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Abstract folding space analysis based on helices
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ABSTRACT

RNA has many pivotal functions especially in the regulation of gene expression by ncRNAs. Identification of their structure is
an important requirement for understanding their function. Structure prediction alone is often insufficient for this task, due to
algorithmic problems, parameter inaccuracies, and biological peculiarities. Among the latter, there are base modifications,
cotranscriptional folding leading to folding traps, and conformational switching as in the case of riboswitches. All these require
more in-depth analysis of the folding space. The major drawback, which all methods have to cope with, is the exponential
growth of the folding space. Therefore, methods are often limited in the sequence length they can analyze, or they make use of
heuristics, sampling, or abstraction. Our approach adopts the abstraction strategy and remedies some problems of existing
methods. We introduce a position-specific abstraction based on helices that we term helix index shapes, or hishapes for short.
Utilizing a dynamic programming framework, we have implemented this abstraction in the program RNAHeliCes. Further-
more, we developed two hishape-based methods, one for energy barrier estimation, called HiPath, and one for abstract
structure comparison, termed HiTed. We demonstrate the superior performance of HiPath compared to other existing methods
and the competitive accuracy of HiTed. RNAHeliCes, together with HiPath and HiTed, are available for download at
http://www.cyanolab.de/software/RNAHeliCes.htm.
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INTRODUCTION

Recent advances in research on RNA have led to a change
in perspective regarding the role of RNA. It becomes
increasingly clear that RNA has many pivotal functions,
especially in the regulation of gene expression by non-
coding RNAs (ncRNAs) and as cis-regulatory RNA ele-
ments. Generally, the correct exertion of an ncRNA’s func-
tion depends on the proper formation of its structure. This
is not a big deal for the RNA in vivo, which usually finds its
native conformation. But for in silico analyses, the folding
process holds a lot of surprises, which renders structure
prediction an error-prone task. Beyond peculiarities of the
folding process, functional characteristics of an ncRNA may
need more elaborate studies than predicting one minimum
free energy (mfe) structure. Bistable RNAs and riboswitches,
for example, can only be found when, in addition to the
optimal structure, suboptimal structures are considered.

It is often useful to analyze the folding space of a
ncRNA as this gives deeper insight into structural properties.

Unfortunately, this does not come without a cost, which is
the complexity and size of the folding space. It grows
exponentially with sequence length and corresponds to a
multidimensional space. Nevertheless, methods exist which
can be used to carry out detailed analyses of the folding
space. Suboptimal structure prediction, with the enumera-
tion of all possible secondary structures, is available with
RNAsubopt (Wuchty et al. 1999). This constitutes the most
basic method for folding space analysis.

The major problem in folding space analysis is to create
relations between the individual structures or shapes. These
relations will then allow for inference of properties of in-
dividual structures. For example, a structure whose neigh-
bors all have higher free energy constitutes a local mini-
mum of the folding space. Important is the notion of
neighborhood that defines the set of structures to which
the candidate structure is compared. Commonly, neigh-
boring structures are those that differ by a single base pair.
Applying this idea to the set of all suboptimal structures
makes it possible to compute all local minima and the saddle
points connecting these. Even more important, it is possible
to compute energy barriers between local minima, which is
equivalent to the energy needed to transform the two
structures into each other. This information is helpful, e.g.,
in detecting folding traps or bistability. An implementation
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is available with Barriers (Flamm et al. 2000, 2002). Unfor-
tunately, due to the exponential growth of the folding space
with sequence length, it is restricted to sequences up to 150 nt.

One solution to this complexity problem is the use of
heuristics, which try to predict the series of intermediate
structures by means of simple rules. Morgan and Higgs
proposed an algorithm (Morgan and Higgs 1998) in which
the structure that contains the fewest ‘‘clashing’’ base pairs
is selected as the next intermediate structure from a set of
neighboring structures. Flamm et al. (2001) extended the
idea by keeping the k best candidates during the con-
struction of a folding pathway (breadth first search, BFS).
Recently, Dotu et al. (2010) proposed RNAtabupath, an
algorithm in which a tabu list, storing recently visited
neighboring structures, is used to rule them out in sub-
sequent steps. A different approach to reducing the complex-
ity in folding space analysis is shape abstraction (Giegerich
et al. 2004). This method provides a means to partition the
folding space into classes of similar structures. Together
with features such as their probabilities, shapes provide an
overview of the folding space. A major drawback of shape
abstraction, as it is implemented so far, is the position in-
dependence of the abstraction mappings. A single hairpin at
the 59 end has the same ‘‘[]’’-shape as one at the 39 end. As
a consequence, shape classes encompass structurally similar
but perhaps functionally unrelated structures. This can only
be overcome by a new abstraction function that we will
present later. In Bogomolov et al. (2010), abstract shapes
were used to guide the path heuristics toward a better
folding pathway.

In addition to the energy barriers separating two struc-
tures, it is also of interest to know their structural similarity.
This is, for instance, the case for riboswitches that need
structurally dissimilar states to exert their function. Further-
more, a high energy barrier may imply a high structural
distance, but the opposite need not hold. As a result, dis-
similar structures might be kinetically connected and, thus,
the equilibrium structure rather ill-defined. If this is not
the case, we might speak of a well-defined structure (space),
as, for example, for microRNA precursors.

The contributions in this manuscript are threefold. First,
we introduce a position-specific abstraction based on helices,
which we term hishapes. In addition to its usage for structure
abstraction, we present its application in computing near-
optimal folding pathways and show that it is superior to
other methods. Last but not least, we define a distance
measure for hishapes that is based on tree editing and present
benchmark results showing its good performance.

RESULTS

Helix-based structure abstraction

In the following, we give an informal presentation of the
concept of hishapes. The formal definitions are given in

Materials and Methods. Any secondary structure can be
broken down into a series of five loop types that are
closed by helices. These loops are hairpin, bulge, internal,
stacking, and multiple loop, denoted as hl, bl, il, sl, and
ml, respectively. For our purpose stacking loops are
special as they only elongate helices and do not introduce
new ones. Thus, a helix can only be of type hl, bl, il, or
ml. The position of a helix in the sequence is defined by
its innermost base pair (i, j), which is the closing base
pair of its corresponding loop. Since we abstract from the
length of a helix, we define the helix index to be the
central position of the helix, thus (i + j)/2. Helices closed
by different loops may have the same helix index. In
order to represent helices in an unambiguous fashion,
we mark the helix index with m, b, or i for multiple,
bulge, or internal loop, respectively. In order to simplify
the notation of the representation, we do not mark
hairpin loop helices. Using a mapping function p, we
can now map any secondary structure to a helix index
shape (hishape), which is simply a list of helix indices.
Figure 1 illustrates the relationship of helices, helix indices,
and hishapes.

In order to provide different levels of abstraction, we
make use of different mapping functions. ph retains only
hairpin loop helices and ph+ additionally keeps track of
the nesting within multiloops. pm and pa extend ph+

through retaining multiloops and all helices, respectively.
pm, pa, and ph+ preserve the nesting pattern of helices by
embracing helices within multiloops by a pair of brackets
(see Fig. 1B; details are given in Materials and Methods).
The nesting within bulge and internal loops can be inferred
from the order in the hishape, where the right helix is
embedded in its left neighbor. While the number of con-
sidered structural elements increases, the level of abstrac-
tion decreases in the order ph, ph+ , pm, and pa, thus, ph

is the most abstract and pa the least abstract level. In-
herently, a hishape defines a class of similar structures, i.e.,
those with equal hishape. The class member with minimum
free energy is defined as the hishape representative and
termed hishrep.

Hishape space

Let F(s) be the folding space (i.e., the set of all second-
ary structures without pseudoknots) of RNA sequence s
with length n, the hishape space is defined as P(s) =
{px(y)|y 2 F(s)}, where px 2 {ph, ph+, pm, pa}. The size of
the hishape space depends on the choice of the mapping
function. We did empirical measurements on random
sequences for the growth of the hishape space. Based on
these, we derived empirical growth asymptotics. Fitting

the data to the formula b � a � n�
3
2 proposed in Lorenz

et al. (2008) and Nebel and Scheid (2009),we derive the
following numbers: bph

= 1:2311n, aph
= 30:699; bph +

=
1:2746n, aph +

= 12:179; bpm
= 1:3183n, apm

= 5:0103 and
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bpa
= 1:3931n, apa

= 3:4114. For structure (disallowing
lonely base pairs) and shape space (level 5), we derive
bstr = 1.4282n, astr = 4.2366 and bshape = 1.1331n, ashape =
20.700, respectively. As expected, the size of the hishape
space is in between those of structure and shape space. We
did not examine the growth behavior for different nucle-
otide distributions, e.g., GC content, but we expect only
minor effects since the major effect of the GC content will
be on the free energy. Particularly, these differences can be
neglected when comparing hishape, shape, and structure
space.

Spliced leader RNA from Leptomonas collosoma

The spliced leader RNA (SL) from Leptomonas collosoma
(LeCuyer and Crothers 1993) has two alternating structures
differing by only 1.7 kcal/mol in free energy. Figure 2 shows
the results of shape and hishape analysis. While the two
pm hishapes ([27] and [38]) reflect the two experimen-
tally verified conformations of the spliced leader RNA,
RNAshapes yields the same abstract shape ‘‘[]’’ for both
conformations. The probability of the ‘‘[]’’-shape is 0.961912,
and contributions to this come from both conformations.
This example shows that for certain applications, shape
abstraction might be too strong and, perhaps more impor-
tant, shape features, such as the shape probability, are
computed over very diverse, rather than similar, structures.
Conversely, hishapes hold position-specific structure in-
formation. In this way, a more fine-
grained overview of the structure space
can be obtained. The probabilities of
the two conformations are 0.897904
and 0.063473 and are in good agree-
ment with the bistable character of this
RNA.

Performance

We measured run time and memory consumption for
RNAHeliCes, RNAshapes (Steffen et al. 2006), and RNAfold
(Hofacker et al. 1994). The results are summarized in
Table 1. Overall, RNAfold performs best, followed by
RNAshapes and RNAHeliCes. Setting the results of RNAfold
to 1 gives a run time relationship of 1:20:600 and a mem-
ory consumption relationship of 1:8:50. Reasons for the
comparably long run time of RNAHeliCes are the use
of a more complex grammar, resembling RNAsubopt,
and the use of automatically generated, not manually op-
timized, code. Similar considerations apply for the memory
consumption.

Energy barrier estimation

Important features of the folding space are pathways con-
necting alternative structures. For these pathways, com-
monly the most interesting features are the saddle structure
and its energy, from which the energy barrier can be cal-
culated. Computation of these folding pathways within
our program HiPath follows the idea of a guided path.
Guide points are provided by hishapes, and, in order to
achieve a reasonably fast method, the paths between guide
points are computed heuristically. For this, we chose breadth
first search, which has already been used for pathway
approximation in Flamm et al. (2001). Unlike Morgan-

FIGURE 1. (A) Example secondary structure, (B) properties of its helices, and the resulting hishapes. hl, bl, il, and ml refer to hairpin, bulge,
internal loop, and multiple loop, respectively. The letters m, b, and i appended to helix indices within hishapes indicate the loop type (multiple,
bulge, and internal loop, respectively). Helix indices without suffix represent hairpin loops. Pairs of brackets in a hishape provide nesting
information within multiloops. The structure plot in A was created using VARNA (Darty et al. 2009).

FIGURE 2. The alternating structures of the spliced leader RNA from L. collosoma with their
free energy (E in kcal/mol), hishapes, hishape probabilities (P), and their abstract shapes
(level 5).
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Higgs, BFS keeps the l best intermediate results at each
iteration step, which significantly increases prediction accu-
racy. We provide two methods—one, called HiPath-full,
for predicting energy barriers for all pairs of hishapes, and
the other, named HiPath-pair, for predicting the energy
barrier for a given pair of structures/hishapes.

Full method for barrier estimation

For a complete folding space analysis, we start with com-
puting all hishapes of interest (e.g., all or the k = 100 best).
For all possible pairs, we compute a near-optimal pathway
using BFS (e.g., l = 10) on the hishreps and store its saddle
structure and energy in a matrix. For vicinal hishapes,
i.e., hishapes with similar hishreps, the BFS results can be
expected to be good, but for distant hishapes, they can very
likely be improved. We do this by applying Dijkstra’s
algorithm (Dijkstra 1959) to compute optimal paths based
on the initial results. The improvement is a result of com-
bining short, more accurate paths into long ones. We
applied the HiPath-full procedure to all (N = 3535) pm

hishapes of the SL RNA (56 nt). Results for the 10 best
hishapes are summarized in Table 2. For example, the
pathway from [27] to [38] has an energy barrier of
11.8 kcal/mol. Compared to the exact value from Barriers—
11.1 kcal/mol, our method is 0.7 kcal/mol or z6% wrong.
Another interesting feature can be figured out when look-
ing at the rows for hishapes [27] and [38]. Whenever

hishape [27] is compared to a hishape containing helix
38, the energy barrier is equally high (11.8 kcal/mol),
while it is lower for those hishapes containing helix
27 (at most, 6.7 kcal/mol). For hishape [38], it is vice
versa. Thus, helices 27 and 38 are kinetically incompat-
ible, which nicely reflects the bistable character of this
RNA.

Pairwise barrier approximation

In our results, we empirically found that the number of
hishapes grows exponentially with sequence length. Thus, in
general the full procedure is computationally very expen-
sive. So, how can we improve? Consider the case that we
are only interested in computing the energy barrier for a
certain start and target structure. How can we reasonably
restrict the number of hishapes without loosing analysis
depth? Here, we make use of related hishapes as defined by
Equation 5. Related hishapes are those hishapes where each
hairpin loop helix index is present in the hishape of start
and/or the target structure. They can be computed using
a modified grammar in which a syntactic filter is applied
to the productions for hairpin loops. This filter checks to
see if the hairpin loop is an element of the union of hairpin
loop helix indices of the start and target structure. With this
approach, we compute rigorously all related hishapes in a
very lean and, thus, fast way. For the set of related hishapes,
we apply the same procedure as described above, with the

TABLE 1. Comparison of run time (RT) and memory consumption (M) of RNAHeliCes, RNAshapes, and RNAfold on random sequences of
length 240 to 1200 nt

240 480 720 960 1200

Length (nt) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB)

RNAHeliCes 4.20 30,214 40.11 119,428 137.28 269,912 380.09 486,929 687.98 762,645
RNAshapes 0.13 n.m. 0.94 24,044 4.42 41,582 12.80 65,042 25.47 95,876
RNAfold 0.03 n.m. 0.14 n.m. 0.37 10,280 0.74 12,052 1.31 14,329

Final values represent averages of three independent measurements. (n.m.) Memory consumption could not be measured since the run time
was too short.

TABLE 2. HiPath-full energy barriers in kcal/mol for the 10 best hishapes of SL RNA based on complete enumeration of pm hishapes

[27] [38] [10.5,38] [13,38] [27,49.5] [27,52.5] [11.5,38] [11,38] [27,47.5] [16.5,38]

[27] 11.8 11.8 11.8 4.9 4.0 11.8 11.8 6.7 11.8
[38] 10.1 5.2 2.5 10.1 10.1 3.71 4.9 10.1 4.3
[10.5,38] 8.8 3.9 3.9 8.8 8.8 3.9 3.9 8.8 3.9
[13,38] 8.5 0.9 3.6 8.5 8.5 2.11 3.3 8.5 2.7
[27,49.5] 1.3 8.2 8.2 8.2 1.3 8.2 8.2 3.1 8.2
[27,52.5] 0.0 7.8 7.8 7.8 0.9 7.8 7.8 2.7 7.8
[11.5,38] 7.8 1.41 2.9 1.41 7.8 7.8 2.6 7.8 2.0
[11,38] 7.7 2.5 2.8 2.5 7.7 7.7 2.5 7.7 2.5
[27,47.5] 2.5 7.6 7.6 7.6 2.5 2.5 7.6 7.6 7.6
[16.5,38] 7.3 1.5 2.4 1.5 7.3 7.3 1.5 2.1 7.3
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difference that we use Dijkstra’s algorithm to compute the
optimal path for the user-defined start and target structure/
hishape only.

In order to assess the accuracy of our approximation,
we used data set ‘‘short’’ (see Materials and Methods) to
compare our algorithm to four other methods, namely
Barriers, Morgan-Higgs (MH), BFS with 10 best candi-
dates, and RNAtabupath (Dotu et al. 2010). The results in
Table 3 show that the hishape-based pathway approxima-
tion performs best compared to the other heuristics and
achieves reasonable accuracy when compared with the
exact results from Barriers. The error ranges from 0.78 to
1.72 kcal/mol and is, in all cases, #12%. HiPath was, in
all cases, 4–30 times faster than Barriers.

In order to get an impression of the source of the
inaccuracy of our method, we compared the saddle struc-
tures and hishapes predicted by our method with the
‘‘native’’ ones computed by Barriers (data not shown).
Interestingly, in all cases, the native saddle structure com-
prises helices (hairpin loops) that were not present in the
start or target structure. Thus, the hishape of the native
saddle does not belong to the set of related hishapes. Fur-
thermore, the BFS step of our procedure does not compen-
sate for this error, at least for the cases shown. Overall, it
seems that the energetically most favorable pathway is
more complex than expected. We performed a second
benchmark using the data set ‘‘riboswitches’’ (see Materials
and Methods). The results in Table 4 show that our
algorithm is able to compute better folding pathways in all
cases. We can improve the estimated energy barrier by 0.4–
3.6 kcal/mol or by z1.6 kcal/mol on average.

Performance

The efficiency of our algorithm strongly depends on related
hishape calculation that is carried out by RNAHeliCes. On
a typical sequence, e.g., the lysine riboswitch of lysC from
Bacillus subtilis (233 nt), the run time remains <50 sec. In
order to get a general picture, we measured run time and
memory consumption of HiPath, BFS, and Barriers. The
results are given in Table 5. Barriers produced results within
a reasonable time only for sequences up to 100 nt in length.
BFS is the fastest and least expensive method. HiPath

performs quite well and computes the energy barrier for
two structures of length 500 nt in z6 min, consuming
z340 MB of memory.

Abstract structure comparison

Another feature of interest when analyzing the folding
space of an RNA is structural diversity. For hishapes, i.e.,
hishreps, we can, of course, use existing methods for struc-
ture comparison, and they would benefit from the reduced
number of entities that need to be compared. But why not
design a comparative approach solely based on hishapes?
They are inherently tree-like, and the positional informa-
tion provides reasonable resolution for comparison.

We introduce the hishape-based tree edit distance (HiTed),
which is an extension of the tree edit distance (Shapiro 1988).
Our method extends the tree edit distance for abstract trees
of RNA secondary structures (Shapiro and Zhang 1990).
This representation abstracts from the size of structural
elements and is, thus, closely related to the idea of abstract
shapes. In Shapiro and Zhang (1990), the edit operations—
relabeling, delete, and insert—and a corresponding cost
function for edit operations on abstract trees are defined.

HiTed is based on this scoring scheme for loop/helix
editing and extends it by the positional distance of helices.
The latter is the absolute difference of the helix indices, e.g.,
d(35i, 45i) = |35 – 45| = 10. The two distance measures are
combined using a weighting factor l as shown in Defini-
tion 6 (Materials and Methods). The initial intention in
the design of HiTed was to have a distance measure for
alternative hishapes of the same sequence. Nevertheless, we
think that HiTed is also suitable for comparing structures/
hishapes of different sequences. In order to assess this and
to analyze the influence of the weighting factor l, we pro-
vide two benchmarks. First, we compare the results for
different l-values, and, second, we compare HiTed with
other structure comparison methods, namely RNAdistance
(Hofacker et al. 1994) and RNAforester (Höchsmann et al.
2003). We do this using the Brasero data set and protocol
(see Materials and Methods). We take the area under the
curve (AUC) values of the ROC plots to visualize the results.
Figure 3 shows how the AUC changes with 0 # l # 32.

TABLE 3. Energy barriers for different sequences, given in kcal/mol

Instance Length MH BFS Tabu HiPath Barriers

Spliced leader RNA (L. collosoma) 56 nt 18.2 13.0 12.9 12.4 (0.3 sec) 11.1 (1.3 sec)
pheST Attenuator (E. coli) 73 nt 19.7 14.95 15.66 14.15 (6.8 sec) 13.37 (16.5 sec)
S15 mRNA leader (E. coli) 74 nt 24.97 19.57 18.2 17.0 (2.6 sec) 15.28 (61.5 sec)
59 UTR of MS2 RNA genome 73 nt 31.9 24.88 24.88 23.3 (9.2 sec) 22.0 (291.9 sec)

(BFS) Breadth first search, (MH) Morgan-Higgs. For HiPath and Barriers, the run time is given in brackets. RNAtabupath was used with 500
iterations. The maxkeep value was 10 for BFS alone, as well as the BFS used within HiPath. HiPath was used with a minimum of 40 hishapes
and at the most abstraction level pm. For Barriers, we used suboptimal structures generated with RNAsubopt in an energy range of 12, 15, 17,
and 24 kcal/mol, respectively, and ‘‘RNA-noLP’’ as the move set.

Helix-based folding space analysis
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Overall, there seems to be no general optimal l-value, but
a range of 0 to 5 seems to be reasonable to achieve reliable
results. For SRP and sRNA, the additional positional dis-
tance introduced by HiTed improves prediction accuracy,
and we achieve the best results with values of 17 and 2,
respectively. Conversely, for the miRNA and tRNA data
sets, the performance decreases with increasing l, and the
optimum is l = 0 for these data sets. One reason for this
might be that the helices occur at quite diverse positions
within the sequences, thus the penalization of the posi-
tional difference decreases performance.

We compare HiTed with RNAdistance and RNAforester.
For HiTed , we chose two different values for l. l = 5

resembles a consensus value based on the previous results,
and l = 0 switches off the positional distance contribu-
tion. The latter is similar to using RNAdistance in the
coarse-grained tree editing mode, the distance measure in-
troduced by Shapiro and Zhang (1990). We refer to this as
RNAdistanceSZ, compared to RNAdistance using default
parameters, i.e., tree editing on full structure represen-
tation. Finally, RNAforester was used once with default
parameters and once without scoring sequence homology
(RNAforesterNOSEQ). Results are shown in Figure 4. In-
terestingly, our abstract and fast comparative analysis of
RNA achieves the second best accuracy for one data set
(SRP) and comparable results for the other data sets. The

TABLE 5. Comparison of run time (RT) and memory consumption (M) of HiPath, BFS (k = 10) and Barriers on pairs of structures from
random sequences of length 100–500 nt

100 200 300 400 500

Length (nt) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB)

HIPATH 0.85 7788 8.07 30,374 65.32 90,298 138.13 177,370 376.13 338,549
BFS 0.02 n.m. 0.10 n.m. 0.18 2308 0.35 3872 0.32 2816
BARRIERS 1439.39 3,366,569 — — — — — — — —

HiPath was used with the same parameters as described in Table 4. For Barriers, we used suboptimal structures below the barrier energy
estimated by HIPATH plus 1 kcal/mol. Final values represent averages of three independent measurements. (n.m.) Memory consumption could
not be measured since the run time was too short, (—) computation did not finish within 3 d.

TABLE 4. Results for energy barrier calculations on riboswitches

Riboswitch Length MH BFS Tabu HiPath Hishape path Energy

Adenine 110 nt 20.9 20.9 20.9 20.5 [27,81]m,start �32.3
B. subtilis [53.5m,(,27,81,)]m �25.1

[40m,(,27,55,),81]m,target �14.8
Adenine 113 nt 10.0 8.2 7.9 6.5 [23,51,87.5]m,start �23.8

V. vulnificus [23,51,87.5]m �23.8
[36m,(,23,51,)]m,target �22

Guanine 148 nt 26.24 24.04 24.04 20.94 [(,22,50,),86.5,125]h+,start �48.9
B. subtilis [(,22,50,),86.5,125]h+ �55.7

[(,22,50,),86.5,]h+,target �27.96
SAM 134 nt 27.2 21.2 17.0 15.5 [26,54.5,83.5,123]h,start �40.7

T. tencongensis [26,54.5,83.5,123]h �46.9
[26,54.5,83.5,107]h,target �25.2

c-di-GMP 124 nt 14.9 11.2 10.4 9.8 [(,25.5,63.5,),116.5]h+,start �42.8
C. desulforudis [(,25.5,63.5,),116.5]h+ �51.4

[25.5,63.5,94.5,116.5]h+ �49.4
[(,(,25.5,63.5,94.5,),116.5,)]h+ �45.3
[25.5,94.5]h+,target �33.7

Lysine 233 nt 16.3 12.5 11.0 10.2 [45,99,128,152.5,191,221]h,start �68.36
B. subtilis [45,99,128,152.5,191,221]h �71.66

[45,99,128,152.5,191]h �68.96
[45,99,128,152.5,191]h,target �58.16

TPP 185 nt 28.6 25.2 27.8 21.6 [15,48,69,101.5,137.5,170.5]h,start �54.7
B. subtilis [48,69,101.5,137.5]h �48.51

[48,69,96.5,140]h,target �49.2

(BFS) Breadth first search, (MH) Morgan-Higgs, (tabu) RNAtabupath, which was used with 500 iterations. The maxkeep value was 10 for BFS
alone, as well as the BFS used within HiPath. HiPath was used with a minimum of 20 hishapes and at the most abstraction level pm. Energy
barriers are given in kcal/mol.
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SRP data set seems to be tricky, since, for all three tools, the
variant that takes more information into account performs
better. The opposite situation appears for the miRNA data
set. For this data set, only RNAforestershows good perfor-
mance and the other methods perform rather poorly. Here,
one reason may lie in the fact that a single hairpin struc-
ture, being the structure of miRNA precursors, is quite
likely to occur in random sequences, thus increasing the
false positive rate. Looking into the noise part of the miRNA
data set shows that this is actually the case. Additionally, the
diversity of the T2 set is large as it contains sequences with
up to 188 nt, while the sequences in R and F2 are at most
87 and 88 nt long, respectively. Albeit HiTed with l = 0 and
RNAdistanceSZ seem conceptually similar, their perfor-
mance differs reasonably. The coarse-grained tree repre-
sentation differs from the hishape tree in that it also models
stacking regions and the external loop, which presumably is
the reason for these differences.

Performance

We compared the run time and memory consumption of
HiTed (l = 5) with RNAdistance and RNAforester. The
results in Table 6 show that HiTed is the fastest but also
the most memory-consuming method. The latter fact is an
implementation issue and can thus be resolved by opti-
mizing the code.

DISCUSSION

In the present paper, we introduce the concept of hishapes,
which is closely related to the idea of abstract shapes.

Briefly, we provide new mapping func-
tions and preserve all functionality of
shape analysis. Among these are search
space reduction by (hi)shape filtering
and probabilistic analysis based on
(hi)shape classes. Compared to abstract
shapes, the major advantage of the new
abstraction is its position-specificity,
which provides a better resolution, espe-
cially for short RNAs. The cost for this
is a slightly increased search space,
which is still much smaller than the
structure space. Nevertheless, the ab-
straction keeps significant features of
the structure space. Although the math-
ematical proof is not yet provided, based
on our preliminary empirical analyses,
we are convinced that hishapes com-
prise all, or at least a significant subset,
depending on the abstraction level, of
local minima of the folding space. Im-
portant features when analyzing the
folding space of RNA are the energy

barriers separating local minima. Their exact computation
is expensive, and thus, several heuristic methods have
been developed to allow for the analysis of long sequences
and also to greater depth. HiPath, our hishape-guided energy
barrier calculation, belongs to these methods and outper-
forms all heuristic methods compared in this manuscript.
Comparing HiPath predictions for short sequences with
exact values computed with Barriers shows that the inaccur-
acy is, in general, z10%. Taking into account the inaccur-
acies of the thermodynamic parameters and that we neglect
kinetic effects, the pathways and hence, the energy barriers
predicted by RNAHeliCes provide reasonable alternatives.

The kinetics of RNA folding will be a major aspect in our
future work on RNAHeliCes. In all abstraction levels we
present, hairpin loops and their associated helices play
a major role. For a helix closed by a hairpin loop, the helix
index corresponds to the center of the closing base pair of
the hairpin loop. The nucleation of the helix, formation
of a hairpin loop, is the rate-limiting step in helix forma-
tion where, according to the master equation, the rate is
dependent on the gain/loss in free energy. Thus, the
thermodynamically most favorable hairpin loop is also
the most likely to be formed first. Such a helix-based
approach for predicting folding kinetics has been presented
by Zhao et al. (2010). Their move set comprises helix
addition, helix deletion, arm-by-arm exchange, and two-
arm by two-arm exchange, which all fit perfectly into the
hishape model. Together with the method for fast energy
barrier computation, hishapes provide a promising candi-
date for kinetic studies.

So far, we have discussed the thermodynamic and
perhaps kinetic capabilities of RNAHeliCes. Commonly,

FIGURE 3. Benchmarking the weight factor l. For each data set, namely SRP, sRNA, miRNA,
and tRNA, the area under the curve (AUC) of the ROC curve with regard to the background
set, either ‘‘viral’’ or ‘‘encode,’’ is plotted for varying l. Note that the SRP data set is provided
containing only ‘‘viral’’ background data.
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also structural characteristics of the folding space are of
interest. For this purpose, we introduced the hishape-based
tree edit distance (HiTed). The performance of HiTed is
comparable to those of other commonly used methods.
This is somewhat surprising, taking into account the abstract
tree representation on which it is based and the somewhat
arbitrary scoring scheme it uses. Probably, the abstraction
helps, at least in some cases, to circumvent pitfalls that the
algorithms working on the full tree representation face.
The scoring scheme likely needs some refinements, which

may also be accompanied by changing the representation
of helix indices. The currently used absolute position will
disturb results when common structures are shifted within
related sequences by insertions or elongated 59 UTRs. Here,
for example, relative positional values might be better suited.
Additionally, choosing a reasonable value for parameter
l is important in achieving optimal results. A good choice
depends on various factors, such as sequence similarity,
expected structural diversity, and the aim of the analysis.
Therefore, it is difficult to provide a rule of thumb, but

FIGURE 4. ROC plots comparing HiTed, RNAdistance, and RNAforester on data sets SRP (A), sRNA (B), miRNA (C), and tRNA (D). The noise
data used in all four cases are random genome segments from viral genomes. RNAdistance was used with default parameters (tree edit distance on
full structure representation) and with coarse-grained tree edit distance (Shapiro and Zhang 1990) RNAdistanceSZ. RNAforester was used with
default parameters and without scoring sequence similarity (RNAforesternoseq). HiTed was used with the indicated l-values.
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comparing the results for different values of l should help
in this process.

A combination of the methods presented might include
the idea of predicting conformational switching followed
by paRNAss. Here, a conformational switch is characterized
by the existence of two local minima that are structurally
dissimilar and separated by a reasonable energy barrier.
Furthermore, RNAHeliCes and HiTed might be used for
the identification of common structures of two or more
RNAs. This would provide an alternative to the prediction
of consensus shapes (Reeder and Giegerich 2005).

Altogether, we believe that hishape-based abstraction
provides a valuable tool for various applications in RNA
secondary structure analysis. Improvements may be achieved
for run time and memory usage by manual optimizations
of the code generated by the GAP compiler. On the con-
ceptual side, modified abstractions based on other helix
features, e.g., outermost base pair, may be useful and
extend the range of applications for our method.

MATERIALS AND METHODS

Defining helix index shapes

In the following, we provide formal definitions for the new ab-
straction based on helix indices. We consider unknotted secondary
structures as defined, for example, in Hofacker et al. (1994).

Definition 1 (helix and helix index)

A helix is a series of stacking base pairs starting with the closing
base pair of a hairpin, bulge, internal, or multiple loop (hl, bl, il, or
ml, respectively). Thus, a helix can be denoted by hL (i, j) where
i and j are the bases of the innermost base pair and L is the loop
type (L 2 {hl, bl, il, ml}). The helix index of a helix hL (i, j) is its
central position, thus

helix index hL i; jð Þð Þ= hi i; jð Þ ð1Þ

hi i; jð Þ= i + jð Þ/2 ð2Þ

Definition 2 (hishape, hishrep, and hishape space)

Any RNA secondary structure can be transformed into a list of
helices H. Using mapping functions ph, ph+, pm, or pa, we can

map H to a list of helix indices which we term hishape (helix index
shape).

H = hL i; jð Þ; hL k; lð Þ; . . .f g; where L 2 hl; bl; il;mlf g ð3Þ

hishapepx
Hð Þ= px hL i;jð Þ

� �
;px hL k;lð Þ
� �

; . . .g;
�

where px 2 ph;ph + ;pm;paf g ð4Þ

ph and ph+ retain only hairpin loop helices, while pm and pa

additionally retain multiloop and all helices, respectively.
Except for ph, all abstractions preserve the nesting pattern of
helices by embracing helices within multiloops by a pair of
brackets. Note that the mapping defined in Equation 4 does not
ensure the correct nesting of helices by itself. This has to be
achieved via the correct evaluation order within the algorithm,
which is discussed in Materials and Methods. For pm and pa,
hishapes may be ambiguous since multiloop and symmetric
internal loop helices can have helix indices equal to their
enclosed helices. Therefore, the letter ‘‘m’’ is attached to the
end of helix indices derived from hml(i, j) in pm as well as in pa,
while the letter ‘‘b’’ denotes helix indices derived from hbl(i, j),
and the letter ‘‘i’’ denotes helix indices derived from hil(i, j)
in pa.

Definition 3 (Related hishapes)

Given two hishapes H1 and H2 in an arbitrary abstraction type,
and let u be a function extracting hairpin loop helix indices,
related hishapes Hr are those satisfying

u Hrð Þ � u H1ð Þ[u H2ð Þ ð5Þ

Implementation

In order to circumvent implementation-specific problems, e.g.,
index errors, and to take advantage of already existing code, we
implemented the algorithms using Bellman’s GAP (Giegerich and
Sauthoff 2011; Sauthoff et al. 2011). Here, a DP algorithm is split
into a grammar and several algebras. The grammar ensures the
correct nesting and juxtaposition of structural elements and, thus,
describes the candidates of the search space, while the algebras
evaluate these candidates. In the case of RNA structure analysis,
algebras for energy minimization, partition function (McCaskill
1990) calculation, and pretty printing of the structure in dot-
bracket-format and others exist. Algebras can be combined using
product operations, which allow complex analyses to be built in

TABLE 6. Comparison of run time (RT) and memory consumption (M) of HiTed with RNAforester and RNAdistance on pairs of structures
from random sequences of up to 3000 nt in length

600 1200 1800 2400 3000

Length (nt) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB) RT (sec) M (kB)

HiTed 0.06 n.m. 0.51 137,564 3.13 934,933 7.47 2,734,565 19.71 6,536,508
RNAforester 2.95 35,716 10.85 128,272 26.81 285,902 36.36 454,092 74.21 799,540
RNAdistance 0.23 1953 1.9 5912 11.09 12,389 18.06 21,296 68.03 33,141

All methods were used with default settings. Final values represent averages of three independent measurements. (n.m.) Memory consumption
could not be measured since the run time was too short.
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a rather simple way. We make use of two different grammars. For
probabilistic analysis, we use the grammar which handles dangling
bases in an unambiguous fashion (Voß et al. 2006), while hishape
prediction is based on the ‘‘microstate’’ grammar described in
Janssen et al. (2011). The latter resembles RNAsubopt with the
‘‘-d2’’ option for dangle energy correction. Note that this grammar
is ambiguous and can thus not be used for probabilistic analysis.
In RNAHeliCes, for each candidate defined by the grammar, we
are interested in computing the hishape, the free energy, the dot-
bracket-representation, and, for probabilistic analysis, the partition
function contribution of this hishape. We can reuse existing
algebras for computation of free energy, partition function, and
dot-bracket-representation. The algebra for computation of hishapes
was developed by us and implemented as described in the following.
Thermodynamic parameters (Xia et al. 1998; Mathews et al.
1999, 2004; Schroeder and Turner 2000) used within Bellman’s
GAP are taken from the Vienna RNA package (Hofacker et al.
1994).

Algebra hishape has four different abstraction levels accord-
ing to the four mapping functions ph, ph+, pm, and pa. Table 7
shows how this is reflected within the algebra functions for
the different loop/helix types. The choice function h unifies
candidates with equal hishape resulting in nonredundant answer
lists. Our goal is to compute hishapes together with their free
energy, partition function contribution, and the hishrep in dot-
bracket notation. Reusing the algebras mfe for free energy cal-
culation, p_func for partition function values, and pretty for
the dot-bracket-representation, in GAP we can achieve this
with the algebra product: hishape 5 (mfe 3 p_func) * pretty,
where 5 is the interleaved, 3 the Cartesian, and * the lexico-
graphic product operation. Details about these product types can
be found in Giegerich and Sauthoff (2011) and Sauthoff et al.
(2011).

Because of the exponential growth of hishape classes (see
Results), k � an, where a depends on the mapping function p,
and the time complexity would be O(an). However, an imple-
mentation returning only the k-best (for example, k = 100)
hishape classes reduces the overall complexity to O(k2n3). It is
important to note that k-best computation cannot be used to
compute correct hishape probabilities. The reason for this is that
the probability calculation is based on a hishape-wise summa-
tion of Boltzmann-weighted energies. Whenever a hishape is not
among the k best for the current subword, its Boltzmann-
weighted energy will not contribute to the final result for this
hishape, thus leading to inaccurate results. This error decreases
with larger k, but to what extent has to be thoroughly
investigated.

Approximating folding pathways

Full pathway analysis

The method for computing all pairwise energy barriers for a set
of hishapes of an RNA sequence is as follows: First, compute all
pairwise paths using BFS, and store saddle structure in matrix
MBFS. Second, use Dijkstra’s algorithm to find the shortest path in
MBFS for all pairs of hishapes. The procedure is given in algorithm 1.

We use findpath.h from the Vienna RNA package v1.7.2 for
BFS computation. This algorithm computes the full matrix, and
as a result, this matrix holds two saddle structures for each pair
of hishapes/structures. In many cases, they will be the same, but
especially for longer sequences, they may be different, correspond-
ing to the fact that different pathways have been predicted for the
forward and backward reaction. When computing energy barriers
for individual pairs we take the saddle with lower free energy.

Definition 4 (HiPath energy barrier)

For a given start structure S and target structure T and given that
the function HiPath(i, j) computes the saddle structure of a
pathway from structure i to structure j and DG(X) is the free
energy of structure X

EBHiPath = � DG Sð Þ+ min DG HiPath S;Tð Þð ; DG HiPath T; Sð Þðð Þ
ð6Þ

Pairwise pathway approximation

For the computation of a single pathway between a given start and
target structure, we restrict the search space to related hishapes as
defined by Equation 5. Additionally, only the shortest path from
the start to the target structure is computed. An outline is shown
in algorithm 2.

The number of (related) hishapes has a large impact on the
speed of the procedure, and thus we provide means to reasonably
restrict it. The calculation of (related) hishapes always starts at the
most abstract level. If, in this level the number of hishapes does not
reach a user defined threshold n, the next less-abstract level is
used. This is done either until the threshold n or a user-defined,
lowest abstraction level t is reached.

Abstract structure comparison

Any RNA secondary structure can be represented as a node-
labeled tree (Zuker and Sankoff 1984; Shapiro 1988; Shapiro and

Zhang 1990), and this representation was
shown to be especially useful for compara-
tive purposes, such as distance computation
and alignment. Hishapes are also inherently
tree-like and can thus be represented as trees,
too. An example is shown in Figure 5, and
the definition is as follows.

Definition 5 (hishape tree)

A hishape tree T consists of a set of helix
nodes N that are connected by edges. Each
N is a tuple (c,t) where c is the helix index

TABLE 7. Algebra functions for hishape analysis

Algebra function ph ph+ pm pa

hl(i, l, j) hi(i, j).‘,’ hi(i, j).‘,’ hi(i, j).‘,’ hi(i, j).‘,’
sl(i, x, j) ph(x) ph+(x) pm(x) pa(x)
bl(i, r, x, j) ph(x) ph+(x) pm(x) pa(x).hi(i, j).‘b,’
bl(i, x, l, j) ph(x) ph+(x) pm(x) pa(x).hi(i, j).‘b,’
il(i, r, x, l, j) ph(x) ph+(x) pm(x) pa(x).hi(i, j).‘i,’
ml(i, x, j) ph(x) ‘(,’.ph+(x).‘),’ ‘(’.pm(x).hi(i, j).‘m,),’ ‘(’.pa(x).hi(i, j).‘m,),’

(.) String concatenation; (x) enclosed substructure; (r), (l ) unpaired regions.
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and t the helix type, t 2 (h, m, i, b). If the hishape does not provide
the helix index for a certain node, as is the case for multiloop
helices in abstraction ph+, c is set to �1. An edge represents a
parent-child relationship according to the nesting of helices. Any
T has a root node (0, e) that corresponds to the external loop. The
hishape tree of the empty structure consists of only the root node.

For the comparison of two hishape trees, we follow the idea of
tree editing (Zhang and Shasha 1989), which was already applied
to abstract trees of RNA secondary structures, where only the
loops/helices are represented (Shapiro and Zhang 1990). Here,
edit operations act on complete loops/helices which perfectly
suits the idea of hishapes. In order to make use of the additional
positional information provided by hishapes, we extend the scoring
and define the hishape-based tree edit distance (HiTed).

Definition 6 (hishape-based tree edit distance [HiTed ])

The three edit operations—relabeling, delete, and insert—can be
represented as pairs (a,b), (a,�), (�,b), respectively. Given two
hishape trees T1 and T2 and a sequence S = s1, . . ., sk of edit
operations

HiTed T1;T2ð Þ= +
8si2S

DTED sið Þð Þ ð7Þ

DTED N1;N2ð Þ

=

sconversion N1;Nullð Þ ;N2 = 0 �0

sconversion Null;N2ð Þ ;N1 = 0 �0

l 3 sdistance N1;N2ð Þ+ sconversion N1;N2ð Þ ; otherwise

8><
>:

ð8Þ

sdistance c1; t1ð Þ; c2; t2ð Þð Þ=
0 ; c1 = � 1 _ c2 = � 1
c1 � c2j j ; otherwise

�
ð9Þ

sconversion c1; t1ð Þ; c2; t2ð Þð Þ= L t1; t2½ � ð10Þ

L ¼

t1nt2 I B H M Null

I 0 3 8 8 5
B 3 0 8 8 5
H 8 8 0 8 100
M 8 8 8 0 75

Null 5 5 100 75 0

ð11Þ

The first alternative in Equation 9 considers the case of a
multiloop helix, for which no helix index is given in abstraction

type ph+. Values in Equation 11 are taken from Shapiro and
Zhang (1990).

In order to find the set of edit operations that minimizes
HiTed, we make use of dynamic programming as has been
presented by Zhang and Shasha (1989). The implementation
makes use of functions from RNA StrAT (Guignon et al. 2005).

Benchmarking data sets and procedures

Data set ‘‘short’’

Data set ‘‘short’’ is based on the four shortest sequences from the
PARNASS evaluation (Voß et al. 2004), namely spliced leader RNA
(L. collosoma), pheST Attenuator (Escherichia coli), S15 mRNA
leader (E. coli), and the 59 UTR of MS2 RNA genome. We selected
these sequences in order to facilitate a reasonable run time of
Barriers, which grows exponential with sequence length and is
limited to z150 nt. For each sequence, the minimum free energy
structure was taken as structure A, and a target structure B was
determined using the following procedure: predict hishapes using
ph, scan the energy sorted hishape list for a hishape for which each
helix index differs by more than 5 from each helix index of
structure A.

Data set ‘‘riboswitches’’

This data set is taken from Li and Zhang (2011) and provides
a compilation of seven riboswitch sequences, namely the adenine
riboswitch of ydhL gene from B. subtilis (Mandal and Breaker
2004), the adenine riboswitch of add gene from Vibrio vulnificus
(Lemay et al. 2011), the guanine riboswitch of xpt-pbuX operon
from B. subtilis (Mandal et al. 2003), the S-adenosylmethionine
riboswitch of metE from Thermoanaerobacter tencongensis (Epshtein
et al. 2003), the c-di-GMP riboswitch of the tfoX from Candidatus
desulforudis (Smith et al. 2009), the lysine riboswitch of the lysC
from B. subtilis (Blouin et al. 2011), and the thiamine pyrophos-
phate riboswitch of thiamin from B. subtilis (Mironov et al. 2002;
Rentmeister et al. 2007). Most important about this data set is
that it provides the native ‘‘on’’ and ‘‘off ’’ conformations of the
riboswitches. This allows benchmarking the methods in a realistic
scenario.

Data set and benchmark procedure for structure comparison

For the structure-comparative benchmarks, we took four different
data sets from the Brasero (Allali et al. 2012) collection, namely

ALGORITHM 1. HiPath-full

L ) List of (hishapes,hishreps)
N ) Length (L)
for i = 1 / N do
for j = 1 / N do
MBFS (L[i], L[j]) ) BFS(L[i],L[j]) 8breadth first search
end for
end for
for i = 1 / N do
M (L[i], _) ) ShortestPath(L[i], MBFS) 8Dijkstra’s algorithm;

single source, all targets
end for
return M

ALGORITHM 2. HiPath-pair

S ) start structure, T ) target structure
HS ) Hishapeh(S), HT ) Hishapeh(T) 8 Hishapeh returns hairpin

loop helix indices only
HU ) HS [ HT

L ) RNAHeliCes -m HU 8 Compute related hishapes
N ) Length (L)
for i = 1 / N do
for j = 1 / N do
MBFS (L[i], L[j]) ) BFS(L[i],L[j]) 8 breadth first search
end for
end for
return ShortestPath(HS, HT, MBFS) 8 Dijkstra’s algorithm;

single source, single target
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SRP, sRNA, miRNA, and tRNA. Each data set consists of three
parts: The first one is a small number of RNAs together with their
known structures R of the given RNA family F; the second is a set
of RNA secondary structures T2 folded from a set of RNA se-
quences that belong to F using mfold (Zuker and Stiegler 1981) or
RNAshapes; and the third, called noise, is a set of RNA secondary
structures F2 folded from a set of RNA sequences that are either
random segments from viral genomes or from encode sequences.

In Brasero, benchmarking is performed by comparing each
structure of T2 and F2 with each structure of R using the given
pairwise comparison algorithm. Depending on the score, struc-
tures of T2 and F2 can now be classified as true positives, false
negatives, false positives, and true negatives. Iterating from the
minimum to the maximum score, computing for each the true
and false positive rate and plotting these values against each other
results in a ROC plot. All this is done by the benchmarking tools
provided by Brasero, which also compute the area under the curve
of the ROC plot.

Measuring run time and memory consumption

For memory usage measurements, we monitored the VmHWM
(‘‘high water mark’’) value in the /proc file system. The run time is
the CPU time (sum of user and system time) as measured using
GNU time. All measurements were carried out on an 8x AMD
Opteron 8378 machine with 128 GB RAM under openSUSE 11.2
(x86_64).
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Höchsmann M, Töller T, Giegerich R, Kurtz S. 2003. Local similarity
in RNA secondary structures. In Proceedings of the IEEE bioinfor-
matics conference, pp. 159–168. IEEE, New York.

Hofacker IL, Fontana W, Stadler PF, Bonhoeffer SL, Tacker M,
Schuster P. 1994. Fast folding and comparison of RNA secondary
structures. Monatsh Chem 125: 167–188.

Janssen S, Schudoma C, Steger G, Giegerich R. 2011. Lost in folding
space? Comparing four variants of the thermodynamic model for
RNA secondary structure prediction. BMC Bioinformatics 12: 429.
doi: 10.1186/1471-2105-12-429.

LeCuyer K, Crothers D. 1993. The Leptomonas collosoma spliced
leader RNA can switch between two alternate structural forms.
Biochemistry 32: 5301–5311.

Lemay J, Desnoyers G, Blouin S, Heppell B, Bastet L, St-Pierre P,
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