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ABSTRACT

RNA binding proteins recognize RNA targets in a
sequence specific manner. Apart from the sequence,
the secondary structure context of the binding site
also affects the binding affinity. Binding sites are
often located in single-stranded RNA regions and it
was shown that the sequestration of a binding motif
in a double-strand abolishes protein binding. Thus, it
is desirable to include knowledge about RNA sec-
ondary structures when searching for the binding
motif of a protein. We present the approach
MEMERIS for searching sequence motifs in a set of
RNA sequences and simultaneously integrating
information about secondary structures. To abstract
from specific structural elements, we precompute
position-specific values measuring the single-
strandedness of all substrings of an RNA sequence.
These values are used as prior knowledge about the
motif starts to guide the motif search. Extensive tests
with artificial and biological data demonstrate that
MEMERIS is able to identify motifs in single-stranded
regions even if a stronger motif located in double-
strand parts exists. The discovered motif occur-
rences in biological datasets mostly coincide with
known protein-binding sites. This algorithm can be
used for finding the binding motif of single-stranded
RNA-binding proteins in SELEX or other biological
sequence data.

INTRODUCTION

Genes that encode for RNA-binding proteins are abundant in
eukaryotic genomes. RNA-binding proteins influence various
pre-mRNA processing steps like splicing and editing, and
regulate mRNA transport, localization, stability, translation
by binding to cis-acting mRNA elements. These cis-acting
elements are often located in the 50 or 30-untranslated regions
(50 or 30-UTR) of mRNAs (1).

Many RNA-binding proteins are equipped with domains
that bind single-stranded RNA like the RNA recognition
motif (RRM) or the K homology (KH) domain (2,3).
Although these proteins bind RNA in a sequence-specific
manner, it was shown that the RNA secondary structure plays
an important role in defining the binding site. For example,
the mouse Prrp protein binds two motifs located in single-
stranded conformation (4). The aCP-2KL and hnRNP K pro-
teins, both containing three KH domains, bind single-stranded
C-rich sequences (5) and the neuron-specific splicing factor
Nova-1 recognizes TCAT sequence repeats located in the
loop of a hairpin (6) (throughout the paper we write T instead
of U also when referring to an RNA sequence).

A crucial step towards the understanding of the function of
an RNA-binding protein is to elucidate the binding motif and
to identify target RNAs. One common experimental approach
to identify the binding motif is the ‘selection of ligands
by exponential enrichment’ (SELEX) (7–9). The result of a
SELEX experiment is a set of sequences that are bound by
a specific protein and that contain one (or more) yet unknown
binding motifs. To identify these motif(s), motif finder pro-
grams are usually applied to this set of sequences. Motif fin-
der programs like MEME (10,11) or Gibbs sampler (12) only
work at the sequence and not at the structure level. However,
sequestering a sequence motif in a double-stranded RNA part
has been shown experimentally to have a strong negative cor-
relation with binding affinity (9) or even to abolish protein-
binding (4,5). For example, the HuR protein influences
mRNA stability by binding to the motif NNTTNNTTT
(13). It has been demonstrated that HuR affinity correlates
with the single-strandedness of its binding motif. Interest-
ingly, small antisense oligonucleotides that are designed
to bind outside the HuR motif can influence mRNA stabil-
ity by modulating the secondary structure of the binding
site (13,14). In light of these findings, it is desirable to
include information about the secondary structure when
searching for sequence motifs in SELEX data or other
RNA sequences.

One can argue to use programs that search for sequence-
structure motifs in RNA sequences (15–18) or programs that
perform RNA sequence-structure alignments (19–21) for det-
ecting the binding motif. However, these methods expect that
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the motif consists of specific sequence-structure elements,
such as a stem–loop structure possibly with additional
sequence constraints. Hence, they would not be able to find
a sequence motif with a general structural property, such as
being located in single-stranded parts of arbitrary structure
elements. For example, these programs would fail to identify
a sequence motif that is found in the loop of a hairpin or in
the single-stranded part between two stems (5).

Here, we introduce an approach that searches for sequence
motifs that are preferably located in any single-stranded
conformation. This approach is implemented as an extension
of the widely used MEME motif finder and is called
MEMERIS—MEME in RNAs Including secondary Struc-
tures. MEMERIS precomputes values that characterize the
single-strandedness of all putative motif occurrences. These
values are then used to guide the motif search towards single-
stranded regions. We provide an easy way for the user to
adjust the importance of the single-strandedness. The perfor-
mance of the approach is evaluated for artificial and real bio-
logical datasets and the results demonstrate that MEMERIS
is able to accurately detect known protein-binding sites.
The general principle can be utilized in the other motif
finding applications, such as finding the binding motif of
transcription factors.

MATERIALS AND METHODS

Measurement of single-strandedness

To characterize the single-strandedness of a substring in a
given RNA sequence between positions a and b, MEMERIS
allows the choice between two different measurements:
(i) the probability that all bases in the substring are unpaired
(denoted PUa,b) (14,22) and (ii) the expected fraction of bases
in the substring that do not form base pairs (denoted EFa,b).
PUa,b is defined as

PUa‚ b ¼ e
Eall�E

unpaired

a‚ b
RT ‚

where Eall is the free energy of the ensemble of all structures,
Eunpaired

a‚ b is the free energy of the ensemble of all structures
that have the complete substring unpaired, R is the gas con-
stant and T is the temperature. Eall and Eunpaired

a‚ b are computed
with the partition function version of RNAfold (23). For
Eunpaired

a‚ b , we assure that the region a � b is unpaired by apply-
ing additional constraints (RNAfold parameter -C). Note that
PU values can also be computed with RNAup (22). EFa,b is
defined as

EFa‚ b ¼ 1 �

Xb

i¼a

XL

j¼1

pi‚ j

b � a þ 1
‚

where L is the length of the RNA sequence, and pi,j is the
probability that base i and j are paired. The base pair proba-
bilities pi,j are also computed with the RNAfold program.
These measurements have the advantage that they account
for all possible secondary structures and that they abstract
from specific structural elements. For all input sequences,
the EF or PU values are precomputed for each possible
motif start position.

Integrating secondary structure information
(MEMERIS)

To integrate motif finding and the secondary structure
information given as EF or PU values, we decided to extend
the MEME motif finder. MEME is a program for finding
motifs in a set of n unaligned nucleotide or protein sequences
(denoted X ¼ X1,X2, . . . , Xn) (10,11,24). A motif is described
as a position-specific probability matrix (PSPM) Q1 ¼
(P1,P2, . . . , PW), where W is the length of the motif and the
vector Pi the probability distribution of the letters at position
i. A given input sequence Xi is modeled as consisting of
different parts: (i) zero, one or more non-overlapping motif
occurrences sampled from the matrix Q1 and (ii) random
samples from a background probability distribution
Q0 ¼ P0 for the remaining sequence positions. We denote
Q ¼ (Q0,Q1). The number of motif occurrences depends on
a user specified model. MEME considers three different mod-
els: (i) exactly one motif occurrence per sequence (OOPS
model), (ii) zero or one motif occurrence per sequence
(ZOOPS model) and (iii) zero or more motif occurrences
per sequence (TCM model). To find a motif, MEME uses
an expectation maximization (EM) algorithm to perform a
maximum likelihood (ML) estimation of the model given
the data. EM algorithms are commonly used for ML estima-
tions where a part of the complete data are not given or ‘hid-
den’. In MEME, the complete data are the set of sequences
(given data) and the start positions of the motif occurrences
(hidden data). The hidden data are described by indicator
variables Zi,j with Zi,j ¼ 1 if a motif occurrence starts at posi-
tion j in sequence Xi, and Zi,j ¼ 0 otherwise.

The EM algorithm iteratively (i) computes the expectation
of the hidden variables using the current model (E-step) and
(ii) performs a ML estimation of the model parameters on the
joint probability of the complete data (M-step).

OOPS model. MEME makes no assumption about the start
position of a motif occurrence in a sequence. Thus, MEME
uses a uniform probability distribution 8j PðZi‚ j ¼ 1Þ ¼ 1

m,
where m ¼ L � W + 1 is the number of possible starting
points for a given motif length W in a sequence of length L
(just for convenience we assume that all sequences have the
same length). Since, there is exactly one motif occurrence per
sequence in the OOPS model

Pm
j¼1 PðZi‚ j ¼ 1Þ ¼ 1.

The additional information about the single-strandedness
of each substring of length W can be considered as an infor-
mative prior about putative motif starts since single-stranded
sequence parts are more likely to be real motif occurrences
than parts that are sequestered in a double-stranded region.
Therefore, we integrate the single-strandedness by replacing
the uniform probability distribution by a distribution that
depends on the EF or PU values. For convenience, we focus
on PU values in the following, although everything below
holds for EF values too. Instead of 1=m as in MEME, the
prior probabilities for the OOPS model in MEMERIS are

PðZi‚ j ¼ 1 j PUiÞ ¼
PUi‚ j þ p

Xm

k¼1

ðPUi‚ k þ pÞ
‚

where PUi is the vector of PU values for sequence Xi and p is
a user-given parameter that is used to smooth the distribution
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(Figure 1). The higher the PU value for position j, the higher
is the prior probability of being a motif start position
P(Zi,j ¼ 1jPUi). Despite Xi is used to compute the PU values,
we assume that they are given as prior knowledge. By defini-
tion

Pm
j¼1 PðZi‚ j ¼ 1 j PUiÞ ¼ 1, thus the underlying model

assumption (one motif occurrence per sequence) remains

unchanged. The prior probability distributions for two ran-
dom sequences are shown in Supplementary Figure 1.

In iteration t of the EM algorithm, the expected values Zt
i‚ j

of the hidden variables Zi,j are computed given the parameters
Qt. The E-step in MEMERIS is

Zt
i‚ j ¼

PðXi j Zi‚ j ¼ 1‚QtÞPðZi‚ j ¼ 1 j PUiÞ
Xm

k¼1

PðXi j Zi‚ k ¼ 1‚QtÞPðZi‚ k ¼ 1 j PUiÞ
:

Assuming that a sequence Xi contains at positions j1 and j2
the same motif occurrence, only the prior probabilities consti-
tute the difference for the expected values Zt

i‚ j1
and Zt

i‚ j2
in the

E-step equation. Hence it is an advantageous property of
the prior probabilities that the ratio of the PU values for j1
and j2 is preserved in PðZi‚ j1 ¼ 1 j PUiÞ and PðZi‚ j2 ¼ 1 j
PUiÞ if p ¼ 0, since

PðZi‚ j1 ¼ 1 j PUiÞ
PðZi‚ j2 ¼ 1 j PUiÞ

¼

PUi‚ j1Xm

k¼1

PUi‚ k

PUi‚ j2Xm

k¼1

PUi‚ k

¼ PUi‚ j1

PUi‚ j2

The pseudocount p is used to reduce this ratio. The higher p,
the more this distribution equals the uniform distribution of
MEME.

The M-step is not affected by the modified prior distribu-
tion (Supplementary Data). Except for the offset due to the
computation of the secondary structure values, MEMERIS
has the same runtime as MEME.

ZOOPS and TCM model. We use the same prior probability
distribution as for the OOPS model to integrate the single-
strandedness into the ZOOPS and TCM model. This is
described in detail in the Supplementary Data.

Datasets

We tested MEMERIS on artifical and biological datasets.
Each artificial test sequence consists of a random sequence
part at the 50 and 30 end and a stem–loop structure that contains
the single-stranded motif in the hairpin loop and the double-
stranded motif in either side of the stem (Figure 2A). A
random RNA sequence was generated by sampling from
the uniform distribution (probability of 0.25 for A,C,G or
T). We allowed base pairs between A and T, C and G, G
and T. With probability of 0.5 we changed one position
from the complementary part of the double-stranded motif
so that it cannot base pair anymore. This mutation and the
possibility of base pairs between G and T assure that the com-
plementary part of the double-stranded motif is not a fixed
string. The stem consists of 12 bp, the total length of the ran-
dom sequence up- and downstream was set to 20 nt. The
motif length is set to 6 nt which is a typical motif length
for an RNA-binding protein. For test set 6, the motif length
is 12 nt. For test set 2, the second PSPM was derived from
the first one by randomly permutating the letter probabilities.
This results in two PSPMs with an equal information content.
The information content of a PSPM measures the strength of

Figure 1. Effect of the pseudocount on the prior probability distribution. The
figure shows a randomly chosen sequence and its optimal secondary structure
(A), the EF and PU values for a motif length of 6 nt (B), and the prior
probability distribution for a OOPS/ZOOPS model using EF (C) and PU
values (D) with different pseudocounts. Each data point represents the value
for the motif starting at the respective position. The uniform prior refers to a
prior probability distribution p ¼ 1/31 (sequence length is 36 nt).
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the motif and is computed as
PW

i¼1

P
j f i‚ jlog2

f i‚ j

qj

� �
where

fi,j is the probability of the jth letter in the alphabet at position
i of the motif and qj is the background probability of the jth
letter. All test sets are described in the Supplementary Data.

For the biological datasets, we used SELEX sequences
and sequences of cis-acting RNA elements taken from the
Rfam database (25). SELEX sequences were taken from
the respective publications. For the Rfam entries, we used
the sequences from seed alignment for the IRE and TAR
Rfam and from full alignment for the PIE and SLDE Rfam.
Redundant sequences with complete identity were taken
only once.

MEMERIS was run with a pseudocount p of 0.1 (test sets
1–6 and 9) or 0.01 (test sets 7 and 8). We found MEMERIS to
perform better if the EM starting point is relaxed (MEME
parameter -spfuzz 2 was used for all tests). For MEME and
MEMERIS, we used a uniform background frequency distri-
bution since the sequences are too small for an accurate fre-
quency estimation and the artificial sequences were sampled
from a uniform distribution.

RESULTS

Measurement of single-strandedness

MEMERIS first computes EF or PU values for all substrings
(i.e. all putative motif occurrences) of a fixed length W of
the input sequences. Then, these values are used to guide
the search for one or more motifs of length W towards single-
stranded regions. The pseudocount p can be used to adjust the
importance of the single-strandedness (Figure 1). Naturally,
PU values (the probability that a complete substring is
unpaired) are stricter than EF values (the fraction of the sub-
string that is not involved in base pairing). Thus, MEMERIS
using PU values will favor single-stranded regions stronger
than MEMERIS using EF values (Figure 1 and Supplemen-
tary Figure 2).

While EF values are virtually independent of the length of
the substrings, PU values drop if the length W increases since
it is unlikely for a longer substring to have no base pairs
(Supplementary Figure 2). Thus, the values for two substrings
can only be compared if both substrings have the same
length. However, the motif length for RNA-binding proteins
is generally shorter than 10 nt which causes no problems with
too low PU values.

Artificial test sets

In order to check whether the secondary structure information
integrated into MEMERIS is able to guide the motif search
towards single-stranded regions, we first performed extensive
tests with artificial datasets.

OOPS model. First, we tested the OOPS model by comparing
MEME with MEMERIS. Each of the following test sets con-
sists of 20 sequences that are designed to contain motifs
either as a fixed string or as a sample from a PSPM in single-
and/or double-stranded conformation. All test sets and results
are described in detail in the Supplementary Data.

We asked whether the EF or PU values influence which
motif is found in the first pass, given that one motif is rather
single-stranded (denoted ssMotif) while the other one is
rather double-stranded (denoted dsMotif). This will be impor-
tant if a user wants to discover only a single motif. The
sequences in test set 1 contain both a ssMotif and a dsMotif
as a fixed string (Figure 2B). In contrast to MEME, MEM-
ERIS using EF or PU values detects the ssMotif first.
These results are not affected by increasing the sequence
length or sampling the motifs from two PSPMs (test set 2,
Supplementary Data).

Next, we asked whether MEMERIS also detects the ssMo-
tif in the first pass, even if the ssMotif is weakened by intro-
ducing a single mutation in 25% of its occurrences (test set 3)
or by sampling from a PSPM with a lower information con-
tent (test set 4, Figure 2B). While MEME detects the stronger
dsMotif in the first pass, MEMERIS identifies the weaker
ssMotif first. To exclude that these findings are affected
by some unknown bias in the motif or the sequences, we
repeated all tests two times with new random sequences
and different motifs and found consistent results (Supplemen-
tary Data). In general, PU values perform equally well or
better than EF values in these tests.

To illustrate the effect of varying the pseudocount p,
we designed a test set containing only a dsMotif (test set 5,

Figure 2. Overview of the artificial test sets. (A) The figure shows an
artificial sequence with a single-stranded motif (ssMotif, highlighted yellow)
and a double-stranded motif (dsMotif, highlighted blue) together with its
optimal secondary structure. The general scheme for constructing sequences
is (i) to randomly sample an up- and downstream flank with a total length of
20 nt, (ii) to generate a stem of 12 bp that contains the dsMotif and (iii) to
insert the ssMotif as the hairpin loop. The dsMotif can occur on either side of
the stem. (B) The sequences in test sets 1–4 contain a ssMotif as well as a
dsMotif. For test sets 1 and 3, we used a fixed string as the ssMotif (ACCGTA
in this example, highlighted yellow) and a permutation of it as the dsMotif
(TGACAC, blue). These motifs are sampled from two PSPMs for test sets 2
and 4. In test set 3, a single mutation is introduced in 25% of the ssMotifs. (C)
Test set 5 contains only one motif in double-stranded conformation (sampled
from a PSPM). (D) Sequences in test set 6 contain a 12 nt motif as a fixed
string where only the 6 nt in the middle of the motif (yellow) are single-
stranded. (E) Sequences in test set 7 contain either a ssMotif, a dsMotif or no
motif (sampled from a PSPM). (F) Test set 8 contains sequences with a
ssMotif and a dsMotif, with two ssMotifs, with one ssMotif, with one
dsMotif, and without a motif (sampled from a PSPM). The percentages
indicate to which fraction sequences with the respective features are
contained in the dataset.
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Figure 2C). MEMERIS using PU values detects the dsMotif,
if the pseudocount p is higher than 0.22 (Figure 3). Lower
values for p lead to the detection of other motifs with a
higher average single-strandedness. Here, the average single-
strandedness is the average of the PU values for all detected
motif occurrences. These motifs differ from the dsMotif and
are therefore weaker (indicated by a lower information con-
tent of the resulting motif matrix in Figure 3) and less signifi-
cant. Thus, the pseudocount p provides an easy means for the
user to adjust the importance of the secondary structures.
In agreement with the finding that PU values are stricter
than EF values, usage of the EF values results in the
discovery of the dsMotif in this example independent of the
pseudocount.

Next, we tested the ability of MEMERIS to identify the
single-stranded part of a longer sequence motif as the poten-
tial protein-binding site. We designed a test set containing a
12 nt motif whose three positions at the beginning and at the
end form base pairs (test set 6, Figure 2D). Setting the motif
width to 6 nt, MEME identifies the first 6 nt of this 12 nt
motif, while MEMERIS exactly finds the 6 nt that are not
involved in base pairing.

We conclude that MEMERIS preferably selects single-
stranded motif occurrences and that it is able to identify a
weaker over a stronger motif if the average single-
strandedness is sufficiently higher.

ZOOPS and TCM model. In addition to identifying the motif
locations, the ZOOPS and TCM model have to solve a further
question: how many motif occurrences are in the dataset? We
intended to integrate the secondary structure information in a
way that guides but not restricts the motif search to single-
stranded regions. Therefore, this additional question is only
marginally affected in MEMERIS. Up to which single-
strandedness a motif occurrence is believed to be a real
protein-binding site is hard to determine in an automatic man-
ner since this would necessitate statistical measures that take
the motif sequence and its structural properties into account.
Furthermore, the requirement for single-strandedness

certainly depends on the dataset and on the (putative)
binding-protein. However, we propose a simple procedure
that requires the user to decide according to the motif
sequence and the EF or PU values how many occurrences
are there in the given dataset.

(1) Run MEMERIS using a rather high pseudocount p,
which mimics a MEME run and leads to the detection of
motif hits nearly independent of the single-strandedness.

(2) Inspect the sequence and the single-strandedness of all
detected motif hits and determine the number of motif
occurrences.

(3) Run MEMERIS again with a low pseudocount p and a
fixed number of motif occurrences.

The second MEMERIS run with a fixed number of
motif occurrences should result in the identification of single-
stranded occurrences and thus a refinement of the motif
matrix. We tested this for the ZOOPS model on a dataset
that contains sequences with either (i) one ssMotif, (ii) one
dsMotif or (iii) without a motif (test set 7, Figure 2E). For
the TCM model, we applied this procedure to a dataset
consisting of sequences having either (i) one ssMotif and
one dsMotif, (ii) two ssMotifs, (iii) one ssMotif, (iv) one
dsMotif or (v) no motif (test set 8, Figure 2F). Since point
2 involves manual inspection, we have to avoid any bias aris-
ing from our knowledge about the PSPM and the dataset.
Thus, we assessed the number of motif occurrences in an
automatic manner by simply counting the number of motif
hits having an EF or PU value greater than 0.5. Comparing
MEME and MEMERIS with a given number of motif hits,
MEMERIS identifies the single-stranded motif occurrences,
even if this leads to a lower information content of the
motif (Supplementary Data). One example for the TCM
model is shown in Figure 4. Again PU values often lead to
better results than EF values.

Motifs in single-strands of arbitrary structures

The above test sets often contain the ssMotif in the loop of
a hairpin and the dsMotif in the stem. In contrast to programs
that search for RNA sequence-structure elements, MEMERIS
should be able to identify a single-stranded motif regardless
of the structural element in which it is contained. We
designed a test set where the motif is located either (i) in a
hairpin loop, (ii) in an internal loop, (iii) in a single-stranded
part of a multiple loop or (iv) between two stems (test set 9,
Supplementary Data). While MEMERIS and MEME clearly
detect the motif, two RNA motif finders, RSMatch (17) and
CMfinder (18), (that are not designed for this task) are not
able to discover any motif in this test set.

Biological test sets

SELEX data. We tested MEMERIS on SELEX data that are
found to contain sequence motifs in single-stranded confor-
mations. Buckanovich and Darnell (6) identified 33 TCAT
or ACAT repeats in the hairpin loops of the SELEX winner
sequences of the neuron-specific splicing factor Nova-1.
Searching for 33 motif occurrences with a TCM model and
a motif length of 4 nt, MEMERIS exactly identifies those
33 TCAT and ACAT hits that are described in (6). MEME
also detects the correct motif but at least two of its motif

 

 

 

 

 

 

 

 

Figure 3. Effect of varying the pseudocount. The figure shows the
information content of the motif matrix found by MEMERIS in bits (black
curve) and its average single-strandedness (average PU values of all motif
occurrences, blue curve) for pseudocounts from 0 to 0.5 in steps of 0.01. Test
set 5 that contain sequences with only one dsMotif (10.6 bits, average single-
strandedness 0.003) was used. This motif is found by MEMERIS for a
pseudocount greater than 0.22. In general, the lower the pseudocount, the
higher is the average single-strandedness.

PAGE 5 OF 10 Nucleic Acids Research, 2006, Vol. 34, No. 17 e117

 at Inst F
 A

ngew
andte M

athem
atik on July 12, 2011

nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


hits are located outside the hairpin loop and are presumably
no Nova-1 binding sites (Figure 5). We also compared
MEME and MEMERIS for the SELEX datasets of the nucle-
olin protein (26), the Drosophila ortholog of human SRp55
(27), and the aCP-2KL protein (5) and found very similar
results for both programs which is due to the fact that the
known motif is the strongest one in these datasets (data not
shown).

Protein-binding sites in cis-acting RNA elements. Cis-acting
elements in the UTR regions of mRNAs determine mRNA
stability and translation efficiency by providing binding
sites for regulatory proteins. These elements are often con-
served at the sequence and secondary structure level, thus
they are fundamentally different compared to the randomly
generated SELEX sequences. To test the ability of MEM-
ERIS to identify protein-binding sites in the larger context
of conserved sequence-structure elements, we selected cis-
acting RNA elements having a defined secondary structure
and a known protein-binding site from the Rfam
database (25).

The iron responsive element (IRE, RF00037) located in the
50-UTR of mRNAs is essential for the expression of proteins
that are involved in the iron metabolism (28). The IRE

consists of a stem–loop structure and the nucleotides in the
hairpin loop were found to be essential for binding of iron-
regulatory proteins. MEMERIS detects the hairpin loop
as the motif hit in all sequences (10 bits), while MEME
discovers a stronger motif (10.8 bits) that is moved to one
position upstream. In addition, MEME identifies a different
motif occurrence in the upstream stem in two sequences
(Supplementary Data).

The polyadenylation inhibition element (PIE) contains
two binding sites for U1A proteins (29). U1A binding leads
to an inhibition of the poly(A) polymerase and a reduced
mRNA stability and translation efficiency due to a shortened
poly(A) tail. U1A autoregulates itself by binding to a PIE ele-
ment in its own 30-UTR. PIE consists of a stem structure with
two asymmetric internal loops that represent U1A binding
sites. Both internal loops are identified by MEMERIS using
the TCM model or searching for two motifs with the OOPS
model (Figure 6). MEME detects stronger motifs in both
models that are different from the known binding sites.

The trans-activation response (TAR) element of the HIV-1
virus is required for efficient transcription (30,31). The hair-
pin loop is bound by a heterodimer consisting of Tat and
CycT1. MEMERIS clearly identifies the motif in the hairpin
loop, while MEME detects a stronger motif located in the

Figure 4. Comparison of MEME and MEMERIS for test set 8 (testing the TCM model). The figure shows 20 sequences that contain ssMotifs (highlighted
yellow) and/or dsMotifs (highlighted light blue). The optimal structure is shown below each sequence. Red and blue bars indicate the position of the motif
occurrences found by MEMERIS and MEME, respectively. While MEMERIS detects all ssMotifs and no dsMotif leading to an information content of the motif
matrix of 10.4 bits, MEME identifies a stronger motif (11.1 bits) but detects eight dsMotif occurrences. MEMERIS results are shown for PU values and a
pseudocount of 0.01. The number of motif hits was set to 21 for MEME and MEMERIS.
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stem (Figure 7). The Tat protein also binds the pyrimidine-
rich 3 nt bulge loop of the TAR element. However, neither
MEMERIS nor MEME is able to identify this binding site
because this motif is too degenerate and in several TAR
elements this bulge consists of only 2 nt.

The stem–loop destabilizing element (SLDE) consists of
three stems located in the 30-UTR of G-CSF mRNAs and is
used to regulate the stability of the mRNA (32). The hairpin
loop sequence of the third stem is essential for the function of
this element and assumed to be bound by an unknown
protein. Again, MEMERIS detects this loop as the motif,
while MEME finds a different motif (Figure 8).

DISCUSSION

RNA-binding proteins often bind in a sequence-specific
manner to RNAs but prefer a characteristical structural

conformation of the binding site. In several examples, this
structural conformation was shown to be either the sequence
of a hairpin loop (5,6,26,30), the sequence of an internal loop
(29,30), or the single-stranded sequences between two stems
(5). Furthermore, the sequestration of the binding motif in a
double-strand was found to abolish protein binding (13).
Thus, RNA secondary structure properties are important for
distinguishing real from spurious protein-binding sites
and should be considered when searching for the binding
motif of a protein.

Currently available motif finders either work only at the
sequence level or search for larger structural elements like
a stem with a bulge loop as in case of the IRE element
(16–18). Here, we present a method for simultaneously
searching a sequence motif and integrating information
about the secondary structures. To abstract from specific
structural elements, we compute a single value for each
substring that measures its single-strandedness. This
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GGGAGAATTCCGACCAGAAG
.((......))..(((((..((((((((....)))).))))..)))))((.(((....)))))....(((((((((((....)))))))..)))).

CTAGTTGGGCAACCGAGTTAGAGTCTGGCCATGCATCAGTAGGTTGCGAGGCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((...(((.(((.((((..((((((((.(..................).))))))))..)))).).)).)))...))))..))).

CCTTATCATGCTGACTCACGTCATTTCATCTCATCAAGGGAGTCAGTGGGATATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...(((..((((((((((((((.......(((......)))......)))))))..)))))))((((.....))))......)))..))).

CGTGACACACTATTCATTCATTCATGTTGATTTGTCATGGTCTTCTGGGCGCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
((..(.....)..))....(((.((.((((..((((((..(((((((...............))))))).....))).)))..)))).)).))).

AGCGTGCATGGGGGCCATTACATGTATCATTTCATTTCACTCGTGCATGGCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((((((.(.((((((.(((((((........................)))).)))))))))...).)).))).....)))..))).

CGTATACTGCCGCATCATCACATTCATAAGACATTCAGCGGACGGATACGCCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...(((.(((....))).))).((((((.(((((((..(((.....................))).....))))))).)).)))).))).

GTGGGATATCCTGAGGACGCGTCGCCATCATTCATCGTCATTTTATCGGCCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
.((......))..(((...((((((((((.(((((..(((((..................)))))..))))).))))))))))...))).......

GATGCACGTTACGAGTTGCGCACTTCATCGCATTTCATAATGCGCTCCTCGTTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((...(((....(((..(((((((...(((....................)))...)))))))...))).)))...))))..))).

TGGCGAAACTGAGGACGAGCACTCATAAGTCATAAACATCGCTAAGCCTCAGTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
(((((((((((..((((....((.....))...))))..)))...)))).............(((((...((.....))....)))))..))))..

AGCAATGGGCGTGCTGGGGGGACACATTCATTCATTCATACACGTGTCAAGCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((.........((.((....))))..(((((...(((..(((.((((.............)))).)))))))))))..))))..))).

GAGAGCGAGAGCCTAATAGACCCAGCGTTCATTAACATTCATCTTACAGCTGTTTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((...(((..(((((((((((((..((((.................))))..))))))))).))))...)))...))))..))).

GCATCACGCAAGTCTGCCGTCATCATTCATTCATACCGGTGAATTTGCGTGTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((...(((...((((((.(.(((((.((........................))))))).).)))))).)))...))))..))).

TGCGCATTTGCCGACACCCTCATTTCATCTACATATCATTACGGGTTGGGGTATGTGCGTCTACATGGATCCTCA

Figure 5. Comparison of MEME and MEMERIS for the SELEX sequences of the Nova-1 protein. The figure shows the sequences and labels of the individual
clones described in (6). The random oligonucleotides are in blue letters. The optimal secondary structure is shown below each sequence. The primer binding sites
(black letters) were included in the RNA secondary structure prediction but not in the motif search. Yellow bars represent the TCAT and ACAT motifs identified
in (6). Blue and green bars indicate the position of the motif hits found by MEME and MEMERIS, respectively. The motif matrix found by MEME has an
information content of 7.6 bits, the MEMERIS motif matrix has 7.4 bits. MEME and MEMERIS were run with the TCM model and the number of motif hits was
set to 33. MEMERIS results are shown for PU values and a pseudocount of 0.01.
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measurement is based on the base pair probabilities, thus
avoiding the more inexact consideration of only the optimal
or an arbitrary number of suboptimal secondary structures.

Performing tests with artificial and biological data, we
demonstrate that MEMERIS is able to identify single-
stranded sequence motifs which often represent the known
protein-binding motif. To maintain a secondary structure, a
mutation in a base pair often requires a compensatory
mutation. This may result in a stronger selection pressure to
double-stranded compared to single-stranded sequence
regions. Consistently, RNA-binding proteins may bind a
rather degenerate consensus sequence (7). Therefore, it is
a valuable property that MEMERIS is also able to select a
weaker over a stronger motif if this motif has a higher

average single-strandedness (exemplified in Figures 6
and 7). We conclude that MEMERIS is useful for motif
detection in SELEX or other RNA sequences or for predict-
ing protein-binding sites in cis-acting RNA elements. The
MEMERIS source code is available at http://www.bioinf.
uni-freiburg.de/~hiller/MEMERIS/.

The general principle to include prior knowledge about
the motif start sites can be extended to other applications. It
is straightforward to search for sequence motifs in double-
stranded structure parts, e.g. by computing the expected frac-
tion of bases that are paired (1-EF) or the probability that the
complete motif occurrence is paired. Moreover, it might be
advantageous to guide the motif search to loosely defined
structural elements, such as arbitrary hairpins or tRNA-like

Figure 7. Results of MEME and MEMERIS for the TAR Rfam (RF00250) dataset. The figure shows the consensus sequence and structure of the TAR element.
The hairpin loop is bound by the Tat protein (A). We searched for one binding site in each sequence (OOPS model) with MEME (B) and MEMERIS using PU
values (C). MEME detects a motif (12 bits) that does not overlap the known binding site, while MEMERIS identifies the binding site, although the respective
motif is noticeable weaker (10 bits). The known binding sites and the predicted motifs are highlighted in blue. The motif length was set to 6 nt. For MEMERIS,
the PU values were used with a pseudocount of 0.01.

Figure 6. Results of MEME and MEMERIS for the PIE Rfam (RF00460) dataset. The figure shows the consensus sequence and structure of the PIE RNA. The
U1A protein binds the single-stranded sequences in the two asymmetrical internal loops in a cooperative manner (A). Using the OOPS model, MEME finds two
motifs (14 and 13.3 bits, respectively) that do not overlap the real binding site (B) while MEMERIS finds the real upstream binding site exactly (11.8 bits) and the
downstream site (10.5 bits) with a shift of one position. (C) Since both individual binding sites are very similar, we used the TCM model to search for a motif
with two occurrences in each sequence. Again MEME finds a different motif (11.6 bits) (D) while MEMERIS detects the correct protein-binding sites (10.7 bits)
(E). The known binding sites and the predicted motifs are highlighted in blue. The motif length was set to 7 nt. For MEMERIS, the PU values were used with a
pseudocount of 0.01.
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structures. The respective probabilities can be computed by
means of RNA shapes (33). A further application can be
the search for transcription factor binding sites in DNA pro-
motor sequences. If information is available that a DNA
motif is preferably located promotor-proximal, the prior
start site distribution can be adjusted to have higher probabili-
ties for the 30 sequence ends of promotor sequences.
Since highly condensed DNA regions are inaccessible to
transcription factors (34), prior knowledge about chromatin
condensation and higher-order chromosomal structures can
be used to prevent the detection of motifs in inaccessible
regions.

In future, it would be desirable to automatically determine
the number of single-stranded motifs in a ZOOPS or TCM
model. This is challenging because the degree to which a
real binding site has to be single-stranded certainly depends
on the respective protein. Furthermore, this requirement for
single-strandedness may be affected by the presence of
RNA helicases that are involved in several important pro-
cesses like splicing and translation. Finally, the statistical
models need to be extended to account for the sequence
and the secondary structure context of a motif.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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