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Abstract

Alternative splicing can yield manifold different mature mRNAs from
one precursor. New findings indicate that alternative splicing occurs much
more often than previously assumed. A major goal of functional genomics
lies in elucidating and characterizing the entire spectrum of alternative splice
forms.

Existing approaches such as EST-alignments focus only on the mRNA
sequence to detect alternative splice forms. They do not consider function
and characteristics of the resulting proteins. One important example of such
functional characterization is homology to a known protein domain family.
A powerful description of protein domains are profile Hidden Markov models
(HMM) as stored in the Pfam database.

In this paper we address the problem of identifying the splice form with
the highest similarity to a protein domain family. Therefore, we take into
consideration all possible splice forms. As demonstrated here for a number
of genes, this homology based approach can be used successfully for pre-
dicting partial gene structures. Furthermore, we present some novel splice
form predictions with high-scoring protein domain homology and point out
that the detection of splice form specific protein domains helps to answer
questions concerning hereditary diseases.

Simple approaches based on a BLASTP search cannot be applied here,
since the number of possible splice forms increases exponentially with the
number of exons. To this end, we have developed an efficient polynomial-
time algorithm, called ASFPred (Alternative Splice Form Prediction). This
algorithm needs only a set of exons as input.

Keywords: alternative splicing, novel splice forms, Pfam, protein domain,
Viterbi algorithm, profile HMM, gene prediction
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1 Introduction

The majority of eukaryotic pre-mRNAs requires the splicing process as an
important step in maturation. Splicing removes introns, yielding a mature
mRNA whose coding sequence can be translated into a protein sequence.
Recent studies estimate that a big portion (up to 60 %) of human genes
produces alternative splice forms'. Despite this high estimate, alternative
splice variants have been detected only for a minor part of human genes to
date.

This is because we do not yet fully understand the regulatory processes
behind alternative splicing (for review see >*). Additionally, splice form
spectra vary considerably depending on cell type, tissue and developmental
stage. That is why it is difficult to elucidate the complete set of splice forms
of a gene. This difficulty became apparent again recently in a paper by
Xu and Lee*. They showed that for a number of cancer-associated genes
only the cancer specific splice form is known, although another predominant
splice variant exist in normal tissue.

In the widespread field of biomedical research numerous aberrant splice
events have been reported to be responsible for pathological phenotypes
Here, it is crucial to find the possible splice form inherent functions of a gene
in order to guide the search for the disease causing splice variant that could
be a therapeutic target. Hence, it remains a challenging task to identify
alternative splice variants and their coded proteins, both from the view of
functional genomics and biomedical research perspective.

Prediction of Alternative Splice Forms Concerning in silico pre-
diction of alternative splice forms, the majority of methods is based on
EST-clustering '®*!'. This is a very successful approach if there is suf-
ficient EST-coverage, which is not the case for all genes. Moreover, it is
hard to detect highly specific as well as low copy number splice variants
by EST-based approaches (see! for review) or microarray technologies %3
since a huge amount of different tissues at different states have to be anal-
ysed. Most of the other approaches are working on the genomic level by
predicting splice sites and introns/exons using sequence signals and compo-
sition differences '*'®. These methods are more devoted to gene prediction
and usually yield only one optimal gene structure. This limits their ap-
plication for alternative splice form prediction, since arbitrary assembly of
suboptimal, inframe exons results in a large number of false positives.

Hence, our aim is to include functional information provided by protein
domain descriptions. It is assumed that 70-88 % of alternative splice forms
alter the protein product 6. Moreover, splice forms found in EST-based
approaches can arise from rare splice errors. These alternative splice variants
are more likely to be detected with increasing EST coverage, but they are
not considered to be functional *”. Thus, an additional investigation of splice
forms on the protein level is extremely valuable.

Since protein domain coding exons are often disrupted by introns, one
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must consider concatenations of exons in order to be able to fully use protein
domain information. A statistical analysis in a recent paper '® showed that
a considerable fraction of alternative splicing (28%) concerns domain coding
exons, thus changing the domain structure of the protein.

The basic idea of our approach is to take a set of possible exons and splice
sites and to search among all exon concatenations for the one whose coded
protein demonstrates the highest homology to a protein domain. The exon
set can be generated by a gene prediction program or taken from a database.
In doing so, we consider all possible concatenations and all possible protein
domains contained in the Pfam database '°. As the Pfam database covers
the majority of Swissprot proteins !°, we expect the majority of genes to
have Pfam homologues.

The scope of this approach is twofold. Firstly, it can be used to improve
predicted gene structures. Secondly, we use this method to predict alterna-
tive splice forms coding novel functional domains currently not annotated
for this gene. Since our approach is independent from ESTSs, there is no
restriction to genes with sufficient EST coverage. Furthermore, prediction
of splice variants coding functional domains often indicate in which tissues
it might be expressed, which facilitates verification.

Although there are programs that use protein information for gene pre-
diction 152021 ' these either expect one known homologous protein or they
use BLAST in order to find homologous regions. In our approach fast heuris-
tic search methods like BLASTP cannot be applied, since an n-exonic gene
can produce 2" possible splice forms by systematic exon skipping. A sim-
ple generate and test approach would have to check 4,294,967,296 different
sequences for the 32-exonic human DSCAM gene. Thus, the computational
problem is to cope with an exponential number of sequences. Furthermore,
our approach aims at concatenating several exons to yield a homology hit
and does not rely on independent local hits from a BLAST search.

Description of the Approach Given a set of exons we analyse the
complete set of possible splice forms to detect those having high similarity
to protein domain families. Protein domains stored in the Pfam database
are described by profile HMMs ?*?>, We present here an approach, called
ASFPred, that computes in polynomial runtime the splice form that has the
highest similarity to an HMM. This algorithm is an extension of the classical
Viterbi algorithm ?* which is a variant of dynamic programming (DP). The
crucial extension is to allow for exon skipping when calculating the dynamic
programming matrix. This means, on the left boundary of exon i we include
all skipping events that skip previous exons j,...,i—1 for all j <i—1. The
sophisticated part of the algorithm was the necessity to handle frameshifts
occurring during the skip process, thus ensuring the existence of an open
reading frame (ORF).

Current knowledge declares one or more annotated exons per gene as
constitutive ones >, i.e. they are part of all mature transcript variants. This
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a priori classification can be questioned because any exon can be consid-
ered as constitutive only as long as no alternative splice form lacking this
particular exon is found. Although it would be easy to handle certain exons
as constitutive ones in our algorithm, we do not allow for constitutive exons
here, since this would mean a restriction to known splice forms.

Plan of the Paper. Inthe next section we present our algorithm. For an
easier understanding of our algorithm we first consider a nucleotide-based
HMM. Eventually we will use an HMM on protein level. In the last two
sections, we present some encouraging results of our approach and conclude
with a discussion.

2 Algorithm

2.1 Nucleotide-level HMM target

For aligning a sequence to an HMM the preferred method (e.g. in the
HMMER package ) is to compute the path through the HMM having the
highest score. This is usually done by means of the Viterbi algorithm 4. In
our case there is an exponential number of splice form sequences that have
to be compared with the HMM, so that pair comparison is not feasible. By
turning the problem into an optimization problem, we were able to develop
an extended Viterbi algorithm to solve this problem in polynomial runtime.
Instead of considering all possible splice forms explicitly we search only for
the one showing the highest similarity to a given HMM.

Let us formalize the problem. Given a gene G with n exons ei,..., ey,
and an HMM H, we then denote the binary vector s = (s1,..., Sn), where
si is 1 if exon 7 is expressed and O if exon i is skipped, as a splice form.
Furthermore, splice = {s|s = (s1,...,sn) and s; € {0,1}} is the set of
all possible splice forms. Let DN A(s) be the concatenated DNA sequence
of all expressed exon sequences in s and Sc(H, DN A(s)) the Viterbi log-
odds score of sequence DNA(s) and HMM H. Our algorithm computes
the splice form that maximises the Viterbi score Sc(H, DN A(s)), that is
Smaz = argmazscsplice{ Sc(H, DN A(s))}.

The basic idea is to include exon skipping during the calculation of the
dynamic programming matrix. Since an HMM can be divided into emitting
and silent states, we have to determine which states allow for exon skipping.
Clearly, exon skipping has to be handled for all emitting states. But what
about silent states? A silent state always has an emitting state as (indirect)
predecessor, where the current character is emitted. Hence, we can use stan-
dard recursions for silent states and only extend the equations for emitting
states so that exon skipping is included.

Let V;(4) be the log-odds score of the best path through the HMM ending
at state j with sequence position i. We denote the log-odds score that state
x emits character y by E,(y), and the log-odds score for the transition from
state = to state y by Az,,. We write P(z) for the set of predecessors of z, i.e.
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all states that have a direct transition to state z. Let S be the concatenated
DNA sequence of all exons of G.

Let B, = {b}, ..., b,,} be the set of left boundaries for exon 2 to n, where
bl is the position of the first base of exon i in S. Let B, = {b7,...,b"_1} be
the set of right boundaries for exon 1 to n — 1, where b; is the position of
the last base of exon i in S. These two sets correspond exactly to the set of
splice signals. The algorithm requires S, B5; and B, as input.

The recursion equation for the extended Viterbi algorithm is:

E;(S[4]) + back(j,i — 1) if i ¢ By and j emitting
E;(S[i]) + max back(j,l) if i€ B; and j emittin
Vi (i) = 5 (S[d) Jhax. (4,0 1 and j g
0 <1
back(j,1) Jj silent

where back(j,i) = max {V,(i) + Ap ;}.
PEP(F)

Note that the definition of V; (i) implies only that sequence position ¢ is
reached, not that the complete subsequence S[1...1] is emitted. So V;(i)
gives the score for the best subalignment ending with state j of the best
concatenation of upstream exons up to position .

Since this algorithm guarantees that only disjoint sequence parts (bounded
by elements from 5; and 5;) are concatenated, it finds the best non-overlapping
concatenation regardless whether the given exon set contains overlapping
exons or not. This means that 3, and B, can comprise alternative 5’ and
3’ ends of exons, respectively, to allow for alternative 5’ and 3’ splicing.
Moreover, B3; and B, can also contain splice sites predicted by a computa-
tional splice site finder. A graphical illustration is given in fig. 1. Thus,
our algorithm does not rely on one fixed exon-intron structure, which is of-
ten incomplete or erroneous. Furthermore, we have the possibility to find
undetected exonic sequences and to expose novel splice sites.
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Figure 1: Tllustration of the left and right boundaries: Shown are two exon structures that may
be generated by two different gene predictors or may be transcripts taken form a database. Since
the left boundary of the first exon and the right boundary of the last exon does not correspond
to a splice site, they are not contained in B; and B,.. The boundaries in B; and B, are shown in
blue.



2.2 Protein-level HMM target

The last section showed how to compute efficiently the most similar exon
concatenate to an HMM on nucleotide level. We now describe how the algo-
rithm can be modified for an HMM on amino acid level so that frameshifts
as well as proper ORFs can be handled simultaneously. Since not all exon
lengths are multiples of three nucleotides, frameshifts occur during exon

skipping.
Codon GGA -7 -7 (—)odon GCA _ :: BN ~. current sequence
exon 2-3 skipped -~ ~ exon 3 skipped, - ~ Codon TAA ™ S = position
» ’ % ’ no skipping ‘\‘\l
DNA [exon 1 [T]G[G] exon 2 [Alclc]  exons [1[T]a]A[6]d]
Codon GAG Pt Godon EAG ) : CIInsll curtent sequence
exon 2-3 sklpp,eg Pid exon3 sklpped/ s Codon AAG™ S . position
» ,’ no skipping f \\“
DNA | exon 1 ‘T‘G‘GI exon 2 ‘A‘G‘CI exon 3 ‘T‘T‘AIA‘G‘C‘
Codon AGC -7 . —Codon AGC - Sk Sso current sequence
exon 2-3 skipped -~ exon 3 skipped, © Codon AGC ™ position
» ‘ » no skipping *\:‘
DNA [exont [T[ce]  exon2 [Alclc] exon 3 [1[T]a]A[cld]

Figure 2: Scheme of the basic idea of the algorithm shown for positions with maximal distance
of 3 to the left exon boundary. The current position determines which nucleotides the splice
junction codon comprises. Note that different codons arise from different exon skipping events.
While computing the DP matrix from left to right, already precomputed entries (to the left) are
accessed for the computation of each entry. The arrows indicate the sequence position where
the DP matrix is accessed during recursion.

According to section 2.1, now the problem is the computation of smaes =
argmazsespiice{ Sc(H, AA(s))}, where AA(s) is the translated DNA sequence
DN A(s). To switch to protein level we consider the current sequence po-
sition in S the third codon position and translate the codon consisting of
the current and the 2 previous DNA bases. Then the step length is set to
3, i.e. we access V(i — 3) when computing Vj(¢). Since frameshifts can
occur during exon skipping, we have to extend the Viterbi algorithm in or-
der to include all 3 reading frames. Hence, exon skipping is allowed if the
current sequence position is not more than 3 DNA bases away from a left
exon boundary. Figure 2 illustrates the idea of the algorithm. It shows that
each skipping variant can lead to a different codon and, thus, to a different
amino acid.

The protein domain information is taken from the Pfam database '°.
Thus, we will specify the recursion equations of the extended Viterbi al-
gorithm for the plan7 architecture of a profile HMM ?* because this is the
architecture of all Pfam-HMMs. Of course, the algorithm is not restricted to
plan7. Plan7 means that direct transitions between insert and delete states
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Figure 3: Architecture of a four match state plan7 profile HMM. Match states are shown as
squares, insert states as diamonds and silent states as circles. The dashed lines indicate direct
entry and exit transitions. Note that the architecture demands that at least one character be
emitted in each iteration B - M; — ... - FE — J — B.

and vice versa are not allowed (see fig. 3). The main model is separated by
two silent states (B- and E-state). Furthermore, there are three special in-
sert states: one before the main model (/N-state), one after the main model
(C-state) and one allowing multiple iterations through the main model (J-
state). Note that the special insert states only emit characters on the loop
transition. Moreover, there are direct entry transitions from B-state to any
match state as well as direct exit transitions from any match state to E-state
(dashed lines in fig. 3).

Let H be a plan7 profile HMM with m match states, m — 1 insert and
m — 2 delete states. According to the notation in >, V" (4) is the log-odds
score of the best path through the HMM ending with match state j with
sequence position 4. Similarly, V} (i), V;” (i) are defined for insert and delete
states and VX (i) for the special states, where X € {S,N, B, J,E,C,T}.

With B; @ 1 (resp. B; @ 2) we denote the set {b5 + 1,...,b}, + 1} (resp.
{vh +2,...,bl, + 2}). Furthermore, we write codony; , for the amino acid
that corresponds to the translated codon S[i|S[j]S[k]. Hence, we get the
following equation for the M-states.

Zman {EMj (codonf_; , ;) + back™ (5, — 2)} ifie B
€ B,
£<i

max {EM.(codonfi_1 ;) + back™ (j,£ — 1)} ifieB @l
VM (i) = max L€ By, ’ C

J 0<i—1
Zman {EMj (codonf_g’i_l,i) + back™ (5, 6)} ifieB @2
€ B,,
L<i—2
Eu, (codony 5, ;) + back™(j,i — 3) otherwise

7



Vj]KIl (O)+An;_y 0
VjI—l (£)+A1j—1ij

V21 (O+Ap,_,
VE() +AB, M,

The recursion equation for the /-states is

where back™ (j, £) = max

Zrnaé( {Ezj (codonf_l,“) + back’ (j, ¢ — 2)} ifieB
€ By,
<1

max {E[j (codon‘Zi_l,i) + back’ (5, ¢ — 1)} ifieB el
le (¢) = max /ff_ﬁl

Zrnaé( {Ejj (codonf_g’i_l,i) + back’ (4, E)} ifieB &2
€ B,,
£<i—2

Er,(codonf 5 ; ;) + back’(j,i — 3) otherwise

v (£)+An.15
vi'(0) +AL, 1

The recursion equation for the special insert state C is a little tricky,
since C' acts as both a silent and a non-silent state. Characters are only
emitted via the loop transition, so exon skipping will only be handled for
the C — C transition. This yields the following equation:

where back’ (j, £) = max {

max {Ec(codonzs,l,g,i) + back® (¢ — 2)} if i € By
€ By,
0 <1

max {Ec(codon‘zi,l,i)+backc(e_1)} ifieB ®1
€ By,
L<i—1

max {Ec(codonf,u,l,i) + backc(£)} ificB @2
€ By,
£<i—2

Ec(codonf,u,l,i) + back® (i — 3) otherwise

max
ve (1) = max

VE(i) + Ap,c

where back® (/) = VE(0) + Ac.c



The equations for N-state and J-state are similar to the C-state equation
and are not shown. Just for completeness, we show the recursions for the
silent states:

, VM (i) + Am, D,
V,D — j—1 i i—11j
! (Z) max{‘/]Dfl(Z) +AD]'71,D]‘

VN +An.B
V(i) +AsB

VE() = _max (VM) + Awm; B}
j=1,....m

V2 (i) = max {

VT = Ve E) + Acr

Of course, not all possible splice forms will form an ORF, since some of them
might lack a start and/or stop codon. The start and stop codon condition
can easily be included in the algorithm. Since matrix entries for the start-
state are not computed but initialised, we set all of them to —oo except for
the positions where a start codon begins.

s;n_ | O if S[i+1]S[i +2]S[i + 3] = ATG
Vo(i) = .
—oo otherwise

To allow for stop codons, we define

—c0 if S[i]S[j]S[k] € {TGA,TAA, TAG}

(codony; 1) {Ex(codonfj,k) otherwise

for all non-silent states x. Note that, although alternative starts of the
first exon and ends of the last exon are not contained in B; and B,, the
consideration of all start and stop codons addresses this implicitly. To com-
pute the highest Viterbi score Scpmar(H, AA(s)) we have to heed the stop
codon condition and that a stop codon can be assembled on exon bound-
aries. Therefore, during the dynamic programming procedure we compute
all positions after which a stop codon occurs and denote this set as EndPos

-2 | S[t-1]S[(]S[i] € {TGA ,TAATAG}:
LeBr, b<ii€B

-1 | S[fS[i—1]S[i] € {TGA,TAATAG}:
leB,b<i—1,ieBdl

{ | S[i—2]S[i —1]S[i] € {TGA,TAA TAG} :
leBrl<i—2,i€B ®2

i—3 | S[i—2|S[i —1]S[i] € {TGA,TAATAG} :
iQBlUBléBlUBLEB2

EndPos =

Then Scmaz(H, AA(s)) is given by
Semaz(H, AA(s)) = max{V7 (i) | i € EndPos}.
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A normal traceback determines sma.. Backtracking from other positions in
EndPos and choosing suboptimal paths on a traceback can be used to find
suboptimal splice forms.

Runtime The runtime of the algorithm is as follows. Let M be the
number of states in the HMM and k be the length of S. For plan7 profile
HMMs M = m+ (m — 1)+ (m —2) + 7. The number of direct predecessors
(max;{|P(i)|}) is bounded for profile HMMs. There are k—3(n—1) sequence
positions that do not allow for skipping, resulting in O(M - k) runtime for
those columns of the matrix. One of the remaining columns, e.g. column b!,
needs O(M-(i—1)) runtime because of the i—1 possible skipping events. This
results in O(X7_, M - (i — 1)) = O(M Y07 i) = O(M=)my — O(M - n?)
and, therefore, O(M - k + M - n?) for the complete algorithm. Since the
matrix V;(4) is two dimensional, O(M - k) space is needed.

3 Results

In this section we first show that our algorithm can be successfully applied
to the prediction of partial gene structures. After that we present interesting
examples of novel splice form specific domains found in our approach.

Prediction of Partial Gene Structures We downloaded genomic
sequences (+ 5000 nt flanking both sides) of several genes with annotated
exon structure and annotated Pfam domains from Ensembl?? version 17.33.
Genscan'* was used to predict gene structures in those sequences. Although
Genscan is considered to be one of the most accurate gene predictors, the
program sometimes predicts wrong exons or exon boundaries and misses
some exons. We observed that for incorrect predictions the annotated exons
are often contained in the suboptimal predictions. Therefore, we let Genscan
output all suboptimal exons.

The boundaries of all optimal and suboptimal exons were put into ASFPred
and HMMs from Pfam database release 9.0 were used to predict the exon
concatenation with the best match to the Pfam domain. For a correct test-
ing procedure, we have to assure that the Ensembl protein is not contained
in the seed alignment of a Pfam-HMM. Otherwise we would expect to find
the annotated exon structure. Therefore, we rebuilt the HMM without this
protein in such cases. Then we compared the prediction of our program with
the annotated exon structure and the Genscan prediction. In the majority
of cases where Genscan has missed exons or predicted wrong exons we found
the correct annotated exon structure. The results are summerized in table
1. Figures 4 and 5 discusses two more complex examples in detail. In all
cases where the optimal gene structure of Genscan contains all annotated
exons belonging to one domain, ASFPred confirmed the Genscan prediction.
These cases are not shown in table 1.
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In few cases (RBM5, WRN-PF00271 in table 1 and fig. 5) we found
an exon concatenation that yields a higher score than the Ensembl protein
and is different from the annotated one. In all these cases, the suboptimal
output of ASFPred contained the annotated exon concatenation. Of course,
it is possible that these predictions with a higher score, as well as Genscan
exons not being annotated, belong to alternative splice forms that are not
yet discovered. Note, that our algorithm addresses only exons coding the
Pfam domain. Since the input only consists of the Genscan prediction we are
not able to predict an exon that is not among the suboptimal exons. Nev-
ertheless, the results presented below show that our approach is successful
in improving a predicted gene structure.

PTPN18
E2 E3 E4 E5 E6 E8 EI11 E15
Annotation l’ - . L L | A0 By
5000 10000 15000 20000
racion 3 | 10 LTI D
optimal
Pfam score

’ initial exon ' terminal exon I internal exon PF00102 domain exons

Figure 4: The annotated PF00102 domain of PTPN18 covers exon 2-11 (colored green) as
shown on the top line. Genscan predicts one big exon instead of the 2 smaller exons 3 and 4, but
both are contained in the suboptimals. Furthermore, it missed exon 8, but predicts a smaller
downstream exon. Again annotated exon 8 is among the suboptimals. As shown on the last
line, ASFPred outputs an exon structure that corresponds exactly to the annotated one. This
improves the gene structure for the part that is covered by the Pfam domain.

Prediction of Alternative Splice Forms In the second part we ap-
ply this approach to the prediction of alternative splice forms. Here, we
aim at detecting splice form specific protein domains that are currently not
associated with the corresponding gene. To this end, we exclude all anno-
tated Pfam domains from the search. Our aims are, firstly, to investigate
the spectrum of protein domains (and thus protein functions) that can be
coded by one gene and, secondly, to guide continuative experimental efforts,
both in silico and in the wet lab.

We have scanned 125 arbitrary selected Ensembl-genes (version 17.33)
with ASFPred. For the results discussed below Pfam database release 9.0
containing 2846 human profile HMMs was used and cut-off parameters were
set to standard values as recommended in Eddy **. Complete mRNA —
exonic and intronic — sequences were downloaded from Ensembl and known
splice sites derived from known exons were added to the set of boundaries.
Additionally predicted splice sites from Genesplicer >® and Genscan '* were
put into the algorithm.
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HUGO Exons Pfam Genscan prediction | in subop- | prediction of ASFPred
timals
FGR 11 PF00069 | exon 11 beginning | exon 11,/ | wrong beginning corrected,
15 nt upstream of perfect prediction
correct site
LASP1 8 PF00412 | wrong exon pre- wrong exon skipped, perfect
dicted (1.05) prediction
PF00880 | 2 wrong exons pre- both wrong exons skipped,
dicted (1.07, 1.09) perfect prediction
APBA3 11 PF00640 | wrong exon pre- wrong exon skipped, perfect
dicted (1.06) prediction
ABCB1 29 PF00664 | exon 18 and 24 | exon 18/ | exon 18 predicted, suboptimal
missed exon 24 () | S.239 included that is not iden-
tical with exon 24
ATRX 35 PF00176 | exon 18 missed exon 18 \/ | exon 18 predicted, perfect pre-
diction
PF00271 | wrong exon pre- wrong exon skipped, perfect
dicted (9.14) prediction
WRN 35 PF01612 | exon 3 and 4 | exon 3 / | exon 3 and 4 predicted, a sub-
missed, exon 5 as | exon 4 / | optimal exon 5 with beginning
shortened  initial | exon 5 42 nt downstream of correct
exon predicted site but correct end and same
(exon end correct) reading frame predicted
PF00270 | exon 13 and 16 | exon13,/ | exon 16 and 19 predicted,
missed, exon 14 be- | exon 14 / | wrong exon 14 beginning not
ginning 22 nt up- | exon 16 / | corrected, exon 13 not found
stream of correct | exon 19/ | instead upstream exon (2.03)
site, exon 19 be- taken (2.03 is an annotated
ginning 15 nt up- exon but not considered to
stream code a part of PF00270 do-
main)

PF00271 | exon 29 missed exon 29 / | predict exon 20 instead of 29
since this increases Pfam-score
in comparison to score from the
Ensembl-protein (here only the
last 4 amino acids of exon 29
contribute to the domain and
the last 4 amino acids of exon
20 give a higher score)

RBM5 25 PF00076 | exon 5 and 6 | exon 5 4/ | exon 5 and 6 predicted, in-
missed exon 6 \/ stead of annotated exon 7 an

upstream suboptimal Genscan-
exon taken since this results
in a higher score than the
Ensembl-protein

Table 1: The columns are: gene name, number of exons, Pfam accession number for annotated
domains, errors in Genscan prediction, the correct exons that are among the suboptimals and
prediction of ASFPred. If annotated exons are among suboptimals a |/ is shown otherwise a
(. The numbers in brackets correspond to the Genscan output (1.05 for exon in optimal gene
structure, S.239 for a suboptimal exon).
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SLC15A13

hdm
m

Annotation L L L L L L

0 10000 20000 30000 40000 50000 60000 70000 80000

peacion | ) b1/ 111

optimal ™~ exon end 29 nt

Pfam score downstream predicted
suboptimal

Pfam score

E4 E6 E7 E8 E9 E10E11 E12 E13 El4 E16
AnnotationL—— 1 L || I I I ! 1

80000 90000 100000 110000 120000 130000 140000 150000 160000

raaen 3 1TIIL WD T 11 I (. in

optimal

Pfam score
suboptimal
Pfam score

] initial exon ’ terminal exon I internal exon PF00036 domain exons PF00153 domain exons

Figure 5: SLC25A13 has two annotated domains. PF00036 (colored yellow) is coded by exon
1-4, PF00153 (green) consists of exon 8-15. Genscan predicts 4 complete genes and one partial
gene at the beginning. The exon concatenation yielding the best score is shown on the third line.
For PF00036 we are able to correct the wrong 3’ end of exon 2. But we predict exon 6 instead
of exon 3 and 4 since this increases the score from 27.8 for the Ensembl protein to 31.8. A
possible alternative splice variant that skips exon 3-5 and still codes this Pfam domain cannot
be excluded. The second best exon concatenation (shown on the last line) gives the correct
annotated exon structure. For PF00153 the optimal exon concatenation equals the annotated
structure. Here, ASFPred is not only able to skip wrongly predicted exons or correct wrong
boundaries but gives a clear hint that this genomic region codes only one connected gene and
not several as predicted by Genscan.

For most genes additional Pfam hits were found. Here, we present only
high-scoring hits with much higher scores than the trusted-cutoff values
given by the Pfam database. Those hits are shown in table 2. We are able to
predict a function for some genes that have currently no Pfam annotation.
For example, ENSG00000006634 yields a BRCA1 C-Terminus domain by
skipping exon 4. Moreover, ENSG00000073578 is predicted to produce a
splice form that replaces the C-terminal domain (PF02910) with a Integrase-
domain (PF00665) by inclusion of two Genscan exons and usage of annotated
exon 14. Interesting is that exon 14 (114 nt long) is used in reading frame
0 to code for PF02910 in the Ensembl transcript, while our prediction uses
reading frame 1 to code a part of PF00665.

For a molecular etiology study, the 10-exonic marenostrin gene (MEFV,
ENSG00000103313), about 20 mutations of which are known to be causal for
Familial Mediterranean Fever (FMF, see OMIM 249100) was subjected to
ASFPred. Among the new Pfam signals recorded, PF02177 and PF00050
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EnsemblID
Pfam

score
E-value
splice form

ENSG00000005059

PF04588 (Hypoxia induced protein conserved region)
131

1.45e-36

13659 - 13880 (Genscan exon)

25057 - 25173 (Ensembl exon 5)

EnsemblID
Pfam

score
E-value
splice form

ENSG00000006634

PF00533 (BRCA1 C Terminus (BRCT) domain)
29

6.73e-06

1833 - 2005 (Ensembl Exon 2)

8759 - 8938 (Ensembl Exon 3)

11109 - 11178 (Ensembl Exon 5)

11763 - 16839 (Ensembl Exon 6)

EnsemblID
Pfam

score
E-value
splice form

ENSGO00000009780

PF00834 (Ribulose-phosphate 3 epimerase family)
136

3.92e-38

4151 - 4252 (Ensembl exon 3)

13914 - 14387 (Genscan exon)

22412 - 22462 (Genesplicer acceptor)

EnsemblID
Pfam

score
E-value
splice form

ENSG00000076258

PF01028 (Eukaryotic DNA topoisomerase I, catalytic core)
126

2.99e-35

429 - 578 (Genscan exon)

3178 - 3366 (Ensembl exon 4)

5875 - 5885 (Genscan exon)

19539 - 19858 (Genscan acceptor)

EnsemblID
Pfam

score
E-value
splice form

ENSG00000073578

PF00665 (Integrase core domain)
104

1.93e-28

29143 - 29583 (Genscan exon)
34701 - 34724 (Genscan exon)
36037 - 36150 (Ensembl exon 14)

EnsemblID
Pfam

score
E-value
splice form

ENSG00000079785

PF05330 (Protein of unknown function (DUF741))
336

1.79e-98

14391 - 16312 (Genesplicer acceptor and donor)
18086 - 18146 (Ensembl exon 14)

Table 2: Partial splice form predictions with hits that are much higher than Pfam trusted-
cutoff scores. The splice form positions refer to the absolute position downstream from the
transcription start. Here, only the part of the spliceform that codes the domain is shown.
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attracted our co-operators’ attention (T. Ghewondian, Yerevan, personal
communication). PF02177 "Amyloid A4 extracellular domain" is a func-
tional domain in brain proteins related to amyloid plaque formation during
neurodegeneration. The occurrence of a sequence fragment in alternatively
spliced marenostrin resembling amyloidosis pathomechanisms is worth fur-
ther investigation, because FMF patients suffer from protein deposit forma-
tion in kidneys (secondary amyloidosis). The other signal, the Kazal-type
serine protease inhibitor domain may have direct influence on protein de-
posit formation and/or disturbed removal of such deposits in patient kidney
as well. The possible direct influence of the according splice variants in
normal and FMF-tissue is now under investigation.

4 Discussion

Our approach allows protein domain analyses of a large spectrum of splice
forms a gene can produce. We presented an algorithm that copes with
the exponential number of theoretically possible splice forms in polynomial
runtime. Moreover, we demonstrated how to assess the splice form spectra in
terms of protein domain homology. Furthermore, we showed how to include
protein domain homology into gene prediction.

Evidence for the existence of alternative splice forms are expected from
EST-based alignment methods. Since the ESTs from publicly available
databases do not cover a number of genes sufficiently, a big problem arises
in case of rarely expressed mRNA species and minor splice form compo-
nents. The protein domain homology of a predicted alternative splice form
sometimes even narrows the range of tissues where it might be expressed.
This is extremely valuable for wet lab techniques like PCR methods since
it facilitates and speeds up verification. Furthermore, we will use mass
spectrometry data from proteome research for verification purposes. A web
server for testing ASFPred is in preparation.

In summary, the approach outlined in this paper complements existing
bioinformatic techniques for predicting gene structures and alternative splice
forms.
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