446
5'-RLM-2442-out	cCC CGT TGT CCA CAA CTT GTG	5'end determination MM2446
5'-RLM-2442-in	CTG CAG ACC CAT CTT CCA GTG	5'end determination MM2446
Quantitative RT-PCR		Concerned protein
MM002110F.ft		Conserved protein
MM00211eV.It		Transcriptional regulator
MM0345rev rt	CCT TTC TAA CAG CTG TTC CGG	Transcriptional regulator
MM0339for rt	GGC AAA CCG ACC TCT GGA TAT	L sm-like protein
MM0339rev.rt	ACC GCG AAT AAC GAC ACT GCT	Lsm-like protein
MM1138for.rt	AGC GCC CTT GGC ACT ATA GAA	Glycosyltransferase
MM1138rev.rt	TTT CCG TAT CCA CGC CGT TAG	Glycosyltransferase
MM1438for.rt/	GGG CTT GTG TCC AGC ATA AAC	mtmC1 – MMA corrinoid protein 1
MM1438rev.rt/	CCT CCG TTT CTG TCG AAA ACG	mtmC1 – MMA corrinoid protein 1
MM1688for.rt/	CTT ATT CGG AGG TTA CAA CCC TGG	mttB1 – TMA methyltransferase 1
MM1688rev.rt/	GAA TTG CTT TGA GTT CAT CAG TGG	mttB1 – TMA ,methyltransferase 1
MM1732for.rt	GGA CGC GAA TAT TTC CTG ACG	Transcriptional regulator, ArsR-family
MM1732rev.rt	ATG CCT CGA TCC TTG AGG ACT	Transcriptional regulator, ArsR-family
MM2049for.rt/	CCT GAA GCA AGG CAG ATC TTC	mttB2 – TMA methyltransferase 2
MM2049rev.rt/	CAG AGA ACG AAC CTT GAA GGC	mttB2 – TMA methyltransferase 2
MM2052for.rt/	TGG GGG TTG AGA ATG ACA AGC	mtbC2 – DMA corriniod protein 2
MM2052rev.rt/	AGG CTC CAT AAC CTG CTT TGC	mtbC2 – DMA corriniod protein 2
MM2230for.rt	TCC TTG CCT GTG AAC CGT TGA	transposase
MM2230rev.rt	AGA GAG ATC CAG GTA TGT GCG	transposase
MM2339for.rt	GAG GAT TCC GGG CTC CAA AAA	EIF 1A
MM2339rev.rt	GGT ACC CTT TGC GTT CAA GCC	EIF IA
Mm244110r.rt		ArsR-family
Mm2441rev.rt		ArsR-family
MM2888for.rt	AAC TCC ACG GCA GCA TTG GAA	endonuclease
MM2888rev.rt	TIT CCG GGG AAA GTG AGT CCA	endonuclease
MM319/for.rt	GAC TETTET CETTTA TGC CGG	Hypothetical protein
MM319/rev.rt		Hypothetical protein
MM333410F.FU		corrinoidp 2
MM3334rev.rt/	AGA GGG GAA ATT CCT GCA TC	mtmC2 – MMA corrinoidp 2
MM1621for.rt	TAG GAG GTT TTC TCG GAA GCG	Cobalamin biosyntehsis protein CobW
MM1621rev.rt	AAG CGT ATC TCC ATC AAG CCC	Cobalamin biosyntehsis protein CobW
MM2181for.rt	GCC TCC ATG AGA AGA ATG CTC	Fructose-1,6- bisphosphatase
MM2181rev.rt	CTT CAA GGT CTC CAA CTC CTG	Fructose-1,6- bisphosphatase
MM1215for.rt	TCA AGA GCG AGG GCA TGA ATG	Hexulose-6-phosphat synthase
MM1215.for.rt	GCA CTA CCG AGA ACA ATA GCC	Hexulose-6-phosphat synthase
MM2442-qRT-for	GGA GTG GTG AAA AAC CTG CAC A	hypothetical protein
MM2442-qRT-rev	AGC TCA TTC GCA ACA CAG GTC	hypothetical protein
MM2440 aPT for		hypothetical protein
MM2449-gRT-rev		hypothetical protein
MM2440-aRT-for	AGT TTC AGC CGA AGA GGA ATA	conserved protein
MM2440-qRT-rev	AGT TAT GTA CTG GGT TGA CAG	conserved protein

MM2446-qRT-for	GAA TAC ATG TCA GTC CCT GG	transcriptional regulator, ArsR family
MM2446-qRT-rev	TAA ACG CTA TCT CGG TTA GG	transcriptional regulator, ArsR family
Shift assay		
T7-2440-41-for	GTTT TTT TAA TAC GAC TCA CTA TAG GGA AAA GAT	In vitro transcription
	GGA A	MM2440-2441
T7-2440-41-rev1	CTT ACA TAG TGA GTT TTA GTC TGT CCT TGA G	In vitro transcription MM2440
T7-2440-41-rev2	GTG CTG GTA AAG ATT AAA TGT GTA GTC CTC	In vitro transcription MM2440-2441
T7-HH-s162-for	GAA ATT AAT ACG ACT CAC TAT AGG GTT TGG CAC TG	In vitro transcription sRNA162
sRNA162_T7.rev	TAG CTT CTG TGT AAG CTC TCA AAC TAT TTT TCT GTT	In vitro transcription sRNA162
T7- <u>s162</u> -short-for	GAA ATT AAT ACG ACT CAC TAT AGG GCA TTT GAA AAC CC	In vitro transcription sRNA162
T7::sRNA171-for	AAT TAA TAC GAC TCA CTA TAG GGC CTT CGG GTA T	In vitro transcription sRNA171
T7::sRNA171-rev	TAG CTT CTG TGT AAG CTC TCA AAT TAT TTT TCT G	In vitro transcription sRNA171
T7::2442-L-for	TAG ATT AAT ACG ACT CAC TAT AGG GAA TGT TCT GCA	In vitro transcription MM2442
T3-MM2446-for	GTT TTT TTA ATT AAC CCT CAC TAA AGG GTT CTG GTG CAA	In vitro transcription MM2446
T3-MM2446-rev	GGA CTG TCC TCC TGT TCA AGC CAG	In vitro transcription MM2446

2 3 4 **Table S3.** Different transcript levels of M. mazei sRNA₁₆₂-overexpressing mutant vs. M. mazei wild type strain during growth on methanol as sole carbon and engergy source identified by global expression profiling using genomic microarrays (45, 41)

Orf ID ¹	Gene /Protein designation ¹	fold regulation ² (mutant vs. wt)
	Energy and constructional metabolism	
MM2313 F ₄₂₀ -nonreducing hydrogenase I, large subunit		0.02 ± 0.01
MM0756	6-pyruvoyltetrahydropterin synthase	0.14 ± 0.00
MM1271	Fructose-bisphosphate aldolase	0.15 ± 0.00
MM1273	3-dehydroquinate synthase	0.15 ± 0.00
MM0626	Nicotinamide-nucleotide adenylyltransferase	0.15 ± 0.07
MM0964	Glutamine synthetase	0.16 ± 0.06
MM1272	3-dehydroquinate synthase	0.18 ± 0.01
MM2487	F420-H2 dehydrogenase, subunit H	0.18 ± 0.12
MM0299	Glycose-1-phosphate thymidylyltransferase	0.18 ± 0.15
MM1275	Prephenate dehydrogenase	0.19 ± 0.00
MM1274	Shikimate 5-dehydrogenase	0.19 ± 0.01
MM0627	F420-H2 dehydrogenase, subunit FpoF	0.19 ± 0.12
MM2488	F420-H2 dehydrogenase, subunit D	0.19 ± 0.13
MM2481	F420-H2 dehydrogenase, subunit M	0.20 ± 0.08
MM1544	Tetrahydromethanopterin S-methyltransferase, subunit B	0.23 ± 0.01
MM2093	Indolepyruvate oxidoreductase	0.23 ± 0.02
MM1547	Tetrahydromethanopterin S-methyltransferase, subunit E	0.24 ± 0.02
MM0242	Glycerol-3-phosphate cytidylyltransferase	0.25 ± 0.00
MM2321	Ech-hydrogenase	0.25 ± 0.01
MM2480	F420-H2 dehydrogenase, subunit N	0.25 ± 0.07
MM0628	Coenzyme F420-dependent N5-N10 methylen-tetrahydromethanopterin reductase	0.26 ± 0.09
MM2483	F420-H2 dehydrogenase, subunit K	0.26 ± 0.12
MM2322	Ech-hydrogenase	0.27 ± 0.02
MM2479	F420-H2 dehydrogenase, subunit O	0.28 ± 0.10
MM1062	Hydrogenase 4, compound F	0.29 ± 0.01
MM1279	Conserved protein (sugar metabolism)	0.29 ± 0.02
MM1545	Tetrahydromethanopterin S-methyltransferase, subunit C	0.29 ± 0.11
MM1059	Format hydrogen lyase, subunit 3	0.29 ± 0.14
MM1138	Glycosyltransferase	0.30 ± 0.00
MM0409	3-isopropylmalate dehydratase	0.30 ± 0.01
MM1238	3-phosphoshikimate 1-carboxyvinyltransferase	0.30 ± 0.01
MM1219	Fe-S oxidoreductase	0.30 ± 0.04
MM2323	Ech-hydrogenase	0.30 ± 0.14
MM0941	Adenosylosuccinate lyase	0.31 ± 0.00
MM1201	Dihydrodipicolinate synthase	0.31 ± 0.02
MM2320	Ech-hydrogenase	0.31 ± 0.07
MM1543	Tetrahydromethanopterin S-methyltransferase, subunit A	0.31 ± 0.10
MM1567	Molybdenum-formylmethanofuran dehydrogenase	0.31 ± 0.15
MM0855	Phosphoribosyl-aminoimidazol-succino carboxamide synthase	0.33 ± 0.07
MM0966	Glutamate synthase	0.33 ± 0.10

 $^{^{1}}$ as defined (81) 2 Gene induction is represented as the ratio of median. Mean values obtained from 5 microarray experiments that satisfy the criteria defined in Material and Methods are indicated.

MM1602	Cobaltochelatase	0.33 ± 0.15
MM1435	Monomethylamine permease, mtmP1	0.36 ± 0.01
MM2048	Trimethylamine:corrinoid methyltransferase, mttB2 (C-terminal domain)	3.01 ± 1.48
MM0166	Homospermidine synthase	3.09 ± 0.03
MM0514	Nitrogenase iron protein 2 nifH2	3.24 ± 0.13
MM1438	Monomethylamine:corrinoid protein, mtmCl	3.37 ± 1.91
MM1685	CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase	3.63 ± 1.44
MM0689	CO-dehydrogenase/acetyl-CoA synthase, subunit γ	3.85 ± 0.74
MM1692	Conserved protein	3.91 ± 0.82
MM0686	CO-dehydrogenase/acetyl-CoA synthase, subunit β	3.93 ± 1.29
MM0999	Precorrin-2-C ₂₀ methyltransferase	4.03 ± 4.03
MM0387	Heterodisulfide reductase, subunit HDRA	4.04 ± 0.63
MM2085	CO-dehydrogenase/acetyl-CoA synthase, subunit δ	4.12 ± 0.89
MM0688	CO-dehydrogenase/acetyl-CoA synthase, subunit $\boldsymbol{\delta}$	4.24 ± 0.98
MM2089	CO-dehydrogenase/acetyl-CoA synthase, subunit α	4.26 ± 0.36
MM0134	Sulfopyruvate decarboxylase α-chain	4.29 ± 0.36
MM1737	Heme-biosynthesis protein	4.29 ± 1.69
MM1290	Fe-S oxidoreductase	4.42 ± 0.80
MM1978	Tungsten formylmethanofuran dehydrogenase	4.44 ± 0.22
MM1687	Dimethylamine:corrinoid protein, mtbC1	4.45 ± 0.57
MM2823	Indole-3-glycerol phosphate synthase	4.56 ± 0.31
MM0685	CO-dehydrogenase/acetyl-CoA synthase, subunit $\boldsymbol{\epsilon}$	4.63 ± 1.81
MM3334	Monomethylamine:corrinoid protein, mtmC2	4.64 ± 2.29
MM0388	Heterodisulfide reductase, subunit HDRC	4.76 ± 1.16
MM1025	Thiamine biosynthesis protein, thiC	4.79 ± 0.03
MM0389	Heterodisulfide reductase, subunit HDRB	5.04 ± 0.18
MM2084	Acetyl-CoA decarbonylase/synthase complex, subunit γ	5.20 ± 0.25
MM1437	Monomethylamine: corrinoid methyltransferase, mtmB1 (N-terminal domain)	5.41 ± 0.71
MM2047	Trimethylamine:corrinoid protein, mttC2	5.48 ± 2.85
MM0684	CO-dehydrogenase/acetyl-CoA synthase, subunit α	6.16 ± 0.62
MM0133	Threonine synthase	7.79 ± 0.40
MM1690	Trimethylamine:corrinoid protein, mttCl	8.42 ± 3.09
MM1436	Monomethylamine:corrinoid methyltransferase, mtmB1 (C-terminal domain)	8.51 ± 0.94
MM3336	Monomethylamine:corrinoid methyltransferase, mtmB2 (C-terminal domain)	8.71 ± 2.38
MM1689	Trimethylamine:corrinoid methyltransferase, mttB1 (C-terminal domain)	8.78 ± 3.57
MM2821	Tryptophan synthase, subunit α	8.81 ± 0.18
MM1691	Trimethylamine permease, mttP1	8.93 ± 4.56
MM2049	Trimethylamine:corrinoid methyltransferase, mttB2 (N-terminal domain)	9.27 ± 1.97
MM0687	Nitrogenase iron protein	9.42 ± 0.88
MM1284	2-isopropylmalate synthase	9.80 ± 0.61
MM2963	Dimethylamine:corrinoid methyltransferase, mtbB3 (C-terminal domain)	10.42 ± 4.88
MM3335	Monomethylamine:corrinoid methyltransferase, mtmB2 (N-terminal domain)	10.46 ± 3.50
MM2051	Dimethylamine:corrinoid methyltransferase, mtbB2 (N-terminal domain)	11.57 ± 3.66
MM2962	Dimethylamine:corrinoid methyltransferase, mtbB3 (N-terminal domain)	15.28 ± 2.13
MM2961	Dimethylamine:corrinoid protein, mtbC3	$17.22 \pm 1,06$
MM2820	Anthranilate phosphoribosyltransferase	17.25 ± 2.10
MM2817	Anthranilate synthase, component I	18.28 ± 1.20
MM1693	Dimethylamine:corrinoid methyltransferase, mtbB1 (N-terminal domain)	18.58 ± 0.81
MM2818	Anthranilate synthase, component II	19.71 ± 0.38
MM1694	Dimethylamine:corrinoid methyltransferase, mtbB1 (C-terminal domain)	20.63 ± 4.76

MM2052	Dimethylamine:corrinoid protein, <i>mtbC2</i>	23.89 ± 15.25
MM1688	Trimethylamine:corrinoid methyltransferase, mttB1 (N-terminal domain)	46.54 ±5.19
	Potential regulatory proteins	
MM2441	Transcriptional regulator, ArsR family	0.24 ± 0.01
MM1332	Iron-dependent repressor	3.33 ± 0.22
MM1075	Putative regulatory protein	5.64 ± 0.21
MM3117	Transcriptional regulator, MarR family	7.85 ± 0.88
MM0732	Nitrogen regulatory protein II	7.95 ± 0.83
	Transport/Membrane proteins	
MM2305	Sodium/proline symporter	0.16 ± 0.01
MM3230	Phosphate permease	0.16 ± 0.03
MM3262	Aminoacid transport protein	0.23 ± 0.02
MM0002	Dipeptide ABC transporter-binding protein	0.23 ± 0.07
MM2576	Ferrous iron transport protein	0.33 ± 0.02
MM1553	Transporter, RND-superfamily	0.33 ± 0.07
MM0576	Phosphate transport system protein phoU	3.09 ± 0.21
MM2894	ABC transporter, ATP-binding protein	3.25 ± 0.67
MM0570	ABC transporter ATP-binding protein	3.26 ± 1.34
MM2457	Dipeptide/oligopeptide transporter, permease protein	3.29 ± 0.06
MM2459	Methyltransferases	3.34 ± 0.27
MM2387	Cobalt transport ATP binding protein, cbiO	3.34 ± 0.35
MM2833	ABC transporter, ATP-binding protein	3.70 ± 0.11
MM0834	Na ⁺ /H ⁺ antiporter	3.79 ± 4.24
MM2455	ABC transporter, ATP-binding protein	4.53 ± 0.23
MM2458	Dipeptide/oligopeptide transporter, permease protein	5.34 ± 0.25
MM2460	Dipeptide/oligopeptide-binding protein	5.77 ± 0.06
MM2456	Dipeptide/oligopeptide transporter, ATP-binding protein	6.45 ± 0.25
MM2388	Colbalt transport protein, chiQ	7.42 ± 0.31
	Diverse	
MM2626	DNA-directed RNA polymerase	0.20 ± 0.01
MM0077	Icc protein	0.21 ± 0.11
MM2339	Translation initiation factor 1A	0.23 ± 0.05
MM2715	GTP-binding protein	0.24 ± 0.01
MM2268	Transcription elongation factor NusA-like protein	0.32 ± 0.00
MM2656	Peptidyl-prolyl cis-trans isomerase	0.32 ± 0.04
MM0190	DNA helicase I	3.01 ± 0.16
MM1306	HTH DNA-binding protein	3.03 ± 0.22
MM2584	Sec-independent protein translocase, protein tatA	3.51 ± 0.21
MM1362	Putative aliphatic sulfonate-precursor protein	3.79 ± 0.14

Transposase

DNA-directed RNA polymerase I, II and III, 7.3 kDa polypeptide

Serine/threonine protein phosphatase

DinF protein

Small heat shock protein

Protease HTP

ATP-dependent protease L

Conserved and hypothetical proteins

MM3037

MM2338

MM0102

MM3194

MM0483

MM1236

MM3118

11

 3.79 ± 2.86

 3.84 ± 0.12

 4.67 ± 4.98

 4.81 ± 0.02

 11.94 ± 0.59

 13.51 ± 0.27

14. 94 ± 0.68

 0.13 ± 0.00

MM0804	Hypothetical ATP-binding protein	0.13 ± 0.01
MM0754	Hypothetical protein	0.14 ± 0.00
MM0021	Conserved protein	
MM1551	Hypothetical protein	0.20 ± 0.03
MM2531	Hypothetical protein	0.21 ± 0.01
MM0978	Hypothetical protein	0.22 ± 0.04
MM0758	MM0758 Hypothetical protein	
MM1929	MM1929 Hypothetical protein	
MM2182	Hypothetical protein	0.25 ± 0.02
MM0563	Hypothetical protein	0.25 ± 0.03
MM0229	Hypothetical protein	0.25 ± 0.08
MM1492	Hypothetical protein	0.26 ± 0.01
MM0827	Hypothetical protein	0.27 ± 0.00
MM0423	Hypothetical protein	0.27 ± 0.04
MM1433	Hypothetical protein	0.27 ± 0.04
MM0562	Hypothetical protein	0.28 ± 0.02
MM3130	Hypothetical protein	0.29 ± 0.01
MM3184	Conserved protein	0.29 ± 0.01
MM1676	Hypothetical protein	0.29 ± 0.02
MM0883	Hypothetical protein	0.29 ± 0.03
MM0774	Hypothetical protein	0.29 ± 0.04
MM0924	Conserved protein	0.29 ± 0.12
MM0386	Hypothetical protein	0.30 ± 0.02
MM1302	Hypothetical protein	0.30 ± 0.02
MM1793	Hypothetical protein	0.30 ± 0.02
MM2564 Hypothetical protein		0.30 ± 0.02
MM1125 Conserved protein		0.31 ± 0.00
MM0842	MM0842 Conserved protein	
MM3345	MM3345 Hypothetical protein	
MM1311	MM1311 Hypothetical protein	
MM1116	MM1116 Hypothetical protein	
MM1204	MM1204 Hypothetical protein	
MM3306	Hypothetical protein	0.33 ± 0.09
MM1675	Hypothetical protein	0.34 ± 0.01
MM0753	Conserved protein	3.10 ± 1.04
MM2948	Hypothetical protein	3.34 ± 0.20
MM0138	Conserved protein	3.41 ± 0.00
MM3352	Hypothetical proetin	3.41 ± 0.01
MM1818	Conserved protein	3.41 ± 3.92
MM0095	Hypothetical protein	3.46 ± 0.07
MM2119	MM2119 Hypothetical protein	
MM0925	MM0925 Hypothetical protein	
MM3258	MM3258 Hypothetical protein	
MM3193	MM3193 Hypothetical protein	
MM0206	MM0206 Conserved protein	
MM1674	MM1674 Hypothetical protein	
MM0364	MM0364 Hypothetical protein	
MM1294	Hypothetical protein	9.63 ± 0.57
MM3197	Hypothetical protein	10.54 ± 8.20

MM2860	Conserved protein	10.92 ± 14.71
MM0019	Hypothetical protein	14.04 ± 1.56

Table S4. Predicted interactions with $sRNA_{162}$ for ORFs with reduced gene expression upon $sRNA_{162}$ overexpression. Interactions were analyzed using the IntaRNA tool (48). Predicted interaction site positions are given for the mRNA relative to the start codon and for $sRNA_{162}$. The interaction energy includes the interaction site, unfolding energies and the duplex energy.

Target	Interaction site sRNA ₁₆₂	Interaction site target	Interaction energy [kcal/mol]
MM 2441	(63,88)	(-22,4)	-17.56
MM 2339	(61.86)	(3.25)	-10.88
MM 0978	(77.91)	(-7.8)	-9.98
MM 3121	(71.89)	(-11.8)	-9.02
MM ⁻ 1547	(58,90)	(-16,27)	-8,89
MM_0745	(59,102)	(-43,10)	-8,36
MM 2440	(77,84)	(-3,5)	-7,85
MM 1553	(61,89)	(4,42)	-7,61
MM 2527	(119,131)	(-3,8)	-7,58
MM ⁻ 1448	(124,136)	(-42,-30)	-7,54
MM_0339	(76,89)	(-14,-1)	-7,28
MM_0690	(80,88)	(-11,-3)	-7,11
MM 2321	(54,87)	(-15,23)	-7,05
MM 2320	(1,11)	(-47,-37)	-6,72
MM ⁻ 1244	(119,126)	(1,8)	-6,21
MM_3184	(122,131)	(-29,-20)	-5,92
MM_2888	(58,102)	(-51,-7)	-5,89
MM_0716	(122,130)	(-23,-15)	-5,86
MM_0591	(66,74)	(-18,-10)	-5,76
MM_1139	(137,153)	(13,27)	-5,76
MM_1059	(122,134)	(-43,-27)	-5,58
MM_2005	(148,160)	(-41,-29)	-5,45
MM_1242	(119,126)	(4,11)	-4,49
MM_1543	(66,105)	(-36,3)	-4,21
MM_0842	(125,132)	(-20,-13)	-4,15
MM_1140	(130,143)	(-36,-24)	-4,00
MM_3262	(131,138)	(-46,-39)	-3,95
MM_1138	(68,76)	(-38,-30)	-3,52
MM_0804	(24,41)	(4,21)	-3,17
MM_1397	(147,156)	(-24,-15)	-2,96
MM_0542	(65,72)	(7,14)	-2,50
MM_0002	(51,58)	(20,27)	-2,19
MM_0977	(2,9)	(-17,-10)	-1,32
MM_0898	(68,75)	(-28,-21)	-1,20
MM_1545	(49,61)	(-1,11)	-1,02
MM_2230	(155,162)	(-13,-6)	-0,85
MM_0924	(54,79)	(-12,12)	-0,79
MM_0241	(77,100)	(20,48)	-0,47
MM_0021	(69,76)	(3,10)	-0,36
MM_2323	(5,12)	(2,9)	-0,30

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Methanol (MeOH)

Trimethylamin (TMA)

Dimethylamin (DMA)

Monomethylamin (MMA)

BRE TATA box BRS Binding site of sRNA, and s

23 aa peptide LQDSAKFEPSPESCVPKGKKQIL* 27 aa peptide MFCRIQQSLSPPLNPACPKARNKYFKAILR*