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Alternative splicing at pairs of acceptors in close proximity
are one frequent cause of transcriptome complexity. In
particular, acceptors with the pattern NAGNAG are
widespread in several genomes [1–3]. When affecting the
coding regions, alternative splicing at NAGNAGs mainly
results in the insertion/deletion of one amino acid. While
such subtle events are undoubtedly frequent, an important
question arises: do they have functional consequences or are
they simply noise tolerated by cells?

Zavolan and colleagues [3,4] suggest that these variations
are the result of stochastic binding of the spliceosome at
neighboring splice sites and do not discuss known functional
implications. We previously found indications against a
general noise assumption for NAGNAG splice events [1]:
biases towards intron phase 1 and single amino acid
insertions/deletions, correlation of amino acid variation and
the peptide environment, enrichment of polar residues at
NAGNAG exon–exon junctions, preference for protein–
protein interactions and particular Pfam domains, human–
mouse conservation of the intronic AG, and tissue-specific
splicing at several NAGNAG acceptors. These findings
indicate negative selection against NAGNAG-derived
variability deleterious for certain protein regions, which
agrees with the underrepresentation of NAGNAGs in coding
regions detected by Zavolan and colleagues [4]. This does not
rule out that variability may be advantageous for other
proteins, but signs of positive selection are much harder to
detect and remain to be shown.

Zavolan’s finding that confirmed NAGNAGs (current
mRNAs/expressed sequence tags do show alternative splicing)
are not better conserved between human and mouse than
unconfirmed ones may argue against functional implications.
However, this result is probably biased by the unconfirmed
dataset, which consists of ;60% NAGGAG whose GAG is part
of the conserved exon. To avoid such a bias, we split
confirmed NAGNAGs into those in which the ‘‘extra’’ AG is
either intronic or exonic, according to the transcript
annotation [1]. Interestingly, intronic but not exonic extra
AGs have a significant conservation. Meanwhile, Akerman
and Mandel-Gutfreund found a high conservation of the
intronic flanking regions [5], typical for biologically
meaningful alternative splicing [6].

The finding of Zavolan and colleagues that relative
acceptor strength is predictive for confirmed and
unconfirmed NAGNAGs refers to an accepted fact of splicing
(for example, alternative exons have weaker splice sites than
constitutive ones [7]). In tandems, the splice-site strength
often determines the preferred acceptor, consistent with our
earlier results (see Supplementary Notes in [1]). Thus, we
agree that thermodynamic fluctuation plays an essential role
during splice-site recognition at NAGNAG acceptors. This is
in line with the finding that a single mutation is sufficient to

convert a normal acceptor into a NAGNAG tandem, enabling
alternative splicing [8]. However, this useful model is not valid
for all NAGNAGs. In particular, tissue-specific regulation of
alternative NAGNAG splicing challenges this model [1,9].
Overrepresented sequence motifs found in the vicinity of
confirmed NAGNAGs are likely to contribute to this
regulation [5].
Moreover, some protein isoforms derived by alternative

splicing at NAGNAG acceptors are known to be functionally
different: IGF1R, signaling [10]; DRPLA, cellular localization
[9]; mouse Pax3, DNA binding [11]; and Arabidopsis thaliana
U11-35K, protein binding [12]. Alternative NAGNAG splicing
in the untranslated region of mouse Ggt1 affects the
translational efficiency [13]. Furthermore, a NAGNAG
mutation in ABCA4 is relevant for Stargardt disease 1 [14].
For clarity, we did not claim that all alternative splice events
at NAGNAGs serve as protein ‘‘fine-tuning’’ mechanism [1,8]
(as misinterpreted by [4]). In our opinion, like genetic
variants, splice variants may be neutral or result in
phenotypic differences. Thus, they represent just another
playground of molecular evolution [15,16]. The few currently
evident cases of biologically different NAGNAG-derived
isoforms may represent just the tip of an iceberg.
Finally, in the context of the problem discussed here, it has

to be considered that noise is important for many biological
processes [17], leading to the model of ‘‘cultivated noise’’ [18].
For example, splicing noise at the Drosophila Dscam gene is
used for cell individualization [19]. Although it has yet to be
proven, it is tempting to speculate that noise arising by
splicing at NAGNAG acceptors provides another ‘‘cultivated’’
stochastic mechanism.
In conclusion, it remains unknown what fraction of the

more than 1,900 currently confirmed human NAGNAGs play
a role in biological functions. To facilitate further
experimental and bioinformatics analyses, we developed a
database, TassDB (http://helios.informatik.uni-freiburg.de/
TassDB), that provides information and large collections of
NAGNAG acceptors. “
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Authors’ Reply

That splice variation at tandem acceptor sites is frequent
has been reported by several groups, including Zavolan et al.
[1], Sugnet et al. [2], and Hiller et al. [3], and is
uncontroversial. It is to be expected that at least some of
these variations will affect protein function, and this is also
beyond dispute, in spite of suggestions to the contrary in the
letter of Hiller et al. [4]. The questions that are under
discussion concern the mechanism that brings about these
splice variations and their ‘‘functional consequences’’ or
‘‘role in biological functions.’’ The rather vague formulation
of these questions has, in our opinion, given rise to much
misunderstanding. Therefore, to be concrete, we list what we
believe are the main relevant questions. (1) Why are these
splice variations so common? By what mechanism are they
brought about? (2) To what extent is the introduction of these
variations controlled and regulated by the cell? (3) What

fraction of these variations is neutral and what fraction
affects protein function? (4) To what extent are the non-
neutral variations deleterious and to what extent are they
beneficial?
With respect to the first question, we have shown [5] that

one need not invoke a complicated mechanism for
introducing these variations, but that a simple model of
stochastic binding of the spliceosome to competing splice
sites, in combination with nonsense-mediated decay, can fully
explain the abundance of these variations. Moreover, this
model accurately predicts the relative frequencies of all small
length variations, not only at acceptor but also at donor splice
sites. As Hiller et al. also stress in their letter, there is little
doubt that thermodynamic fluctuations, i.e., noise, play a role
in splice-site selection. The combination of these facts
suggests to us that thermodynamic noise is responsible for
introducing a large fraction of the observed alternative
splicing events at tandem acceptors.
With respect to the second question, if the introduction of

splice variation at NAGNAG acceptors were highly controlled
by the cell, then one would not expect that they could be
predicted from the local sequence at the splice site only. The
fact that our same simple model successfully predicts which
NAGNAG acceptors show splice variation and which do not
suggests that at least a substantial fraction of all such splice
variations are not tightly controlled by the cell. We agree with
Hiller et al. that our model cannot explain the observed cases
of variation in the relative proportion of the alternative
splice forms across different tissues. We disagree, however,
that this invalidates our model for these NAGNAGs. Just as
different point mutations occur at different rates in different
cellular states and sequence contexts, so may the relative
probabilities with which the spliceosome binds to competing
splice sites depend on details of the kinetics that may vary
between tissues. It remains to be determined if the cells are
able to actively regulate kinetic details so as to specifically
regulate alternative splicing at tandem acceptor sites. In fact,
we feel that one of the main uses of our model is to provide a
baseline expectation under simple thermodynamic noise,
allowing one to more effectively identify interesting cases
that deviate significantly from this behavior.
With respect to questions 3 and 4, it is of course to be

expected that some of the variations affect protein function.
Indeed, Hiller et al. [3] have provided several lines of evidence
that indicate a bias toward alternativeNAGNAGacceptors that
minimize the effect on the proteins. We agree with Hiller et al.
that this strongly suggests that, at least in some cases, the effects
of NAGNAG variations are deleterious and that selection acts
to avoid them. We strongly disagree, however, that this argues
against noise being responsible for introducing these variations.
By the same reasoning one could argue that point mutations
are not introduced by noise because one observes negative
selection against certain single point mutants. Rather, the
observed selection against NAGNAGmotifs in locations where
splice variation would deleteriously affect protein function
suggests that the splice variation at NAGNAG acceptors is not
under tight control of the cell, and supports the idea that these
variations aremostly the result of uncontrollable noise. Finally,
the fact that some variations deleteriously affect protein
function does not imply that all these variations play a ‘‘role in
biological function.’’ In many cases some amount of
deleterious variation might just be tolerated.
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How frequent are cases in which variations are beneficial
for the cell, i.e., in which the cell uses both functionally
different forms? We agree with Hiller et al. that such cases
remain to be identified, but do not agree that the problem
lies with the general difficulty of showing signs of positive
selection. Positive selection is typically used to refer to cases
where selection has favored change at particular positions. In
contrast, to show that NAGNAG variations are beneficial, one
would need to show only that there is clear selection for
conserving the tandem acceptor property of variant
NAGNAGs. This was in fact precisely the purpose of our test
that compared the conservation of variant NAGNAG
acceptors with that of invariant NAGNAG acceptors. Hiller et
al. call this test ‘‘probably biased’’ due to a substantial fraction
of NAGGAG tandem acceptors in which the GAG is part of
the ‘‘conserved exon.’’ The point that we may not have
stressed enough [5], and that is apparently not appreciated by
Hiller et al., is that if there is selection for maintaining a
NAGNAG acceptor that supports splice variation, then both
AG dinucleotides need necessarily to remain conserved. This
selection pressure is stronger even than the selection pressure
on NAGs that are part of the exon, where selection will chiefly
operate at the level of their coding potential, often allowing
for neutral mutation of the AG dinucleotide. Thus,
NAGNAGs at invariant acceptors must necessarily be under
less selection to conserve both AG dinucleotides than
beneficial variant NAGNAGs. If a substantial proportion of
the variant NAGNAGs were under selection for their tandem
acceptor property, then we would expect to see their
NAGNAG property more often conserved than for invariant
NAGNAGs. Since we do not observe this, we conclude that
the fraction of NAGNAGs under selection for retaining their
tandem acceptor function cannot be very large. Finally, Hiller
et al. discuss the conservation test that they performed [3] and
mention the conservation statistics obtained more recently by

Akerman and Mandel-Gutfreund [6]. In Text S1 we discuss
our interpretation of both these conservation tests. “
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Supporting Information
Text S1. Conservation Patterns at NAGNAG Acceptor Sites

Found at doi:10.1371/journal.pgen.0020208.sd001 (92 KB PDF).
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