
GigaScience, 10, 2021, 1–10

https://doi.org/10.1093/gigascience/giab045
Technical Note

TE CHNICAL NO TE

StoatyDive: Evaluation and classification of peak
profiles for sequencing data
Florian Heyl 1,* and Rolf Backofen 1,2,*

1Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106,
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Abstract

Background: The prediction of binding sites (peak-calling) is a common task in the data analysis of methods such as
cross-linking immunoprecipitation in combination with high-throughput sequencing (CLIP-Seq). The predicted binding
sites are often further analyzed to predict sequence motifs or structure patterns. When looking at a typical result of such
high-throughput experiments, the obtained peak profiles differ largely on a genomic level. Thus, a tool is missing that
evaluates and classifies the predicted peaks on the basis of their shapes. We hereby present StoatyDive, a tool that can be
used to filter for specific peak profile shapes of sequencing data such as CLIP. Findings: With StoatyDive we are able to
classify peak profile shapes from CLIP-seq data of the histone stem-loop-binding protein (SLBP). We compare the results to
existing tools and show that StoatyDive finds more distinct peak shape clusters for CLIP data. Furthermore, we present
StoatyDive’s capabilities as a quality control tool and as a filter to pick different shapes based on biological or technical
questions for other CLIP data from different RNA binding proteins with different biological functions and numbers of RNA
recognition motifs. We finally show that proteins involved in splicing, such as RBM22 and U2AF1, have potentially
sharper-shaped peaks than other RNA binding proteins. Conclusion: StoatyDive finally fills the demand for a peak shape
clustering tool for CLIP-Seq data that fine-tunes downstream analysis steps such as structure or sequence motif predictions
and that acts as a quality control.
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Findings

Background

The biological function of a protein is determined by its inter-
action partners and the mode of interaction. Studying these in-
teractions broadens our horizon about the cellular mechanisms
such as alternative splicing and post-transcriptional regulation.
Cross-linking immunoprecipitation in combination with high-
throughput sequencing (CLIP-Seq) fathoms these interactions.

CLIP-Seq investigates all interactions between an RNA binding
protein (RBP) and its target RNAs [1]. CLIP-Seq thus scrutinizes
the post-transcriptional regulation by RBPs. Prediction of bind-
ing regions (peak-calling) is a crucial step in the data analysis of
methods such as CLIP-Seq. Before the peak analysis there is typi-
cally no evaluation and classification of the peak characteristics.
Yet, the obtained peak set might have different peak profiles that
are worth filtering to refine a downstream analysis. The differ-
ent peak shapes are the result of several biological and technical
problems.
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Figure 1: We show 2 significant peaks of a CLIP experiment for the protein SLBP
(ENCSR483NOP, replicate 2). One can see peaks with drastically different peak
profiles, pointing towards more specific (A) or unspecific (B) binding. Current

analysis of CLIP binding sites is typically based on manual inspection of a few
peaks. Thus a general tool is missing that allows peak profiles to be filtered, clus-
tered, and quantified, therefore refining downstream analysis tasks for data such
as CLIP. StoatyDive assists in finding and distinguishing peaks like (A) and (B).

Many RBPs have several binding domains with different bind-
ing affinities, and are often part of protein complexes, lead-
ing to an intricate binding pattern. As described in a review
by Jankowsky and Harris [2], there are specific and unspecific
binders. Examples of unspecific binders are often RBPs that need
to bind many RNAs such as messenger RNA (mRNA) export fac-
tors [3]. Another example of common unspecific binders are
RNA helicases. However, even more specific RBPs bind RNAs
in a large range of affinities, indicating that different bind-
ing sites vary in their binding specificity. While many fac-
tors, such as the affinity of an RBP for the binding site and
the concentration of the protein and RNA, influence the bind-
ing specificity, it is likely that these factors are manifested in
the CLIP binding profile landscape. At this point, however, no
tool exists that can be used to study this possibility in more
detail.

In addition, technical biases might change the peak profile
landscape. Binding artifacts might be introduced during read li-
brary preparation. Protocol biases, e.g., PAR-CLIP biases that are
introduced by endonuclease and photoactivatable nucleosides
[4], might also affect the binding site predictions. In addition,
the peak caller itself might generate specific peak profiles and
false-positive results, which the user might not want to have in
their data.

This leads to many questions in the data analysis of bind-
ing sites that currently cannot be answered adequately. Exam-
ples are: Does my protein of interest bind generally specifically
(Fig. 1A) or unspecifically (Fig. 1B)? Does my RBP of interest have
>1 binding motif? Does my experiment have any quality issues,
meaning, do my reads come from unspecific bindings because of
library preparation artifacts? Does my protocol generate biases?
Do I have false-positive reults in the set of predicted peaks from
my peak caller of choice?

We hereby present StoatyDive, a tool to evaluate and clas-
sify peak profiles to help answer the aforementioned questions.
StoatyDive uses the whole peak profile, as well as predefined
features, to do a peak shape clustering for sequencing data. In
this article, we test StoatyDive on CLIP data of the eCLIP proto-
col from the histone stem-loop-binding protein (SLBP) from the
study by Van Nostrand et al. [5]. SLBP has been reported to be a
histone mRNA export and translation factor [6]. StoatyDive de-
livers several plots and a table to assess the different binding
profiles of a protein. The tool assists in the selection of specific
and unspecific binding sites and in finding similar shaped peak
profiles. Thus, we try to refine the obtained peaks of the SLBP
data to find more specific sites of SLBP. It also helps as a quality
assessment to validate a CLIP-Seq or any other binding experi-
ment. Later in the article, we use StoatyDive to investigate the
peak profile landscape of different RBPs with different biologi-
cal functions and different numbers of RNA recognition motifs
(RRM). StoatyDive comes with some test data and a quick instal-
lation guide.

Figure 2: StoatyDive generates a coefficient of variation (CV) distribution to eval-
uate the peak profile shapes, which can be used as a quality control. The CV

distribution of the peak profiles of the input control and Replicate 1 of the SLBP
CLIP-Seq experiment are quite similar. In contrast, the CV distribution of Repli-
cate 2 is different. The number of uniquely mapped reads is listed below the
sample name.

Data preparation of SLBP and analysis

We used eCLIP data of the protein SLBP (ENCSR483NOP;
GSE91802 [5]). The data comprised 2 CLIP replicates and a
size-matched input control from immortalized myelogenous
leukemia cells (K562). We processed the data with the snake-
make pipeline SalamiSnake [7] (v0.0.1) for eCLIP data. SLBP
has been reported to be cytoplasmic but to be present also in
the nucleus [6]. Thus, we mapped the reads against the hu-
man genome (version hg38) with STAR [8], also taking the tran-
scriptome into account. We predicted potential binding sites
of SLBP with PureCLIP [9], which we ran for each CLIP repli-
cate separately, taking the input control into account. We ex-
tended the predicted binding regions by 20 nucleotides left and
right because PureCLIP often underestimates the binding re-
gion. We further fused the predicted peaks from each CLIP repli-
cate with BEDTools [10] to get a robust set of predicted binding
sites, which resulted in 899 robust peaks. We executed Stoaty-
Dive (v1.1.0 with umap v0.2.5.0) with length normalization, a
penalty for broader plateaus, and peak profile smoothing. The
complete call was as follows: StoatyDive.py -a peaks.bed -b
reads.bam -c hg38.chrom.sizes.txt –peak correction –scale max
10 –border penalty –sm.

Peak profile landscape reveals variability of binding
sites

The user obtains from StoatyDive a distribution of the coeffi-
cient of variation (CV), calculated for each peak, to get a broad
overview of the peak profile landscape of their experiment (see
Methods). Broader peaks tend to have a CV ≈0. Although the CV
distributions of the input control and Replicate 1 of the SLBP data
differed significantly (1-sided Wilcoxon test P-value = 0.03), both
contained a lot of regions with a CV ≈0 (Fig. 2, both with a mean
CV of 0.47). In contrast, the CV distribution of Replicate 2 was
distinct (P-value < 0.05 to input control and Replicate 1) because
it had more peaks with a higher CV (mean CV of 1.41) and thus
more specific binding events (e.g., Fig. 1A, CV ≈ 5.3). Yet, some
potential binding sites were more unspecific with a CV ≈0 (e.g.,
Fig. 1B, CV ≈ 0.0003).

The CV distribution of the input control was expected be-
cause an ideal control experiment should contain no real or not
enriched binding events; i.e., the value of all CVs is expected
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Figure 3: Coefficient of variation (CV) distributions of exonic and intronic peaks
reveal a difference in the profile shapes. The CV distributions of the peak profiles
of Replicates 1 and 2 are more similar in exonic regions than in intronic ones.

The number of peaks is listed next to the sample names. The ratio of exonic and
intronic peaks is ∼1.6 for Replicate 1 and ∼1.3 for Replicate 2.

to be very small and close to 0 (see Supplementary Fig. S1).
However, the CV distribution of Replicate 1 was more similar to
the control experiment than to Replicate 2. A CLIP experiment
should result in a peak set with enriched regions and thus more
specific peaks. The distribution of Replicate 1 indicates some
degree of variability in the binding events. However, we have
to stress that this does not necessarily depict a poor quality of
Replicates 1 and 2. For a downstream analysis, e.g., the predic-
tion of sequence motifs, it is worth investigating why the CV dis-
tribution of Replicate 1 was very different from that of Replicate
2. A sequence motif prediction depends on the selected bind-
ing sites; thus, StoatyDive’s inspection allows the user to assess
the binding sites using the CV distributions. This helps to ap-
praise whether SLBP has different binding mechanisms, which
we further investigated and discussed in section ”Information
from peak profile shapes.”

We checked the robustness of the CV distribution and split
the second replicate into 2 pseudo-replicates. We randomly se-
lected 50%, with and without replacement, of the reads for
Pseudo-replicate 1 and the other half for Pseudo-replicate 2.
Both scenarios gave us similar results. Without replacement,
Replicate 1 had a mean CV of ≈1.05 and Replicate 2 a value of
≈1.03, with a P-value of 2-sided Wilcoxon test of 0.768. With re-
placement, Replicate 1 had a mean CV of ≈1.05 and Replicate 2 a
value of ≈1.02, with a P-value of the Wilcoxon test of 0.7546. For
example, the sharp peak in Fig. 1A had a CV in both scenarios
of ≈5.2 and ≈5.3 for Pseudo-replicate 1, and ≈4.8 and ≈5.4 for
Pseudo-replicate 2. The peak Fig. 1A was in the peak list on po-
sition 47 and 42 for Pseudo-replicate 1, and 52 and 45 for Pseudo-
replicate 2. The broad peak Fig. 1B had a CV ≈0.001 (position 662)
and ≈0.001 (position 658) for Replicate 1, and ≈0.001 (position
667) and ≈0.001 (position 655) for Replicate 2. Each peak retained
its sharp or broad shape despite the random sampling. Thus, the
overall trend of the CV distribution and the peak position in the
list were robust to including random noise.

Checking the CV distributions of other CLIP-Seq datasets
such as TAF15, TARDBP, and HNRNPA1 (Supplementary Fig. S1),
which we analyze further in a later section, we saw that the
CV distributions also had differences between the replicates (2-
sided Wilcoxon test P-value <0.05). However, this does not mean
a low quality of the data and just highlights that it is important
to do replicates in order to quantify biological and technical vari-
ance as noted in a previous CLIP study [11].

To investigate further differences between the 2 replicates,
we split the peak set into peaks overlapping with exons and
introns (see Fig. 3). SLBP is a translation and transport factor,
which is present in the cytoplasm as well as the nucleus [6,12].

Therefore, the replicates could have different binding events,
where one replicate might have more events in cytoplasm and
the other more in the nucleus. Replicate 2 had 136 exonic and
136 intronic peaks more than replicate 1. Notably, we can see a
CV difference when comparing the intronic peaks of the 2 repli-
cates, with a mean CV of 0.23 for Replicate 1 and 1.26 for Repli-
cate 2 (1-sided Wilcoxon test P-value <0.05). The exonic peaks
on the other hand were more similar (mean CV = 0.48 and 0.90,
respectively), but the CV distributions were still significantly dif-
ferent (1-sided Wilcoxon test P-value <0.05). Therefore, Stoaty-
Dive showed a variability of binding events (intronic vs exonic)
between the 2 replicates.

The 7 different peak shapes in the SLBP data

For a more detailed analysis, we classified the peaks of Repli-
cates 1 and 2 with the help of StoatyDive (Fig. 4). The procedure
is described in the Methods. StoatyDive found 7 distinguishable
peak profiles for both Replicates 1 and 2. We looked more closely
at the profiles of Replicate 2 (Fig. 4B). Clusters 2 and 5, which
are set apart clearly from clusters 1, 3, 4, and 6, are charac-
terized by plateau-shaped profiles. The other groups had pro-
files with mountain-like shapes with peaks tending to become
broader and fuzzier on the order of clusters 3, 1, 6, and 4. To
return to our initial examples (Fig. 1), peak profile Fig. 1A was
classified by StoatyDive as a small, centered mountain (Fig. 4B3),
whereas peak profile Fig. 1B was classified as a very broad profile
(Fig. 4B4).

It is noteworthy that constant profiles (Fig. 4) represent a
constant read coverage throughout the whole peak. Because of
the max-min normalization of the profile (see Methods), the
value becomes 0, i.e., the profile is not empty. In contrast, peaks
shaped like plateaus do not have a constant value because their
coverage changes at a few positions. Furthermore, the number
of clusters depends on the optimization of StoatyDive but can
also be defined by the user.

The great distance between clusters 2 and 5 is the result of
the difference between the profile borders (cf. Fig. 4B2 and B5).
Where cluster 2 had profiles with lots of values in the left or right
side of the peak profile, cluster 5 occupies the center of the peak
profile.

SLBP has been reported as an mRNA export and translation
factor [6]. Thus, it is worth investigating whether peaks like
Fig. 1A are more informative for a translation factor than peaks
like Fig. 1b. That is to say, Fig. 1A might be more suited for se-
quence and structure predictions than peak Fig. 1B. Therefore,
we perform a deeper inspection of groups 1, 3, 4, and 6 in the
next section of the article.

We also checked the uniqueness of the shapes by analyzing
the peaks based on the reads from the size-matched input con-
trol (see Supplementary Fig. S2). StoatyDive had just identified
4 different clusters, encompassing mountain-shaped peaks, as
well as plateaus, and constant peaks. It was to be expected that
similar shapes would be found in the control because the biggest
challenge for peak-calling is the identification of enriched sites
with different shapes between control and CLIP data [13, 14]. In
a future version of StoatyDive, we will include a mode to check
peak shapes between samples to see whether we could improve
peak-calling results with a peak shape comparison.

Information from peak profile shapes

We made the assumption that Replicate 1 might have more
unspecific and fewer distinguishable profiles than Replicate 2
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Figure 4: Results of the peak profile clustering with StoatyDive (procedure described in the Methods). We applied StoatyDive to the SLBP data [5]. StoatyDive found 7

different peak profile shapes in the data of Replicate 1 (A1–7) and Replicate 2 (B1–7) of SLBP. We present 1 example profile for each cluster with the number of peaks
on top. For Replicates 1 and 2 we could separate between very thin and specific mountains such as Fig. 1A and very broad profiles like Fig. 1B. We also found peaks
shaped like plateaus, such as 3A, and constant peaks, e.g., 7A. The profiles also vary slightly between groups. For example, 6B has >1 spiky mountain in contrast to 1B.

Table 1: Number of peaks of SLBP for different shape groups

Replicate Total Sharp Broad Plateau Constant

Number of peaks
1 899 171 481 51 196
2 899 265 444 188 2

Peak summits in histone mRNAs
1 116 22 86 6 2
2 118 42 71 5 0

based on the different CV distributions (Fig. 2). Thus, we counted
the number of peaks in each cluster for Replicates 1 and 2 (Ta-
ble 1). From our robust 899 peaks, in Replicate 1 we had ≈ 19%
peaks with a sharp mountain shape (Fig. 4A4 and A6), ≈ 53%
with a broader mountain shape (Fig. 4A1, A2, and A5), ≈ 6%
peaks with plateaus (Fig. 4A3), and ≈ 22% constant shaped peaks
(Fig. 4A7). Replicate 2, on the other hand, had ≈ 29% sharply
mountain-shaped peak profiles (see Fig. 4B1 and B3), so 94 more
than Replicate 1. This corroborated the assumption that Repli-
cate 1 had broader and more unspecific sites. Thus, Replicate 2
had only ≈ 49% broad peak profiles (Fig. 4B4 and B6) and only
2 constant peak profiles (Fig. 4B7). Yet, Replicate 2 had ≈ 21%
peaks with plateaus (Fig. 4B2 and B5).

We further investigated the biological function of different
peak profiles of Replicate 2. Because SLBP targets histone mRNAs
[6], we intersected known annotated mRNAs of histones with
the peaks of the different profile clusters (Table 1). From the 899
peaks, only ≈ 13% of Replicate 2 overlapped with mRNAs of his-
tones. Yet, of these 118 peaks almost all came from groups 1, 3,
4, and 6. These groups were either spiky, or broader mountain-
shaped peak profiles. For example, we found a sharper peak lo-
cated on RNU7-1 RNA (U7 small nuclear 1) that contains a stem
loop that might be potentially targeted by SLBP [15]. The peak
got a CV of 3.9 and was classified into the peak profile cluster
3 of Replicate 2. Only 5 peaks intersected with histone mRNAs
that had a profile shaped like a plateau (Fig. 4B5). This endorsed
the assumption that peak profiles shaped like plateaus were less
informative. The observation also suggests that broader profiles

Table 2: First 3 MEME-ChIP motifs for the different peak shape groups
of SLBP with the E-value, the portion of sequences that have the mo-
tif, and the number of peaks that have the motif and also intersect
with histone mRNAs

were still informative because some of them overlapped with
histone mRNA.

Next, we used MEME-ChIP (MEME Suite - Motif-based se-
quence analysis tools, RRID:SCR 001783) [16] to search for se-
quence motifs associated with the different peak shape groups
of the second replicate of SLBP. We found 2 significantly enriched
motifs associated with the plateau peaks and 3 motifs associ-
ated with the sharper peaks (Table 2). Yet, both the plateaus and
the sharper peaks had 2 similar sequence motifs. Both motifs
(G)GCUCUUU(U) and (CA)GAGCCA(C) were more highly enriched
in the sharper-shaped peaks. On the other hand, we found >10
enriched motifs for the broader-shaped peaks. The motifs of that
peak set were very different from the motifs of the plateaus
and sharper-shaped peaks. Even the first 3 significantly enriched
motifs had more noise and consequently were less enriched

https://scicrunch.org/resolver/RRID:SCR_001783
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than the motifs of the other 2 peak shape groups. The E-values of
all motifs were also >1,000 times higher for broader peaks than
for sharper peaks. Peaks shaped like plateaus were slightly more
significant than broader peaks.

On further inspection of those peak motifs in histone mR-
NAs, we found that the 3 motifs of the sharper shape peaks
covered 10 more histone mRNAs (49 in total) than the broader-
shaped peaks (39 in total). This endorsed the observation that
broader peaks encompassed more noise. For example, the sec-
ond motif of the broad peaks CA(A/C)CAAG came close to the
third sequence motif, with the sequence A(C/A)CCAAAG, of the
sharper shape peak group. The second motif had the high-
est occurrence in histone mRNAs for the broader peaks. Thus,
the broader peak set includes true binding sites but with some
higher additional noise. Furthermore, we already showed that
the plateau group might also hold some peaks that are true bind-
ing sites (Table 1), which was confirmed by the similar sequence
motifs to the sharper peak set. We could confirm that the 2 se-
quence motifs that are present in plateaus were also present in
histone mRNAs (Table 1). All in all, just the sequence motif anal-
ysis showed how different the outcome of subsequent tasks can
be for different peak shape groups. Yet, we cannot confirm the
biological truth behind those motifs because it requires further
experiments to verify them.

Optimizing StoatyDive with the data of SLBP

We investigated the peaks of the second replicate of SLBP fur-
ther and took the CLIPper peaks (ENCFF127WAK) from the study
by Van Nostrand et al. [5]. We wanted to check the specificity
and sensitivity of StoatyDive for different CV cut-offs and peak
sizes (see Supplementary Table S1). PureCLIP does not give an
FC or P-value, so it was only possible to calculate those features
with the CLIPper peaks. Because SLBP binds mainly histone mR-
NAs [6], we defined peaks in histones with a log2 fold change
(LFC) ≥1 and a P-value <0.05 as true-positive results. A true-
negative result was a non-significant peak in a region that did
not overlap with a histone. We investigated only peaks where
we could calculate a CV and used StoatyDive with a peak size
of 30 (median), 40 (Q3), 70 (Q3 + 1.5 × IQR), and a maximum
peak length of 201 nucleotides. The peak sizes were chosen on
the basis of the length of all peaks (see Supplementary Fig. S4).
The Matthews correlation coefficient (MCC) is more informative
in case of imbalanced datasets, which was the case of the SLBP
data. The true-negative rate (TNR) was always at 1.0 because the
peak set had no peaks in histones that were not significant (no
false-positive results). We investigated the cluster with the high-
est (main cluster) and second highest (second cluster) number of
peaks in histones. Looking solely at the clustering, we achieved
the highest true-positive rate (TPR) (0.69) and MCC (0.66) with a
peak length of 70, higher than does the set of all CLIPper peaks
with a TPR of 0.48 and MCC of 0.57. This was achieved by the sec-
ond cluster, which pointed out that the cluster had to be care-
fully chosen in order to remove some noise in the data (artifacts).
The cluster had also the highest enrichment, with a mean LFC
of 3.4 (median P-value <0.05), higher than do all CLIPper peaks,
with a value of 1.9 (median P-value of 0.038). Furthermore, the
same peak length of 70 nucleotides achieved the highest TPR
(0.61) and MCC (0.68) when we filtered the peaks on the basis
of a CV threshold of 0.2. However, the enrichment was not as
good as with the clustering by StoatyDive, where we achieved a
mean LFC of 3.4 in the second cluster that was higher than the
resulting mean LFC of 1.6 (median P-value of 0.108) with the CV
cut-off of 0.2. Based on these different sets, we observed that

A B

C D

Figure 5: Peak shape clustering with StoatyDive, SIC-ChIP [18], and FunChIP [17]
on a set of selected peaks from 3 different peak shapes of the second replicate of

SLBP. (A) StoatyDive successfully identified the 3 distinct peak shape groups with
10 peaks each, but a few peaks were sorted incorrectly (ACC = 0.87). (B) From the
5 shape indices of SIC-ChIP (see Supplementary Fig. S5), we picked 1 scatter plot
(B) with the highest explained variance (wh/2 vs M/h) to show the clustering of

SIC-ChIP. FunChIP was only able to identify 3 distinct clusters (ACC = 0.6). The
(C) smoothed and (D) smoothed and scaled profiles were clustered mostly on
the intensity of the summit. The colored lines show the profiles of the related

cluster, whereas the grey lines correspond to all other profiles.

the CV was sometimes lower in the main or second cluster. To-
gether with the previous results, we concluded that broad and
sharp peaks play an equally important role for SLBP.

Comparison to existing tools

To further validate StoatyDive, we applied 2 other peak shape
clustering tools, namely, FunChIP ([17]; version 0.99.4) and SIC-
ChIP ([18]; current release), to the second replicate of SLBP. To
have a better ground truth, we took 10 peaks of 3 different peak
shape groups (broad, sharp, and plateau) to define a test set
with 3 distinct peak shapes from real CLIP-Seq data (in total 30
peaks). We defined peaks as sharp (CV >1.0) and broad (CV <0.05)
based on the calculated CV of StoatyDive. We selected peaks
shaped like plateaus by inspecting them in a genome browser.
We strictly used the output of the tested tools. Both tools were
designed and tested for ChIP data. A peak shape clustering had
not thus far been done for CLIP data and a specific tool for that
data type did not exist to our knowledge. We applied SIC-ChIP
with N = 10 and toll = 10 (the default parameter set resulted
in errors) and ran FunChIP according to the manual in Biocon-
ductor with the smoothing parameter lambda = 103. StoatyDive
classified most peaks correctly into the 3 peak shape groups
(Fig. 5A, accuracy [ACC] = 0.87). It sorted 4 peaks incorrectly that
came from the broad and sharp peak groups. Sharp and broad
peaks are harder to cluster, and a second factor such as the
CV helps to give a final assessment regarding the shape of the
peak. SIC-ChIP identified up to 6 different peak shapes (Fig. 5B),
whereas FunChIP found 3 (Fig. 5C and D, ACC = 0.6). Further-



6 StoatyDive: Evaluation and classification of peak profiles for sequencing data

more, SIC-ChIP as well as FunChIP had clusters that are mixed
and not as well separated as with StoatyDive. SIC-ChIP’s prede-
fined shape indices were not enough to separate the peak shape
profiles properly, as shown for 1 scatter plot (Fig. 5B) with the
highest explained variance (cluster separation). In turn, FunChIP
performed slightly better, finding profiles with different summit
intensities. However, for the smoothed (Fig. 5C) as well as the
smoothed and scaled profiles (Fig. 5D) the clusters included a
lot of profiles with different shapes. For example, cluster 2 and
cluster 3 of the smoothed profiles seemed very similar. Thus,
FunChIP’s approach to use the whole profile without any prede-
fined features or dimensional reduction was also not enough to
separate the peak shapes in the same way as with StoatyDive.

Investigation of eCLIP protein profiles

We further investigated the peak shapes of several proteins from
the study of Van Nostrand et al. [5], namely, CPSF6, CSTF2T,
EWSR1, LARP7, RBM22, SAFB2, SLBP, SLTM, TAF15, TRA2A,
U2AF1, HNRNPA1, IGF2BP1, IGF2BP2, NONO, SRSF1, TARDBP, HN-
RNPM, U2AF2, and PTBP1. We took the robust peaks (peak-
calling, IDR, signal normalization) and the bam files, which were
used for the peak-calling, from each protein from the ENCODE
database. We chose the data from the eCLIP experiment on K562
and focused on proteins for which the biological and molecular
function and the number of RRMs are clearly listed on UniProt.
Thus, we wanted to investigate whether the number of RRMs or
the function of the protein by any means affected the shape of
the peak profiles and consequently led to more or fewer broader
peaks. We therefore took the files from ENCODE and merged
both bam files (replicates) for the coverage. We then used Stoaty-
Dive with –peak correction –scale max 10 –border penalty –sm –
peak length 77 -k 3. All peaks were therefore extended or shrunk
to a length of 77 nucleotides. This was based on the observation
that the third quartile of all peaks from all proteins was 77 nu-
cleotides long (see Supplementary Fig. S4). In addition, Stoaty-
Dive achieved for the SLBP data a better TPR and MCC with a
peak size of 70 and a CV threshold of 0.2 (see Supplementary
Table S1). The results of SLBP showed that it may be wise to
combine the clustering and the CV threshold to assess the pro-
file landscape of other proteins. We therefore defined a peak as
sharp if it had a CV >0.2 and it fell into a cluster that was gen-
erally sharper. A cluster was declared as sharp if the median CV
of the cluster was bigger than the median CV of the whole peak
set. All other peaks were classified as broad.

The proteins LARP7, RBM22, SLBP, U2AF1, IGF2BP2, NONO,
TARDBP, HNRNPM, U2AF2, and PTBP1 had a higher number of
sharper-shaped peaks, whereas the rest of the proteins had a
higher number of broader-shaped peaks relative to the other
shape (Fig. 6A). Protein IGF2BP1 was almost half sharp and half
broad peaks. UniProt lists the proteins CPSF6, CSTF2T, EWSR1,
LARP7, RBM22, SAFB2, SLBP, SLTM, TAF15, TRA2A, and U2AF1
with 1 RRM and the proteins HNRNPA1, IGF2BP1, IGF2BP2, NONO,
SRSF1, TARDBP, HNRNPM, U2AF2, and PTBP1 with ≥2 RRMs.

We could observe a trend between the number of RRMs and
the number of sharper-shaped peaks (Fig. 6A). From 11 proteins
with 1 RRM just 4 had sharper peaks than broader-shaped peaks
and 8 of 9 proteins with ≥2 RRMs had sharper-shaped peaks.
Furthermore, the proteins HNRNPM, U2AF2, and PTBP1 all have
>2 RRMs (3, 3, and 4, respectively); thus it might be possible
that an increasing number of RRMs results in sharper peaks.
Figure 6B shows more clearly that proteins with >1 RRM tend
to have sharper peaks (2-sided Wilcoxon test P-value ≈0.046). It
is possible that RNA-protein interactions become more specific

with >1 RRM and so the separation between more specific and
unspecific binding sites is stricter.

Another observation was that shapes of splicing factors
(RBM22, U2AF1, TARDBP, HNRNPM, U2AF2, and PTBP1) tend to
be sharper than broader (Fig. 6A). Yet, proteins, such as SRSF1,
had broader peaks and are also involved in splicing. On the other
hand, proteins not involved in splicing such as EWSR1, SAFB2,
SLTM, and TAF15 clearly showed more broader-shaped peaks.
The proteins SLBP, HNRNPA1, IGF2BP1, IGF2BP2, and NONO al-
most had an equal number of sharper or broader-shaped peaks,
and all these proteins have multiple functions, contributing to
≥2 biological processes, such as transport and translation in the
case of SLBP [6]. SRSF1 is also a multi-functional protein. Perhaps
that is the reason why it has broader peaks even though it is a
splicing factor.

We also checked whether our result that RBPs involved in
splicing have sharper peaks can have technical reasons. In this
case, a splicing-related protein could have more peaks that are
split over 2 exons, which are detected by the peak caller as 2
separate but sharp peaks (split peak). So we investigated the
number of peaks that fall into introns (90% overlap) for the pro-
teins that are involved in the splicing process. We used BEDTools
set to a strict overlap (intersect -u -s -f 0.9) to investigate po-
tential split peaks. The proteins PTBP1 (≈85%), RBM22 (≈62%),
TARDBP (≈79%), and HNRNPM (≈87%) had >50% of peaks in in-
trons, which deflected the assumption of split peaks. However,
the proteins U2AF1 (≈17%) and U2AF2 (≈15%) had more peaks
in exon regions, where the possibility of split peaks might still
occur. It is important to note that this does not mean that the
aforementioned proteins bind generally more introns or exons.
Because there exists no tool that can correct for split peaks, a
further analysis for these proteins was required. We checked
for potential split peaks by extending the peaks that fall com-
pletely into exons by 5 nucleotides to each side. Next, we inter-
sected those extended peaks with introns to see whether they
are close to the exon boundaries. We found for U2AF1 only 27
peaks (0.72%) and for U2AF2 5 peaks (0.40%) that are potential
split peaks, again deflecting the assumption of a technical arti-
fact in the peak set of splicing factors. Thus, the sharpness of
the peaks of U2AF1 and U2AF2 was potentially not the result of
the peak-calling.

Potential implications

StoatyDive is a powerful tool that can evaluate and classify peak
profiles. It can be used in any sequencing data analysis that in-
volves the prediction of binding sites such as CLIP-Seq, or ChIP-
Seq. Within this work, we provided an example for SLBP to show
the usability of StoatyDive. First, it is possible to assess the qual-
ity of an experiment such as CLIP. The CV is just 1 quality factor,
and we recommend testing other features as well, such as the
read coverage correlation. Second, StoatyDive assists in the eval-
uation of the binding specificity of the protein. The normalized
CV distribution produced by StoatyDive provides valuable infor-
mation for the user. A protein that binds very specifically will
have a distribution concentrated around a normalized CV of 1.
A protein with a lot of unspecific bindings will have a normalized
CV distribution ≈0. Third, StoatyDive helps to filter for specific
and unspecific binding sites to investigate whether the protein
has multiple protein domains that have different binding mech-
anisms. A finer distinction can be made with the classification
mode of StoatyDive. This helps to identify peak profiles with a
specific shape and filter them on the basis of the correspond-
ing biological question and function of the protein. Fourth, the
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A

B

Figure 6: (A) Log2 fold change of the number of sharp peaks vs the number of broad peaks; (B) fraction of sharp peaks. UniProt lists the proteins CPSF6, CSTF2T, EWSR1,

LARP7, RBM22, SAFB2, SLBP, SLTM, TAF15, TRA2A, and U2AF1 with 1 RRM and the proteins HNRNPA1, IGF2BP1, IGF2BP2, NONO, SRSF1, TARDBP, HNRNPM, U2AF2, and
PTBP1 with ≥2 RRMs. Proteins with >1 RRM tend to have sharper-shaped peaks but also equally have broader peaks. The proteins RBM22, U2AF1, TARDBP, HNRNPM,
U2AF2, and PTBP1 had a higher number of sharper peaks and all of them are involved in RNA splicing (colored bars). Other proteins with different functions (stripes)

often have less sharp peaks.

results of StoatyDive can be used to validate a peak caller (e.g.,
PureCLIP); i.e., one can assess how many false-positive results
are in the peak sets based on the shape. Use of a different peak
caller might result in disparate peak sets and consequently dif-
ferent peak profile shapes.

We could show with StoatyDive that proteins with a higher
number of RRMs tend to have sharper binding profiles. How-
ever, we have not taken any other RNA binding domains into ac-
count apart from RRMs and we would need to investigate more
proteins to be confident about this trend. However, we could
demonstrate that splicing factors tend to have more sharper
peaks in comparison to proteins with other functions.

StoatyDive is a very powerful, well-documented, and easy-
to-apply tool that refines binding site detection in data analysis
such as CLIP-Seq. Nevertheless, StoatyDive is a very general tool.
In the future it is worth investigating whether StoatyDive can be
used with different types of peak-calling outputs and data types
of sequencing data (e.g., ChIP-Seq, ATAC-Seq, Ribo-Seq). It serves
as a quality control and filtering step to select specific binding
profiles, which therefore allows improvement of other binding
site prediction tools such as DeepBind [19], or any other subse-
quent analysis tasks, to increase the accuracy for the prediction.

Methods
Peak correction, extension, and coverage calculation

StoatyDive was implemented in Python (≥3.6) and R (≥3.4.4). The
tool needs 3 files: the predicted binding regions of a peak-calling
algorithm in bed6 format, a bam or bed file that was used for

the peak-calling (experiment or control), and a tabular file of the
chromosome size of the reference genome (Fig. 7).

First, StoatyDive checks whether a peak profile needs to be
centered (peak correction). In the default mode, the profiles are
centered by a convolution with a standard normal distribution.
The maximum value of the convolution gives the nucleotide
shift of the peak profile to center the peaks. So the window with
the peak length is shifted to the center of the peak (Fig. 7 Step
1). With this approach we retain the context and take care of 2
problems. First, peak callers often produce peaks that are not
correctly centered. Second, dimensionality reduction methods,
such as uniform manifold approximation and projection for di-
mension reduction (uMAP [20]), are not translation invariant.
Thus, 2 profiles with the same shape but in a different relative
genomic position might end up in different locations in the new
dimensional space.

After the peak correction, StoatyDive extends the peaks by
default to the maximal peak length of the given peak set (Fig. 7
Step 2). This removes the peak length as a potential feature for
the evaluation and classification. StoatyDive then calculates the
read coverage (Fig. 7 Step 3) for each position inside a peak with
the help of BEDTools (BEDTools, RRID:SCR 006646) [10].

Evaluation of peak profiles

With the results of BEDTools, StoatyDive evaluates every peak i
from the total set of k peaks. StoatyDive will estimate the read
count for every peak as a negative binomial Xi ∼ NB(ri, pi) with
the hyperparameters ri (number of hits) and pi (probability of a

https://scicrunch.org/resolver/RRID:SCR_006646
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Figure 7: Overview of the StoatyDive pipeline. It consist of 2 major modules, namely, the evaluation and the classification of peak profiles. The user has to provide reads
(or events), peaks, and a chromosome size file. StoatyDive then shifts the peaks to their correct center (peak correction), extends the peaks to a common length (maximal

peak length of peak set or user-defined value), and calculates the coverage with BEDTools [10]. The peak correction can be turned off. In the evaluation, StoatyDive
then estimates the read coverage as a negative binomial. From the hyperparameters it calculates the coefficient of variation (CV) and normalizes it (Equations 1 and 2).
The normalized CV can then be used to divide the peaks into specific and unspecific sites. Furthermore, the CV distribution acts as a quality control between control
and signal experiments. In the classification, StoatyDive first normalizes the peak profiles to remove the intensity as a feature. Then it smooths the profiles to support

the data assumptions of uMAP [20] and to remove some noise. After that, it adds curve-specific features to the data. The higher dimension of the data is then reduced
with uMAP. StoatyDive then clusters the new data with k-means [21]. The user then obtains several plots and a table to investigate the different peak profile clusters.

hit). It then calculates the CV for every peak. A simple estimation
of the variance is not enough because the profile depends on the
read coverage. Thus, to be able to compare each peak profile we
have to normalize for the expected number of reads to adjust
the variance. So the CV for each peak,

CVi =
√

1 − pi

ri
, (1)

is calculated with the estimated hyperparameters. In the last
step, StoatyDive normalizes the CV score by the maximum and
minimum of all scores,

CV′
i = CVi − min(∀CV)

max(∀CV) − min(∀CV)
. (2)

At the end, our defined CV score will be in the range CVi = [0, ∞]
and the normalized score, in the range CV′

i = [0, 1], with a CV′
i =

0 for a more unspecific binding and CV′
i = 1 for a more specific

one.

Classification of peak profiles

StoatyDive classifies the peak profiles in an unsupervised man-
ner using uMAP [20] and k-means clustering [21]. Yet before
clustering, StoatyDive processes the peak profiles. First, the
profiles are normalized on the basis of the individual max-
imum and minimum read count because we are only inter-
ested in the shape of the profiles and not in the absolute
read counts (Fig. 7 Step 4). So assuming each peak Xi has
x1, x2, xj..., xn nucleotides, we normalized the peaks by xj =
[xj − min(Xi )]/[max(Xi ) − min(Xi )]. Second, the peak profiles are
smoothed (Fig. 7 Step 4) with a spline regression [22]. The step
reduces the noise for each profile and distributes the data more
uniformly on the current manifold. The latter is important be-
cause it is the data assumption of uMAP. StoatyDive further adds
curve-specific features to the processed peak profiles, includ-
ing the number of maximal values, the area under the curve,
and the arc length. StoatyDive applies uMAP to the final data

with 5,000 epochs, 2 components (dim = 2), a minimum distance
of 0.01, and a size of the local neighborhood of 5. The original
and high-dimensional profiles are often hindered by the curse
of dimensionality, which would lead to a higher number of indi-
vidual clusters. The dimensional reduction was optimized with
some test data comprising 4 different sets of distributions: a
uniform distribution, a linear distribution, a unimodal Gaussian
distribution, and a bimodal Gaussian distribution. Subsequently,
StoatyDive applies k-means clustering to the new data with 100
initializations, and maximal 10,000 iterations. The number of
clusters k is found by convergence of the total within-cluster
sum of squares and checked with the Akaike information crite-
rion [23]. We also tested other dimensionality reduction meth-
ods (see Supplementary Fig. S6) such as principal component
analysis (PCA), a self-organizing map (SOM), and t-distributed
stochastic neighbor embedding (t-SNE). However, none of them
came close to the results of uMAP.

Output of StoatyDive

For the peak evaluation, StoatyDive generates a plot of the CV
(Equation 1) and normalized CV (Equation 2) distribution (Fig. 7).
The user receives a first impression of the binding specificity of
the protein of interest from the CV distribution. An unspecific
binder has a CV distribution ≈0. A more specific binder has a CV
distribution >0. The CV distribution can also be used as a qual-
ity control to compare control and signal experiments. A quality
breach might have occurred if the distributions of the control
and signal experiment look almost identical. A control experi-
ment should normally have a CV distribution ≈0, with only a
very few binding sites showing higher CVs. A CLIP experiment,
on the other hand, should contain more peaks with higher CVs
and thus have a CV distribution that significantly differs in com-
parison to the control (Wilcoxon P-value <0.05, see Supplemen-
tary Fig. S1).

The normalized CV distribution helps to evaluate the peaks
based on the individual experiments. An empirical threshold is
set at a CV of 0.2 (Equation 1), below which binding sites are
deemed unspecific. The user can change the threshold. Keep in
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mind, the threshold for the normalized CV is relative in accor-
dance with the individual experiment.

For the peak classification, StoatyDive generates a plot of
the k-means optimization and a plot of the dimensional reduc-
tion with uMAP, which can be used to readjust the number of k
clusters if this is necessary. The user also receives a set of ex-
ample peak profiles and smoothed peak profiles of each clus-
ter, which can be used to investigate the identified shapes. For
a general trend, StoatyDive delivers average profiles for each
cluster.

The final output of StoatyDive is a CV-sorted table of the
whole peak set, from the highest to the lowest CV. Each peak is
labeled with 0, for more specific binding sites, and 1, for more
unspecific sites. The table also lists for each peak the cluster
number (group number) of the peak profile shape.

Important options of StoatyDive

The peak correction (Fig. 7 Step 1) can be turned off. The user
can also change the translocation scheme of the peak profiles to
shift them based on the maximal value (summit). The maximum
translocation scheme is useful for nucleotide-specific events
such as truncation events in the case of iCLIP data [24]. Stoaty-
Dive also has the option for a different CV score that penalizes
peaks within broad plateaus. StoatyDive then adjusts the CV
score of peaks that are covering a small appendage of a read
stack. Furthermore, the user can provide a maximal score to
StoatyDive to normalize the CV distribution (Equation 2). This
option helps to compare the CV distribution between experi-
ments in accordance with their disparate peak sizes and total
amount of reads. StoatyDive also has a threshold for the nor-
malized CV score to divide the peaks into more specific and more
unspecific binding sites, which the user can change.

StoatyDive has 2 major parameters for the peak profile clas-
sification (Fig. 7 Step 6). First, the user can adjust the maxi-
mal amount of potential peak clusters identified by the k-means
clustering. Yet, the final number of peak clusters will be opti-
mized by StoatyDive. The parameter is an upper bound. How-
ever, the user has the option to force StoatyDive to use k specific
clusters. The smoothing (Fig. 7 Step 4) of the peak profiles can
also be adjusted by the user. The default was optimized with dif-
ferent test sets. Increasing the parameter (greater than default)
might underfit the smoothing and thus lead to fewer peak clus-
ters. A lower value (less than default) might overfit and so lead
to more clusters. The smoothing can also be turned off, but it is
recommended to turn it on.

Availability of Supporting Source Code and
Requirements

Project name: StoatyDive
Project home page: https://github.com/BackofenLab/StoatyDive
Conda: https://anaconda.org/bioconda/stoatydive
Operating system(s): Unix
biotools:StoatyDive
License: GPLv3
RRID:SCR 018796

Data Availability

StoatyDive provides a small dataset for a test run, which can be
found in the github repository. The whole eCLIP dataset used in

this article, such as SLBP or RBFOX2, is listed in the supplemen-
tary material of the study by Van Nostrand et al. [5] and in the
GigaScience Database [25].

Additional Files

Supplementary Figure S1: CV distributions of all other proteins
analyzed for Fig. 6 with 2-sided Wilcoxon test P-value, the num-
ber of uniquely mapped reads, and the mean CV for each repli-
cate. The 2 replicates quite often have different CV distributions.
Furthermore, we report a plot for the mean CV for the CLIP data
in comparison to the size-matched input control of each pro-
tein. The control data tend to have a CV close to 0. The CV dis-
tributions between CLIP and control data always have a 2-sided
Wilcoxon test P-value <0.05.
Supplementary Figure S2: We applied StoatyDive to the size-
matched input control of the SLBP data [5]. StoatyDive found 4
different peak profile shapes, broad (cluster 1), plateau (cluster
2), sharp (cluster 3), and constant (cluster 4). The supplements
also include the average profiles for Replicates 1 and 2 to show
the overall trend of the clusters.
Supplementary Figure S3: Peak lengths of the peak set
(ENCFF127WAK) for the second replicate of SLBP and peak
lengths of all other proteins of the eCLIP data from the study
by Van Nostrand et al. [5].
Supplementary Figure S4: All scatter plots from SIC-ChIP [18] for
the artificial SLBP data.
Supplementary Figure S5: We tested different dimensional re-
duction methods such as PCA, SOM, and t-SNE on the CLIP data
of SLBP. The PCA has no clear clusters for Replicate 2, which is
similar for t-SNE on Replicates 1 and 2. Using an optimized SOM
delivers a feature layer with a very high activated hidden unit for
Replicate 2. It is hard to see any distinct clusters from the counts
(activation) of each hidden unit. uMAP can clearly separate the
data into more defined clusters. Furthermore, it is much eas-
ier to interpret the results of uMAP, whereas an artificial neural
network, such as a SOM, generates a feature layer (hidden layer)
that is hard to explain.
Supplementary Table S1. Mean CV, variance of the CV, mean
log2 fold change (LFC) enrichment between the control and
CLIP experiment, median P-value, true-positive rate (TPR), true-
negative rate (TNR), accuracy (ACC), and Matthews correlation
coefficient (MCC) for the analyzed peaks (all peaks) of Repli-
cate 2 (ENCFF127WAK) from the study by Van Nostrand et al. [5].
Features are listed for the peak shape cluster with the highest
number of peaks in histones (main cluster) and second highest
number (second cluster), and for the peaks with a CV smaller
or bigger than a threshold of 0.2, 0.5, and 0.8, using different
peak lengths (30, 40, 70, and maximum peak length of 201 nu-
cleotides). We achieved the best TPR, ACC, and MCC with a peak
length of 70 and with a CV cut-off of 0.2.

Abbreviations

ACC: accuracy; CLIP-Seq: cross-linking immunoprecipitation in
combination with high-throughput sequencing; CV: coefficient
of variation; IQR: interquartile range; LFC: log2 fold change;
MCC: Matthews correlation coefficient; mRNA: messenger RNA;
PCA: principal component analysis; RBP: RNA-binding protein;
RRM: RNA recognition motif; SOM: self-organizing map; TPR:
true-positive rate; TNR: true-negative rate; t-SNE: t-distributed
stochastic neighbor embedding.
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