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Fusing  complex  data  from  two disparate  sources  has been  demonstrated  to  improve  the  accuracy  in  quan-
tifying  active  ingredients  in  mixtures  of  pharmaceutical  powders.  A four-component  simplex-centroid
design  was  used  to prepare  blended  powder  mixtures  of acetaminophen,  caffeine,  aspirin  and  ibuprofen.
The  blends  were  analyzed  by Fourier  transform  infra-red  spectroscopy  (FTIR)  and  powder  X-ray  diffrac-
tion (PXRD).  The  FTIR  and  PXRD  data  were  preprocessed  and  combined  using  two  different  data  fusion
methods:  fusion  of  preprocessed  data  (FPD)  and  fusion  of  principal  component  scores  (FPCS).  A partial
ata fusion
ultivariate analysis

harmaceutical powder mixtures
ourier transform infrared spectroscopy
owder X-ray diffraction

least  square  (PLS)  model  built  on the  FPD  did  not  improve  the  root  mean  square  error  of prediction.
However,  a  PLS  model  built  on the  FPCS  yielded  better  accuracy  prediction  than  PLS  models  built  on indi-
vidual  FTIR  and  PXRD  data  sets.  The  improvement  in  prediction  accuracy  of the  FPCS may  be attributed  to
the removal  of  noise  and data  reduction  associated  with  using  PCA  as  a  preprocessing  tool.  The  present
approach  demonstrates  the  usefulness  of  data  fusion  for the information  management  of  large  data  sets
from disparate  sources.
. Introduction

The need to understand the critical material and process
ttributes on the end product quality of pharmaceutical products
s now an imperative with respect to the ICH Q8 guideline issued
y FDA [1].  Consequently, quantitative and qualitative applica-
ions of sophisticated high data density analytical tools like Fourier
ransform infrared spectroscopy (FTIR), powder X-ray diffrac-
ion (PXRD), Raman spectroscopy and near infrared spectroscopy
ave gained wider acceptance in characterizing pharmaceutical
rocesses, intermediates and products [2–4]. A major obstacle asso-
iated with these analytical techniques is the generation of large
ata matrices which may  be complex and difficult to interpret.
hus, it is critical that the end users of these tools have appropriate
ethods of data reconciliation in order to extract the sought after

nformation for subsequent prediction of the process outcomes.
ultivariate analysis, also called chemometrics when applied to

hemical-specific applications, has been offered as one key to

xtracting critical information from large data sets generated by

 single high data density tool.

∗ Corresponding author. Tel.: +1 808 933 2194; fax: +1 808 974 7693.
E-mail address: mazen@hawaii.edu (M.L. Hamad).

1 Student undertaking summer internship from Albert-Ludwigs-University
reiburg, Freiburg, Germany.
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© 2011 Elsevier B.V. All rights reserved.

A second obstacle associated with using high data density tools
arises when these techniques are used to make measurements on
samples that are considered non-ideal. An example of a non-ideal
sample for FTIR is a heterogeneous, multi-component, solid state
pharmaceutical mixture. Ideally, the absorbance of infrared light
at a particular wavenumber will be directly proportional to the
concentration of each absorbing species; however, the variation
in the extent of light scattering at particulate interfaces tends to
significantly increase the error in the measurement. This artefact,
caused by variation in the physical aspects of the sample matrix,
may prevent the use of FTIR as a technique for the quantitative
characterization of multi-component solid state pharmaceutical
samples.

PXRD, on the other hand, is a technique known for structural
characterization, not chemical characterization, of single compo-
nent solid-state material samples. Thus, neither method is ideal
for the quantitative chemical characterization of multi-component,
pharmaceutical samples. However, since the two techniques yield
different kinds of information, their individual data sets can be com-
bined into a single data set which provides more information than
either technique by itself. What is not clear is how data from the
two  techniques can be combined to better perform a single task
than either technique could perform on its own.
An important technique emerging from the informatics domain
is data fusion. The aim of data fusion is to facilitate the faultless
integration of information from various sources to develop a single
model or decision [5].  It is hypothesized that data fusion may  be a

dx.doi.org/10.1016/j.jpba.2011.08.018
http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:mazen@hawaii.edu
dx.doi.org/10.1016/j.jpba.2011.08.018
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Table 1
Four component simplex-centroid experimental design in units of percentage con-
centration [acetaminophen (APAP), caffeine (CAF), ibuprofen (IBU) and aspirin
(ASA)].

Sr. No. Exp. Name APAP (%) CAF (%) IBU (%) ASA (%)

1 Vert001a 100.00 0.00 0.00 0.00
2  Vert002a 0.00 100.00 0.00 0.00
3  Vert003a 0.00 0.00 100.00 0.00
4  Vert004a 0.00 0.00 0.00 100.00
5  Edge001a 50.00 50.00 0.00 0.00
6 Edge002a 50.00 0.00 50.00 0.00
7 Edge003a 50.00 0.00 0.00 50.00
8 Edge004a 0.00 50.00 50.00 0.00
9  Edge005a 0.00 50.00 0.00 50.00

10  Edge006a 0.00 0.00 50.00 50.00
11  Face001a 33.33 33.33 33.33 0.00
12 Face002a 33.33 33.33 0.00 33.33
13  Face003a 33.33 0.00 33.33 33.33
14 Face004a 0.00 33.33 33.33 33.33
15  Axis001a 62.50 12.50 12.50 12.50
16 Axis002a 12.50 62.50 12.50 12.50
17  Axis003a 12.50 12.50 62.50 12.50
18 Axis004a 12.50 12.50 12.50 62.50
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19  Cent-a 25.00 25.00 25.00 25.00
20  Cent-b 25.00 25.00 25.00 25.00
21  Cent-c 25.00 25.00 25.00 25.00

seful strategy to integrate data from FTIR and PXRD for the char-
cterization of multi-component, pharmaceutical samples. Various
cientific and engineering disciplines, such as robotics, remote
ensing, image analysis, and analytical chemistry, are employing
ata fusion concepts and realizing better information management
6–9]. Furthermore, data fusion coupled with multivariate analysis
MVA) is a new and potentially very powerful approach to modeling
harmaceutical systems.

The goal of the present work was to investigate the suitability of
ata fusion [10] in combination with MVA  methods to build more
ccurate predictive models. Principal component analysis (PCA)
as used for exploratory data analysis and it was  also used as a data

eduction technique prior to data fusion. Partial least square (PLS)
egression was ultimately used to build predictive models based on
he FTIR data set, the PXRD data set, the data set prepared by fusion
f preprocessed data (FPD) and the data set prepared by fusion
f principal component scores (FPCS). The quantitative prediction
ccuracy of fractions of acetylsalicylic acid, caffeine, ibuprofen, and
cetaminophen in blended powder samples was compared using
eave-one-out cross validation. The models were also used to pre-
ict fractions of the four components in blind, unknown powder
ixtures.

. Experimental and methods

.1. Materials

Acetylsalicylic acid (ASA) was purchased from Alfa Aesar
Ward Hill, MA). Acetaminophen (APAP) was purchased from
rtho-McNeil Pharmaceuticals (Titusville, NJ). Ibuprofen (IBU) and
affeine (CAF) were purchased from Spectrum Chemical (Gardena,
A).

.2. Experimental design

Four active ingredients (APAP, ASA, CAF and IBU) were tested
y a four-component simplex-centroid design (SCD). The four-
omponent SCD was used to achieve better predictability with a

igh accuracy of unknown fractions of subjected active ingredients
11]. In total, 21 combinations of subjected active ingredients were
ested by both FTIR and PXRD techniques (Table 1); 4 vertices for

 pure components, 6 edge centers of the binary mixtures with
d Biomedical Analysis 56 (2011) 944– 949 945

equal proportions of the selected two  components, 3 face centers
of the ternary mixtures with equal proportions of the selected three
components, 4 axes of the quaternary mixtures with varying pro-
portions of the selected four components and 3 center experiments
of the quaternary mixtures with equal proportions of the selected
four components to check both the linearity and repeatability of
the experimental results.

2.3. Fourier transform infrared spectroscopy (FTIR)

The spectra of the 21 calibration samples and 4 unknown
samples were collected using a Thermo Nicolet NEXUS 670 FTIR
instrument equipped with a Nicolet Smart MIRacle accessory
(Thermo Fisher Scientific, Waltham, MA). The MIRacle accessory
uses a glassy material known as AMTIR (Amorphous Material Trans-
mitting Infrared Radiation – composed of Ge, As, and Se) to measure
the absorbance in the attenuated total reflectance (ATR) mode.
The samples were measured by inserting approximately 25 mg  of
mixed sample powder into the trough insert and supplying suffi-
cient pressure using the micrometer pressure clamp to compress
the sample against the AMTIR glass. For each sample, 32 scans in the
wavenumber range from 650 cm−1 to 4000 cm−1 (at a resolution of
4 cm−1) were averaged to produce a single spectrum. The resulting
spectral data vectors contained 1738 data points. The spectral data
were acquired in absorbance mode using OMNIC software (Thermo
Fisher Scientific, Waltham, MA)  and exported to MATLAB® (Math-
works, Natick, MA)  and the Unscrambler® (Unscrambler® 10.0.1,
CAMO AS, Norway) for data processing.

2.4. Powder X-ray diffraction (PXRD)

The PXRD data were collected for all experiments that were
conducted on a Bruker D8 Advanced system in Bragg-Brentano
geometry using a Cu K� radiation point source (� = 1.5406 Å) at
an operating voltage and amperage of 40.0 kV and 40.0 mA,  respec-
tively. The powdered samples were analyzed in a low background
cell. The samples (approx. 25 mg)  were scanned at a rate of 0.005◦

per minute at step size of 0.01◦ from 5◦ to 35◦ 2�, resulting in row
vectors of 2894 data points for each sample. The obtained PXRD
data was  exported to Unscrambler® prior to MVA  modeling and
data fusion.

2.5. Data fusion

The data from FTIR and PXRD were combined using two  differ-
ent fusion methods: fusion of preprocessed data (FPD) and fusion
of principal component scores (FPCS). It was  necessary to prepro-
cess each set of data individually prior to data fusion. Without
preprocessing, the scales for each data set would have been dra-
matically different and this would have caused inappropriate and
unequal weighting in the models. Therefore, the FTIR data set and
the PXRD data set were preprocessed using the standard normal
variate (SNV) function in the PLS Toolbox (Eigenvector Research,
Inc., Wenatchee, WA,  USA). The SNV function standardizes the
row vectors to mean zero and unit variance. Additionally, the CO2
peak, including data from 2268 cm−1 to 2402 cm−1 was  removed
from each FTIR spectrum and the FTIR data above 3377 cm−1 were
removed since they did not contain any useful information. After
removal of these data points, the FTIR spectra contained 1346 data
points. After preprocessing, the data were considered normalized,
allowing the multivariate models to apply appropriate weightings

to each variable to yield the most descriptive models. For FPD, the
normalized data for each sample was fused by concatenating its
FTIR row vector with its PXRD row vector, resulting in row vectors
with 4240 data points.
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secondary amine, but the rest of peaks in the functional group
region were broader than those in the fingerprint region. There-
fore, most of the peaks from a single component in the functional
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In FPCS, it was the PCA score values that were fused. A PCA was
erformed on each individual data set. A PCA was performed on
he normalized FTIR spectra of the 21 calibration samples and the

 unknown samples (a total of 25 samples). The intention of this
rocedure was to extract as much variation from these samples as
ossible so the score values of the first 20 principal components
ere saved. Next, a PCA was performed on the PXRD data set and

he score values for its first 20 principal components were saved.
he score values from each technique were concatenated into one
used matrix of 25 rows (samples) by 40 columns (score values).
inally, this matrix was separated into a calibration matrix (21 rows
y 40 columns) and an unknown matrix (4 rows by 40 columns).
hus, the fused data set was  condensed from the respectively large
umber of variables (4240) to a matrix containing only 40 variables.

.6. Multivariate analysis (MVA)

Principal component analysis (PCA) followed by partial least
quare regressions (PLS-2) were performed on the individual FTIR
nd PXRD data, as well as on the fused data from both FTIR and PXRD
nalysis, to check the three dimensional spatial distribution of the
core values (Unscrambler® 10.0.1, CAMO AS, Norway). Optimized
LS-2 models were used to predict the unknown concentrations of
he ingredients in the mixtures. Leave-one-out cross validation was
sed to calculate the PLS-2 models [12]. The best PLS-2 model for
he prediction of the concentrations of the ingredients was selected
n the basis of yielding the lowest root mean square of cross vali-
ation (RMSECV) values.

Finally, the ability of the optimized PLS models based on an
ndividual FTIR data, PXRD data and the fused data were tested by
ubjecting the data of four unknown samples mixtures of varying
ompositions of active ingredients. A schematic of the data pro-
essing steps involved in the PLS prediction of the FPCS is shown in
ig. 1.

. Results and discussion
.1. Analysis of calibration samples by FTIR and PXRD

The FTIR spectra of the 21 calibration samples were obtained,
s indicated in Section 2.3.  An overlay plot of the FTIR spectra of
mponent scores (FPCS) data set. Blocks in the diagram are not intended to represent
s.

the 21 calibration samples is complex due to the large quantity
of overlapping data; however, it is instructive to view an overlay
plot of the fingerprint spectral region of the 4 vertices (i.e. pure
components). Fig. 2 shows that each of the pure components has at
least one absorption peak with little overlap from the peaks of other
pure components. Vertical lines are included in Fig. 2 to indicate the
locations of these unique peaks. APAP has a peak at 1562.1 cm−1,
CAF has a peak at 744.4 cm−1, IBU has a peak at 779.1 cm−1, and
ASA has a peak at 1562.1 cm−1. This feasibility check shows that
there is sufficient variation in the FTIR absorbance spectra to enable
multivariate quantitative analysis of these 4 components. A simi-
lar analysis was  performed on the functional group region of the
FTIR spectra (2400–3450 cm−1). It was found that APAP contained
a unique peak at 3223 cm−1 representing the N–H vibration of its
Wavenumber(cm )

Fig. 2. Fingerprint region of the FTIR spectra of APAP, CAF, IBU, and ASA. Vertical
lines show locations of peaks for single components with little overlap from other
components.
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nd  ASA. Vertical lines show locations of peaks for single components with little
verlap from other components. The ASA peak at 2� = 15.5◦ was  cut off to provide
n enlarged view of the majority of peaks in the pattern.

roup region shared overlap with peaks from at least one of the
ther pure components.

A similar feasibility check was performed on the PXRD patterns
f the four pure components. Fig. 3 shows the PXRD patterns for
ach of the pure components. Vertical lines are included in Fig. 3
o point out that there is at least one peak for each component
ith little overlap from the peaks of other components. APAP has

 peak at 2� = 24.2067◦, CAF has a peak at 2� = 11.6477◦, IBU has
 peak at 2� = 18.565◦, and ASA has a peak at 2� = 7.6964◦. Again,
his feasibility check shows there is sufficient variation in the PXRD
attern to enable multivariate quantitative analysis of the four pure
omponents.

Since it was found that each technique could measure variation
n each of the four components, the next step was to fuse the data.
n FPD, the data sets were concatenated after preprocessing each
ndividual data set with SNV. The resulting overlay plots of the four
ure components for the normalized and fused data vectors are
hown in Fig. 4. Data points 1–1346 represented the FTIR spectra
nd data points 1347–4240 represented the PXRD patterns. While
here were more data points in the PXRD data, there was a similar
egree of variation in each of the data sets due to preprocessing
ith SNV. This is ensured because the SNV subtracts the mean of

ach data set from each data vector, then divides each data vector
y the standard deviation each data set. Thus, the FTIR spectra and
he PXRD patterns have been placed onto similar normalized scales
nd the fused data is now ready for multivariate analysis.

.2. PCA patterns and trends

The purpose of using PCA is usually to elucidate trends or classify
amples within data sets. The trends in the 21 calibration samples
ere clear as these trends were deliberately introduced into the

our-component simplex-centroid experimental design. The ques-
ion is whether the analytical tools were sensitive to those trends
nd whether the fused data would provide better sensitivity to the
rends. To examine these questions, a PCA was first performed on

he y-data block (the concentration matrix) of the experimentally
esigned data set (i.e. the pure component percentages listed in
able 1). The resulting PCA plot is given in Fig. 5A, showing sev-
ral interesting features. First, 100% of the variation in the data
SNV was  applied separately to each data set prior to concatenation. The tallest ASA
peak (18.5 normalized intensity units) was cut off to provide a better view of the
remaining peaks.

set is compressed into 3 principal components (PCs). Second, the
pure component samples (labeled as 1-APAP, 2-CAF, 3-IBU, and 4-
ASA) align themselves at the vertices of a trigonal pyramid. Third,
each of the calibration samples aligns itself at the expected location
within the three dimensional structure. For example, sample #8 is
50% (2-CAF) and 50% (3-IBU); thus aligning itself halfway between
samples 2 and 3 while not showing any orientation with samples 1
and 4. Furthermore, the center-points (samples 19, 20, and 21) are
precisely overlapping one another and located at the center of the
pyramid.

Fig. 5B shows the resulting three-dimensional PCA plots for the
FTIR data sets for the 21 calibrations samples. A similar trigonal
pyramidal structure emerges, however, the error in the measure-
ment is evident as the calibration samples do not align themselves
at the exact locations of the pyramid that would be expected. For
example, sample 7, which is 50% (1-APAP) and 50% (4-ASA), is found
somewhat half way between samples 1 and 4, but it is now located
off of the line connecting vertex points 1 and 4. Fig. 5C shows the
corresponding PCA plot for the PXRD patterns for the 21 calibration
samples. Again, the same pattern emerges and it appears there is
less error in the PXRD data set than in the FTIR data set. Finally, Fig
5D shows the corresponding PCA plot for the FPD. Again, the same
pattern emerges and from a qualitative point of view, it appears
there is less error in the FPD set than in the FTIR data set, but
approximately the same amount of error as in the PXRD data set.
Fig. 5B–D shows that the FTIR, PXRD and fused data sets, respec-
tively, track the trends in the concentration variance in the samples
(as elucidated in Fig. 5A). The next step is to use PLS to determine
the extent to which each of the methods can quantitatively pre-
dict the concentrations of each of the components in each of the
samples.

3.3. PLS quantitative predictions for calibration samples A

PLS was performed on each of the data sets (FTIR, PXRD, and
fused data) to determine the accuracy of prediction for each of the

components. Fig. 6 shows an example of the PLS results for the
prediction of APAP. Similar trends in results were seen for CAF, IBU,
and ASA, although each of the plots is not included here. Fig. 6A
shows the PLS prediction based on the FTIR data set for each of the
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Table 2
Summary of partial least square regression (PLS-2) models (RMSEC, root means
square error of calibration; RMSECV, root mean square error of prediction; PCs,
principal components).

Partial least square regressions

Parameters APAP CAF IBU ASA

FTIR
Optimum no. of PCs used 3 3 3 3
RMSEC (%) 7.50 8.1 9.8 8.1
RMSECV (%) 10.0 11.1 13.7 10.3
PXRD
Optimum no. of PCs used 3 3 3 3
RMSEC (%) 3.6 3.2 4.2 4.0
RMSECV (%) 6.5 4.3 7.1 6.6
Fusion of principal component scores (FPCS)
Optimum no. of PCs used 4 4 4 4
RMSEC (%) 2.9 2.6 2.2 3.0
RMSECV (%) 5.5 4.1 5.4 6.6

Table 3
Actual and predicted values of unknown samples of APAP, CAF, IBU and ASA by
partial least square regressions (PLS-2) method.

Sample name Unknown samples RMSEP

U1 U2 U3 U4

Actual concentration
APAP 33.33 33.33 0 0
Caffeine 33.33 50 33.33 50
Ibuprofen 0 16.6 66.66 0
ASA 33.33 0 0 50
Predicted concentration
FTIR
APAP 25.7 35.4 −2.38 −0.134 4.1
Caffeine 21.2 47.5 46 51.4 8.9
Ibuprofen 3.38 17.5 56.8 8.03 6.6
ASA 49.7 −0.396 −0.37 40.7 9.4
Mean RMSEP 7.3
PXRD
APAP 30.8 48 3.51 1.35 7.7
Caffeine 30.8 40.7 29.2 40.3 7.1
Ibuprofen 2.16 12.1 69.1 3.68 3.3
ASA 36.2 −0.766 −1.75 54.66 2.9
Mean RMSEP 5.3
Fusion of principle component scores (FPCS)
APAP 29.3 42.8 0.178 1.38 5.2
Caffeine 30 43 34.9 42.2 5.6
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Ibuprofen 4.43 16.6 68.8 5.4 3.7
ASA 36.3 −2.44 −3.86 51 2.8
Mean RMSEP 4.3

.4. PLS quantitative predictions for blind, unknown samples

The PLS models built in Section 3.3 (the PLS model of the
TIR data, the PLS model of the PXRD data, and the PLS model
f the FPCS) were applied to unknown samples. The actual and
redicted values for each of the four components in each of the
our unknowns are given in Table 3. The results indicate that the
XRD PLS prediction is more accurate than the FTIR PLS predic-
ion, but the FPCS PLS prediction is more accurate than either of

he single instrument PLS predictions. Again, the FPD model did
ot improve the accuracy prediction over the single instrument
LS predictions. Therefore, these results indicate that FPCS, com-
ined with appropriate preprocessing and multivariate statistical
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analysis, can improve the prediction outcome as compared with
the single instrument PLS prediction outcomes. Furthermore, it
was  found that the FPCS PLS prediction outperformed the FPD PLS
prediction.

4. Conclusions

The present work demonstrates the ability of data fusion to
combine the information in the FTIR and PXRD data for bet-
ter quantification and prediction of the amounts of APAP, CAF,
IBU and ASA from blended, powder mixtures. PCA of FTIR data,
PXRD data, and the FPD indicated that, with some error, each
of the data sets showed similar trends to the concentration
variation intrinsic in the 21 calibration samples. The use of
FPCS was  the key to improving the PLS prediction. A compar-
ison of the PLS regression analysis of the FTIR data, the PXRD
data, the FPD and the FPCS demonstrated that the FPCS pro-
duced the best prediction accuracies of unknown amounts of
active pharmaceutical ingredients. The improvement in predic-
tion accuracy of the FPCS method over the FPD method may  be
attributed to the noise removal and the data reduction associated
with extracting the principal component scores prior to build-
ing the PLS regression model. The implications for developing
distinctive signatures for unknown mixtures as in, e.g., natural
products, are an exciting direction under investigation in the UHH
laboratories.
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