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Abstract

The soil-dwelling plant symbiont Sinorhizobium meliloti is a major model organism of Alphaproteobacteria. Despite numerous detailed
OMICS studies, information about small open reading frame (sORF)-encoded proteins (SEPs) is largely missing, because sORFs are
poorly annotated and SEPs are hard to detect experimentally. However, given that SEPs can fulfill important functions, identification
of translated sORFs is critical for analyzing their roles in bacterial physiology. Ribosome profiling (Ribo-seq) can detect translated sORFs
with high sensitivity, but is not yet routinely applied to bacteria because it must be adapted for each species. Here, we established a
Ribo-seq procedure for S. meliloti 2011 based on RNase I digestion and detected translation for 60% of the annotated coding sequences
during growth in minimal medium. Using ORF prediction tools based on Ribo-seq data, subsequent filtering, and manual curation, the
translation of 37 non-annotated sORFs with ≤ 70 amino acids was predicted with confidence. The Ribo-seq data were supplemented
by mass spectrometry (MS) analyses from three sample preparation approaches and two integrated proteogenomic search database
(iPtgxDB) types. Searches against standard and 20-fold smaller Ribo-seq data-informed custom iPtgxDBs confirmed 47 annotated
SEPs and identified 11 additional novel SEPs. Epitope tagging and Western blot analysis confirmed the translation of 15 out of 20
SEPs selected from the translatome map. Overall, by combining MS and Ribo-seq approaches, the small proteome of S. meliloti was
substantially expanded by 48 novel SEPs. Several of them are part of predicted operons and/or are conserved from Rhizobiaceae to
Bacteria, suggesting important physiological functions.

Keywords: Ribosome profiling, proteomics, proteogenomics, small proteins, small open reading frame, Sinorhizobium meliloti, Al-
phaproteobacteria

Introduction
Over the last two decades, using next-generation sequencing and
high throughput OMICS profiling technologies, the genomes of
thousands of bacteria have been assembled. Moreover, the tran-
scriptomes and proteomes of many of them have been ana-
lyzed under different conditions, with the aim of gaining insights
into the genetic and molecular basis of their biology. Despite
this wealth of data, information about small open reading frame
(sORF)-encoded proteins (SEPs), which are proteins with less than
50 or 100 amino acids (aa), is scarce (Storz et al. 2014, Duval and
Cossart 2017, Hemm et al. 2020, Orr et al. 2020, Gray et al. 2022).
Recently, the small proteomes of eukaryotes, bacteria, and viruses
have gained expanding interest, as a growing number of small
proteins have been demonstrated to fulfill important physiolog-
ical functions, such as in cell division, metabolism, transport, sig-

nal transduction, spore formation, cell communication, cellular
stress responses, and virulence (Storz et al. 2014, Duval and Cos-
sart 2017, Khitun and Slavoff 2019, Hemm et al. 2020, Melior et
al. 2020, Patraquim et al. 2020, Aoyama et al. 2022, Song et al.
2022). Therefore, cataloging the full complement of small proteins
is critical in achieving a more comprehensive and accurate de-
scription of the proteomes of bacterial model organisms and their
potential functions.

Small protein identification is difficult due to several technical
challenges. For instance, SEPs are difficult to detect using SDS-
PAGE or mass spectrometry (MS) for various technical reasons
(Storz et al. 2014, Ahrens et al. 2022, Fijalkowski et al. 2022). Limi-
tations of standard shotgun proteomics workflows at the sample
preparation, protease digestion, liquid chromatography, MS data
acquisition, and bioinformatic data analysis steps affect compre-
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hensive MS-based SEP identification (Cassidy et al. 2021, Ahrens
et al. 2022). Furthermore, variable length thresholds were typi-
cally used in the genome annotation step to minimize the num-
ber of spurious ORF predictions. As a result, sORFs encoding truly
expressed small proteins are often missing from genome anno-
tations (Storz et al. 2014, Hahn et al. 2016). Meanwhile, various
strategies to achieve extensive proteome coverage of the notori-
ously under-represented classes of small and membrane proteins
(novel small proteins are often membrane associated) have been
applied for prokaryotes (Omasits et al. 2013, Zhang et al. 2013,
Wiśniewski 2016). Methods to enrich bacterial SEPs in samples
are further improved, for example, with the use of small pore-
sized solid-phase materials (Cassidy et al. 2019, Bartel et al. 2020,
Petruschke et al. 2020), and digestion with alternative/multiple
proteases has been performed to increase the number of iden-
tified SEPs (Bartel et al. 2020, Kaulich et al. 2021, Petruschke et al.
2021). The obtained mass spectra are usually assigned to peptide
or protein sequences by matching the determined fragment ion
masses to the predictions derived from a sequence database (DB).
Therefore, only peptides with sequences available in the protein
search DB can be identified. Consequently, custom protein search
DBs that try to capture the entire coding potential of prokary-
otic genomes have been proposed, such as integrated proteoge-
nomic search DBs (iPtgxDBs). They integrate and consolidate the
differences among existing reference genome annotations, ab ini-
tio gene predictions, and a modified six-frame translation that
considers alternative start sites, thereby enabling the detection
of novel proteins, including SEPs (Omasits et al. 2017). Thus, pro-
teogenomic studies that combine results from SEP-optimized MS
data searched with iPtgxDBs or other custom search DBs and ri-
bosome profiling (Ribo-seq) have great potential to detect more
comprehensive and accurate compendia of novel small proteins.

Ribo-seq is a powerful method to study and annotate trans-
latomes globally, including sORFs (Ingolia 2016, Vazquez-Laslop
et al. 2022). Compared with MS-based proteomics, Ribo-seq has
the advantage of higher sensitivity for detecting translated ORFs
(Storz et al. 2014, Duval and Cossart 2017, Hemm et al. 2020, Orr
et al. 2020, Venturini et al. 2020, Ahrens et al. 2022, Gray et al.
2022). Ribo-seq relies on deep sequencing of approximately 30-nt-
long ‘footprint’ regions of the mRNA bound by the ribosome dur-
ing translation and protected against nuclease digestion. In addi-
tion to providing a global picture of translated mRNAs in the cell,
Ribo-seq also reveals the specific location on the mRNA where the
ribosome was bound, allowing the mapping of ORFs. For this, cells
are lysed under certain conditions, allowing for the ‘freezing’ of
ribosomes on mRNAs. mRNA parts that are not protected by the
ribosomes are then digested to generate ribosome footprints that
are sequenced and mapped to the genome (Ingolia et al. 2009, In-
golia 2016). While Ribo-seq-based detection of translated mRNA
works well for eukaryotic cells at single codon resolution, this
method is difficult to utilize for prokaryotes (Mohammad et al.
2019, Glaub et al. 2020, Vazquez-Laslop et al. 2022). Nevertheless,
adapting and refining the Ribo-seq method has enabled the detec-
tion of many new, translated sORFs and corresponding SEPs not
only in Escherichia coli but also in several other bacterial species
and in halophilic archaea (Meydan et al. 2019, Mohammad et al.
2019, Weaver et al. 2019, Gelsinger et al. 2020, Vazquez-Laslop et
al. 2022, Hadjeras et al., 2023). However, for many bacterial model
organisms, Ribo-seq data are still missing, as the protocols typi-
cally have to be adapted and optimized for each bacterial organ-
ism (Storz et al. 2014, Duval and Cossart 2017, Hemm et al. 2020,
Orr et al. 2020, Venturini et al. 2020, Gray et al. 2022).

Sinorhizobium meliloti is an agriculturally important bacterial
species that lives in soil and can fix molecular nitrogen in sym-
biosis with legume plants (Jones et al. 2007). Due to its versatile
lifestyle and ecological relevance, it is a major model organism
for studying gene regulation in Alphaproteobacteria. In addition,
its relatively close relationship to pathogens of the genus Brucella
makes S. meliloti an attractive model for host–pathogen research
(Marlow et al. 2009). Several OMICS datasets are available for S.
meliloti 2011 and its sibling, S. meliloti 1021, the first strain of this
species with a sequenced genome (Galibert et al. 2001). These
comprise proteomics (Djordjevic 2004, Barra-Bily et al. 2010, So-
brero et al. 2012, Marx et al. 2016) and transcriptomic datasets, in-
cluding differential RNA-seq that enables the annotation of tran-
scription start sites, 5’- and 3’-UTRs, and novel transcripts (Becker
et al. 2004, Sallet et al. 2013, Schlüter et al. 2013). The S. meliloti
2011 6.7 Mb genome harbors a 3.66 Mb chromosome and two
megaplasmids, the 1.35 Mb pSymA and the 1.68 Mb pSymB (Sallet
et al. 2013). As a proof of principle, an iPtgxDB created for S. meliloti
2011 has allowed the detection of the 14-aa-long leader peptide
peTrpL in the proteomic data, for which a function in resistance to
multiple antimicrobial compounds could subsequently be estab-
lished (Melior et al. 2020). However, the identification of additional
functional SEPs in S. meliloti and related Alphaproteobacteria has
been limited by the lack of studies specifically targeting the small
proteome and translatome.

Here, we developed and then applied a Ribo-seq protocol on
S. meliloti 2011 to map its translatome globally, with a focus
on the small proteome (data available at our interactive web-
based genome-browser: http://www.bioinf.uni-freiburg.de/ribob
ase). The use of RNase I in our Ribo-seq showed successful trim-
ming of mRNA regions that were not protected by ribosomes, al-
lowing differentiation between translated and untranslated re-
gions. Besides detecting the translation of annotated sORFs (some
of which are available in recent updates of the genome anno-
tation), we also uncovered 37 translated novel, non-annotated
sORFs located on different replicons. The translation of several
annotated and novel sORFs was further validated by MS-based
proteomics using iPtgxDBs and/or epitope tagging and Western
blot analysis, thereby confirming predictions based on Ribo-seq
coverage. Eleven novel SEPs were uniquely identified by MS, show-
ing that using both methods when mapping the small proteome
is advantageous. Overall, our combined approach provided a set
of 48 novel S. meliloti sORFs, many of which are conserved, as a re-
source to further elucidate their roles in bacterial physiology and
symbiosis.

Methods
Growth and harvest of S. meliloti for Ribo-seq
S. meliloti 2011 (Casse et al. 1979) was first cultivated on TY (5 g
of BactoTryptone, 3 g of Bacto-yeast extract, and 0.3 g of CaC2

per liter) agar plates (Beringer 1974). The plate cultures were used
to inoculate liquid cultures, which were grown semi-aerobically
(routinely, 30 ml of medium in a 50 ml Erlenmeyer flask under
constant agitation at 140 rpm) at 30◦C in GMS minimal medium
(10 g of D-mannitol, 5 g of sodium glutamate, 5 g of K2HPO4, 0.2 g
of MgSO4 × 7H2O, and 0.04 g of CaCl2 per liter; trace elements:
0.05 mg of FeCl3 × 6H2O, 0.01 mg of H3BO3, 0.01 mg of ZnSO4 ×
7H2O, 0.01 mg of CoCl2 × 6H2O, 0.01 mg of CuSO4 × 5H2O, 1.35 mg
of MnCl2, and 0.01 mg of Na2MoO4 × 2H2O per liter; 10 μg of bi-
otin and 10 mg of thiamine per liter) (Zevenhuizen and van Neer-
ven 1983). As the strain exhibits chromosomally encoded strepto-
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mycin resistance, 250 μg/ml streptomycin was added to the me-
dia. For Ribo-seq sample preparation, cells corresponding to 40
OD600 equivalent units were harvested after rapid chilling in an ice
bath to halt cell growth and translation. In brief, cultures in the ex-
ponential phase (OD600nm 0.5) were rapidly placed in a pre-chilled
flask in an ice-water bath and incubated with gentle shaking for
3 min. Cells were then immediately pelleted by centrifugation
(10 min at 6000 ×g) before snap-freezing in liquid N2. Before cen-
trifugation, a culture aliquot was withdrawn for total RNA analy-
sis, mixed with 0.2 vol stop mix (5% buffer-saturated phenol [Roth]
in 95% ethanol), and snap-frozen in liquid N2. Even though trans-
lation elongation inhibitors have been extensively used in both
eukaryotic and bacterial Ribo-seq workflows, using such chemi-
cals can introduce bias into Ribo-seq coverage (Gerashchenko and
Gladyshev 2014, Mohammad et al. 2019). Therefore, we chose to
perform Ribo-seq without these inhibitors because we were able
to recover sufficient polysomes using the fast-chilling method (see
Fig. 1).

Preparation of ribosome footprints
Ribo-seq was performed as previously described (Oh et al. 2011,
Hadjeras et al. 2023), with some modifications. In brief, cell pel-
lets were resuspended with cold lysis buffer (1 M NH4Cl, 150 mM
MgCl2, 20 mM Tris-HCl, 5 mM CaCl2, 0.4% Triton X-100, 150 U
DNase I [Fermentas], and 1000 U RNase Inhibitor [MoloX, Berlin]
at pH 8.0) and lysed by sonication (constant power 50%, duty cycle
50%, and 3 × 30 s cycles with 30 s cooling on a water-ice bath be-
tween each sonication cycle to avoid heating of the sample). The
lysate was clarified by centrifugation at 10,000 × g for 12 min at
4◦C. To approximately 15 A260 of lysate, 200 U of RNase I (Thermo
Fisher Scientific) was added. Polysome digestion was performed at
25◦C with shaking at 650 rpm for 90 min. A mock-digested control
(no enzyme added) was performed in parallel to confirm the pres-
ence of polysomes in the lysate. To analyze polysome profiles and
recover digested monosomes, we layered 15 A260 units onto a lin-
ear 10%–55% sucrose gradient prepared in 4× gradient buffer (10×
gradient buffer: 100 mM MgCl2, 200 mM Tris-HCl, 1 M NH4Cl, and
20 mM dithiothreitol [DTT] at pH 8.0) in an ultracentrifuge tube
(13.2 mL Beckman Coulter SW-41). Gradients were centrifuged in
a SW40-Ti rotor at 35 000rpm for 2 h and 30 min at 4◦C in a Beck-
man Coulter Optima XPN-80 ultracentrifuge. Gradients were pro-
cessed using a gradient station (IP, Biocomp Instruments) fraction-
ation system with continuous absorbance monitoring at 254 nm
to resolve ribosomal subunit peaks. The 70S monosome fractions
were collected and subjected to RNA extraction to purify the RNA
footprints.

RNA was extracted from fractions or cell pellets for total RNA
using hot phenol-chloroform-isoamyl alcohol (25:24:1, Roth) or
hot phenol (Roth), respectively, as previously described (Sharma
et al. 2007, Venturini et al. 2020). Ribosomal RNA (rRNA) was
depleted from 5 μg of DNase I-digested total RNA by subtrac-
tive hybridization with the Pan-Bacteria riboPOOLs (siTOOLs,
Germany) according to the manufacturer’s protocol with Dyn-
abeads MyOne Streptavidin T1 beads (Invitrogen). Total RNA was
fragmented with an RNA fragmentation reagent (Ambion). Mono-
some RNA and fragmented total RNA were size selected (26–34 nt)
on 15% polyacrylamide/7 M urea gels, as previously described
(Ingolia et al. 2012) using RNA oligonucleotides NI-19 and NI-20
as guides. RNA was cleaned and concentrated by isopropanol
precipitation with 15 μg of GlycoBlue (Ambion) and dissolved in
H2O. cDNA libraries were prepared by Vertis Biotechnologie AG
(Freising, Germany) using the adapter ligation protocol without

fragmentation. First, an oligonucleotide adapter was ligated to
the 3’ end of the RNA molecules. First-strand cDNA synthesis
was performed using M-MLV reverse transcriptase and the 3’
adapter as the primer. The first strand of cDNA was purified,
and the 5’ Illumina TruSeq sequencing adapter was ligated to
the 3’ end of the antisense cDNA. The resulting cDNA was PCR-
amplified to approximately 10–20 ng/μl using a high-fidelity DNA
polymerase. The DNA was purified using the Agencourt AMPure
XP kit (Beckman Coulter Genomics) and analyzed by capillary
electrophoresis. The primers used for PCR amplification were
designed for TruSeq sequencing according to the instructions
of Illumina. The following adapter sequences flank the cDNA
inserts: TruSeq_Sense_primer: (NNNNNNNN = i5 Barcode for
multiplexing) 5′-AATGATACGGCGACCACCGAGATCTACAC-N
NNNNNNN-ACACTCTTTCCCTACA CGACGCTCTTCCGATCT-3′;
TruSeq_Antisense_primer: (NNNNNNNN = i7 Barcode for mul-
tiplexing) 5′-CAAGCAGAAGACGGCATACGAGAT-NNNNNNNN-G
TGACTGGAGTTCAGACGTGT GCTCTTCCGATCT-3′. cDNA li-
braries were pooled on an Illumina NextSeq 500 high-output flow
cell and sequenced in single-end mode (75 cycles, with 20 million
reads per library) at the Core Unit SysMed at the University of
Würzburg.

Ribo-seq data analysis
S. meliloti Ribo-seq data were processed and analyzed using the
published HRIBO workflow (version 1.6.0) (Gelhausen et al. 2021),
which has previously been used for the analysis of bacterial Ribo-
seq data (Venturini et al. 2020). In brief, sequencing read files were
processed with a snakemake (Köster and Rahmann 2012) work-
flow, which downloads all required tools from bioconda (Grüning
et al. 2018) and automatically determines the necessary process-
ing steps. Adapters were trimmed from the reads with cutadapt
(version 2.1) (Martin 2011) and then mapped against the S. meliloti
2011 genome with segemehl (version 0.3.4) (Otto et al. 2014). Reads
corresponding to rRNA and other multiply mapping reads were re-
moved with SAMtools (version 1.9) (Li et al. 2009). Quality control
was performed by creating read count statistics for each process-
ing step and RNA class with Subread featureCounts (1.6.3) (Liao
et al. 2014). All processing steps were analyzed with FastQC (ver-
sion 0.11.8) (Wingett and Andrews 2018), and the results were ag-
gregated with MultiQC (version 1.7) (Ewels et al. 2016). Summary
statistics are shown in Table S1.

Read coverage files were generated with HRIBO using differ-
ent full-read mapping approaches (global or centered) and single-
nucleotide mapping strategies (5’ or 3’ end). Read coverage files
using two different normalization methods were created (mil and
min). For the mil normalization, read counts were normalized by
the total number of mapped reads within the sample and scaled
by a per-million factor. For the min normalization, the read counts
were normalized by the total number of mapped reads within the
sample and scaled by the minimum number of mapped reads
among all analyzed samples. The coverage files generated using
the min normalization and the global mapping (full read) ap-
proach were used for genome browser visualization. Metagene
analysis of ribosome density at start codons was performed as
previously described (Becker et al. 2013).

Ribo-seq-based ORF prediction, filtering, and
manual curation
ORFs were called with an adapted variant of REPARATION (Ndah
et al. 2017) using blast instead of usearch (see https://github.com
/RickGelhausen/REPARATION_blast) and DeepRibo (Clauwaert et

https://github.com/RickGelhausen/REPARATION_blast
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al. 2019). Generic feature format (GFF) track files with this infor-
mation, plus potential start and stop codons and ribosome bind-
ing site information were created for in-depth manual genome
browser inspection. Summary statistics for GenBank annotated
and merged novel ORFs detected by REPARATION and DeepRibo
were computed in a tabularized form, including, among other val-
ues, translation efficiency (TE), RPKM (reads per kilobase of tran-
script per million mapped reads) normalized read counts, codon
counts, and nucleotide and aa sequences (see Table S2). Anno-
tated sORFs were classified as translated if they fulfilled an arbi-
trary mean TE cut-off of ≥ 0.5 and RNA-seq and Ribo-seq RPKM
of ≥ 10 (cut-offs chosen based on the lowest TE and RPKM val-
ues associated with housekeeping genes [i.e. ribosomal protein
genes] and the genes detected by proteomics). To identify robust
novel sORF candidates, we inspected HRIBO ORF predictions from
DeepRibo and REPARATION. As DeepRibo is prone to a high rate of
false positives (Gelhausen et al. 2022), we first generated a reason-
able set of potential novel sORFs by applying the following expres-
sion cut-off filters: mean TE of ≥ 0.5 and RNA-seq and Ribo-seq
RPKM of ≥10 (in both replicates) based on the 85 positively labeled
translated sORFs (see Fig. 3). In addition, novel translated sORF
candidates were required to have a DeepRibo prediction score of
> −0.5 that allows for ORF candidate ranking (Clauwaert et al.
2019). The filtered sORFs were then subjected to manual cura-
tion as described (Gelhausen et al. 2022). This manual inspection
of paired Ribo-seq and RNA-seq read coverage files in a genome
browser allowed for asserting the translation status for the fil-
tered novel predicted sORFs. Briefly, the Ribo-seq and RNA-seq
read coverage files were loaded in the Integrated Genome Browser
(IGB) along the sequence of the reference genome and the Gen-
Bank 2014 annotation, which contains annotated 5’- and 3’-UTRs.
The Ribo-seq and RNA-seq read coverage files (normalized to the
lowest number of reads between the two) were visually inspected
with similar scales. To assess translation of the predicted novel
sORFs, we used the following criteria: (i) Ribo-seq read coverage
within ORF boundaries with the detection of ribosome footprints
in the UTRs (15–16 nucleotides) near the start and stop codons
resulting from initiating and terminating ribosomes; (ii) exclu-
sion of Ribo-seq read coverage from the residual 5’- and 3’-UTRs;
(iii) the shape of the Ribo-seq read coverage; here the evenness
of the read coverage was considered and predicted sORFs with
uneven read coverage (exhibiting peaks with plateau, which re-
sulted from either RNA structures or cDNA library preparation
artifacts) were not taken into account; (iv) the Ribo-seq read sig-
nal was generally required to be comparable to or higher than
the transcriptome signal from the RNA-seq library. We created
an interactive web-based genome browser using JBrowse (http:
//www.bioinf.uni-freiburg.de/ribobase) (Buels et al. 2016), where
the coverage files for the Ribo-seq replicates, the annotation, and
the predicted sORF can be visualized.

Sample preparation for MS
For MS analysis, cells of 1.5 l of an S. meliloti culture (OD600nm 0.5)
were harvested by centrifugation at 6000 rpm and 4◦C. The cell
pellet was resuspended in 30 ml of buffer containing 20 mM Tris,
150 mM KCl, 1 mM MgCl2, and 1 mM DTT at pH 7.5. After lysis
by sonication and centrifugation at 13,000rpm for 30 min at 4◦C,
the cleared lysates were frozen in liquid nitrogen and stored at
−80◦C. To generate a highly comprehensive small protein dataset,
we used three complementary approaches for sample prepara-
tion: (i) tryptic in-solution digest of all proteins in the sample, (ii)
solid-phase enrichment (SPE) of small proteins without any sub-

sequent digestion, and (iii) SPE of small proteins with subsequent
digestion using Lys-C. Sample preparation was performed as pre-
viously described (Bartel et al. 2020) with some modifications. In
brief, samples for tryptic in-solution digests were reduced and
alkylated before trypsin was added in an enzyme-to-protein ratio
of 1:100, and samples were incubated at 37◦C for 14 h. The digest
was stopped by acidifying the mixture with HCl. For SPE, samples
were loaded on an equilibrated column packed with an 8.5 nm
pore size, modified styrene-divinylbenzene resin (8B-S100-AAK,
Phenomenex), which was then washed to remove large proteins.
The enriched small protein fraction was eluted with 70% (v/v) ace-
tonitrile and evaporated to dryness in a vacuum centrifuge. The
SPE samples were either directly used for MS or in-solution di-
gested as described above but with Lys-C instead of trypsin.

Generation of standard and custom iPtgxDBs to
identify novel SEPs
iPtgxDBs were generated based on the S. meliloti 2011 ASM34606v1
reference genome sequence as described (Omasits et al. 2017). An-
notations from several reference genome centers and/or releases
(GenBank 2014, RefSeq2017, Genoscope), two ab initio gene pre-
dictions (Prodigal, Hyatt et al. 2010; ChemGenome, Mishra et al.
2019), and in silico ORF predictions were hierarchically integrated
for a trypsin-specific iPtgxDB as previously detailed (Melior et al.
2020), (https://iptgxdb.expasy.org/database/annotations/s-melilo
ti-tryptic; see Table S3.1). To capture data from all three exper-
imental approaches, two more iPtgxDBs were created in a simi-
lar fashion using command-line utilities. For the LysC-specific iPt-
gxDB, the regular expression ‘(K) (.)’ was used, allowing cleavage
after every lysine. The iPtgxDB for the experiments without pro-
tease digestion was generated with a regular expression that did
not allow any cleavages. In addition, three 20-fold smaller custom
iPtgxDBs were created to improve search statistics/predictive po-
tential. For these, instead of adding the ChemGenome and in silico
predictions, 266 selected Ribo-seq translation products identified
from the sORF prediction tools DeepRibo (Clauwaert et al. 2019)
and Reparation (Ndah et al. 2017), as well as manual analysis,
were converted to GFF format using a custom Python script and
integrated along with the RefSeq, GenBank, Genoscope (Vallenet
et al. 2013), and Prodigal predictions to create the respective iPt-
gxDBs (Tables S3.3 and S3.4). All six iPtgxDBs (downloadable from
https://iptgxdb.expasy.org) also contained sequences of common
laboratory contaminants (116 from CrapOme and 256 from the
Functional Genomics Center Zurich). All peptides implying poten-
tially novel proteins were subjected to a PeptideClassifier analysis
(Qeli and Ahrens 2010) extended for proteogenomics in prokary-
otes (Omasits et al. 2017). This procedure ensures that i) only un-
ambiguous peptides were considered (class 1a or 3a; see below)
or ii) annotation cluster-specific cases can be distinguished: Class
2a peptides imply a subset of all possible proteoforms (e.g. like an
extension, reduction), class 2b peptides imply all isoforms, which
means that the gene encoding the proteoforms, but not a specific
proteoform, was identified. Class 3a peptides unambiguously im-
ply a protein sequence, that however can be encoded by several
identical gene copies. For more information about peptide evi-
dence classes and annotation clusters, please see the iPtgxDB web
server documentation (https://iptgxdb.expasy.org/creating_iptgx
dbs/).

MS analysis
Samples were loaded on an EASY-nLC 1200 (Thermo-Fisher Sci-
entific) equipped with an in-house-built 20 cm reversed-phase

http://www.bioinf.uni-freiburg.de/ribobase
https://iptgxdb.expasy.org/database/annotations/s-meliloti-tryptic;
https://iptgxdb.expasy.org
https://iptgxdb.expasy.org/creating_iptgxdbs/
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column packed with 3 μm Reprosil-Pur 120 C18-AQ (Dr. Maisch)
and an integrated emitter tip. Peptides were eluted by a 156 min
non-linear gradient of solvent B (0.1% v/v acetic acid in acetoni-
trile) and injected online in an Orbitrap Velos (Thermo-Fisher Sci-
entific). The survey scans were acquired in the Orbitrap (300–
1700 Th; 60 000 resolution at 400 m/z; 1 × 1e6 predictive auto-
matic gain control target; activated lock mass correction). After
collision-induced dissociation with a normalized collision energy
of 35, fragment spectra were recorded in the LTQ (mass range de-
pendent on precursor m/z; 3 × 1e4 predictive automatic gain con-
trol) for the 20 most abundant ions. Fragmented ions were dynam-
ically excluded from fragmentation for 30 s.

DB searches were performed with Sorcerer-SEQUEST 4 (Sage-N
Research, Milpitas, USA), allowing two missed cleavages for sam-
ples derived from tryptic in solution digest or LysC digested SPE
samples and with non-specified enzymes for SPE samples without
proteolytic digest. No fixed modifications were considered, and
oxidation of methionine was considered a variable modification.
The mass tolerance for precursor ions was set to 10 ppm, and
the mass tolerance for fragment ions was set to 1.0 Da. Valida-
tion of MS/MS-based peptide and protein identification was per-
formed with Scaffold V4.8.7 (Proteome Software, Portland, USA),
and peptide identifications were accepted if they exhibited at least
deltaCn scores of > 0.1 and XCorr scores of > 2.2, 3.3, and 3.75 for
doubly, triply, and all high-charged peptides, respectively. Identifi-
cations for proteins of > 15 kDa were only accepted if at least two
unique peptides were identified. Proteins that contained ambigu-
ous, non-unique peptides and could not be differentiated based
on MS/MS analysis alone were grouped to satisfy the principles of
parsimony (Sorcerer-SEQUEST). Identifications for annotated pro-
teins of < 15 kDa were accepted if at least one unique peptide was
identified with at least two peptide spectrum matches (PSMs). To
identify novel proteins, we required additional PSM evidence from
predictions as described before (Varadarajan et al. 2020a,b), that
is, 3 PSMs for ab initio predictions and 4 PSMs from in silico predic-
tions. Here, we also allowed in silico candidates with 3 PSMs if they
were observed in each of the three replicates. Similar to the Ref-
Seq annotated proteins, novel proteins greater than 15 kDa (∼150
aa) required two unique peptides (however, these were not the fo-
cus of this study). The application of these filter criteria kept the
protein false discovery rate (FDR) below 1%. To facilitate overview
and comparison, we integrated MS-identified proteins, Ribo-Seq,
and Western blot analysis data in a ‘master table’ (Table S4).

Cloning procedures
The oligonucleotides (Microsynth) used for cloning are listed
in Table S5. Routinely, FastDigest Restriction Endonucleases
and Phusion polymerase (Thermo Fisher Scientific) were used.
PCR products were first ligated into pJet1.2/blunt (CloneJet PCR
Cloning Kit, Thermo Fisher Scientific) and transformed into E.
coli DH5-alpha. Subsequently, inserts were subcloned in conjuga-
tive plasmids originating from pSRKGm (Khan et al. 2008). Insert
sequences were analyzed by Sanger sequencing with plasmid-
specific primers (Microsynth Seqlab). E. coli S17-1 was used to
transfer the plasmids to S. meliloti 2011 by diparental conjugation
(Simon et al. 1983).

Plasmid pSW2 was used to clone the candidate sORFs. It was
constructed using pRS1, a derivative of pSRKGm, in which the
E. coli lac module was exchanged for a multiple cleavage site-
containing cloning site for the restriction endonucleases NheI,
HindIII, XbaI, SpeI, BamHI, PstI, and EcoRI. First, a transcrip-
tion terminator Trrn from Bradyrhizobium japonicum USDA 110 was

cloned into the EcoRI restriction site of pRS1. For this, the termi-
nator containing sequence was amplified with the forward primer
Bj-Trrn-Fw-2019 and the reverse primer Bj-Trrn-Rv-2019 using
plasmid pJH-O1 as a template (Čuklina et al. 2016). In the PCR
product, an EcoRI restriction site was present downstream of the
forward primer sequence. This restriction site and that in the re-
verse primer were used for the transcription terminator cloning. A
clone with the desired orientation was selected, and the plasmid
was named pRS1-Trrn (Fig. S1). Double-stranded DNA encoding
a sequential peptide affinity (SPA) tag, which is composed of the
calmodulin-binding peptide and three modified FLAG sequences
separated by a TEV protease cleavage site (Zeghouf et al. 2004),
was then cloned between the BamHI and EcoRI cleavage sites of
pRS1-Trrn. The SPA-tag encoding sequence was designed with-
out an ATG codon, without rare codons, and with Gly-Gly-Gly-Ser
linker codons at the 5’ end and adapted to the high GC content of
S. meliloti. It was generated synthetically by Eurofins and provided
on plasmid pEX-A128, which was used as a template for PCR am-
plification with primers SmSPA-Ct-BamFW and SmSPA-Ct-EcoRv.
The resulting plasmid pSW1 can be used to clone an sORF in frame
with the SPA-encoding sequence and under the control of its own
promoter. Here, pSW1 was used to clone the promoter PsinI be-
tween the NheI and XbaI restriction sites. The promoter sequence
(McIntosh et al. 2008) was amplified using primers NheI-PsinI-FW
and XbaI- PsinI-RV and S. meliloti 2011 genomic DNA as a tem-
plate. The resulting pSW2 plasmid was used to clone candidate
sORFs, each with a 15-nt upstream region potentially harboring
a Shine-Dalgarno sequence between the XbaI and BamHI restric-
tion sites (Fig. S1). In total, 20 sORF:: SPA fusions were cloned and
tested by Western blot analysis. The corresponding plasmids were
designated from pSW2-SEP1 to pSW2-SEP20.

Western blot analysis
Exponentially grown S. meliloti cells (OD600nm 0.5; minimal
medium) were harvested (3500 × g for 10 min at 4◦C) and
resuspended in an SDS-loading buffer. After incubation for
5 min at 95◦C, the crude lysate proteins were separated by
Tricine-SDS PAGE (16%) and blotted onto a PVDF membrane
(AmerhamTMHybondTM, 0.2 μM PVDF; GE Healthcare Life Science,
Chalfont St Giles, Great Britain) as described (Schägger 2006). For
detection, monoclonal ANTI-FLAG M2-Peroxidase (HRP) antibod-
ies (Merck, Darmstadt, Germany) and Lumi-Light Western-Blot-
Substrate (Roche, Basel, Schweiz) were used. Signal visualization
was performed with a chemiluminescence imager (Fusion SL4,
Vilber, Eberhardzell, Germany). For fractionation, the cell pellets
were resuspended in TKMDP buffer containing 20 mM Tris-HCl,
150 mM KCl, 1 mM MgCl2, 1 mM DTT, and one protease inhibitor
cocktail tablet at pH 7.5 (Sigma Aldrich, St. Louis, USA). Lysates
prepared by three passages in a French press at 1000psi were
cleared by centrifugation at 14,000 × g for 30 min at 4◦C. The
supernatant was subjected to ultracentrifugation at 100, 000 × g
for 1 h at 4◦C. The supernatant (S100 fraction) was then removed,
and the P100 pellet was resuspended in the same volume of TK-
MDP buffer.

Conservation analysis, protein domain, and
operon prediction
The identification of novel small protein homologues was per-
formed using Blastp and tBlastn searches in bacteria on the Na-
tional Center for Biotechnology Information DB (https://blast.nc
bi.nlm.nih.gov/Blast.cgi). The protein sequences for novel pro-
tein candidates identified by Ribo-seq and/or MS were used as

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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query sequences. For tBlastn, the following parameters were used:
the filter for low complexity regions off, a seed length that ini-
tiates an alignment (word size) of 6, 60% coverage of the query
sequence with at least 40% identity, an E-value (Expect value)
of ≤100 to capture all potential orthologs, and an E-value be-
low 0.1 for high-confidence hits (Allen et al. 2014). Moreover,
novel small protein candidates were further analyzed for sec-
ondary structure, for predicted protein domains and lipoprotein
signatures, as well as for potential subcellular localization us-
ing predictions from the Phyre2 v2.0 (http://www.sbg.bio.ic.ac.
uk/∼phyre2/), LipoP-1.0 (https://services.healthtech.dtu.dk/servi
ce.php?LipoP-1.0) TMHMM v2.0 (https://services.healthtech.dtu.
dk/service.php?TMHMM-2.0), and PSORTb v3.0.2 servers (https:
//www.psort.org/psortb/). For operon prediction, we used the pub-
licly available OperonMapper software (Taboada et al. 2018) by
creating a GFF file containing both the 48 novel sORFs as well as
all CDS from the RefSeq 2022 annotation.

Data availability
The MS-based proteomics data were deposited to the ProteomeX-
change Consortium at the PRIDE partner repository, with dataset
identifier PXD034931. The iPtgxDBs can be downloaded from ht
tps://iptgxdb.expasy.org/. Ribo-seq and RNA-seq data were de-
posited in GEO, with accession number GSE206492. The Ribo-seq
and RNA-seq data of S. meliloti 2011 can be viewed with an inter-
active online JBrowse instance (http://www.bioinf.uni-freiburg.de
/ribobase).

Results
Establishing Ribo-seq in S. meliloti to map its
translatome
To provide a genome-wide map of translated annotated sORFs
and to reveal new sORFs in the plant symbiont S. meliloti, we first
adapted the Ribo-seq protocol (Oh et al. 2011, Hadjeras et al. 2023)
to this organism (Fig. 1A). For this purpose, several steps, including
cell harvest, lysis, and footprint generation, were optimized (see
Methods). S. meliloti 2011 cells were grown to the mid-log phase
in minimal medium, and samples were rapidly cooled and har-
vested to avoid polysome run-off. Polysome profile analysis af-
ter lysate fractionation on a sucrose gradient showed success-
fully captured translating ribosomes (Fig. 1B, black profile). The
mRNA should be ribonucleolytically digested outside ribosomes
to produce ribosome footprints. Since the broad-range ribonucle-
ase RNase I, which is often used for eukaryotic Ribo-seq anal-
ysis, is inactive on polysomes from enteric bacteria (Datta end
Burma 1972, Bartholomäus et al. 2016), most prokaryotic Ribo-
seq protocols mainly use micrococcal nuclease (MNase) instead.
Since MNase preferentially cleaves at pyrimidines, it typically in-
troduces periodicity artifacts, and generates footprints that are
more heterogeneous in length than those from RNase I (Ingolia
2016, Vazquez-Laslop et al. 2022). Therefore, we used RNase I to
convert S. meliloti polysomes into monosomes (Fig. 1B) and to gen-
erate ribosome footprints (Fig. 1C and E). By comparing Ribo-seq
read coverage data and expression signals from a paired RNA-seq
library generated from fragmented total RNA, features, such as
coding potential, ORF boundaries, and 5’- and 3’-UTRs, can be de-
fined (Fig. 1C and E).

Inspection of Ribo-seq coverage for translated ORFs and
known non-coding transcripts further demonstrated the success-
ful setup of Ribo-seq in S. meliloti. For example, the protein-coding
genes rpsO and icd showed higher cDNA read coverage in the Ribo-

seq library compared with the paired RNA-seq library (Fig. 1C),
whereas the RNase P RNA gene rnpB showed high cDNA read cov-
erage only in the RNA-seq library (Fig. 1D). Furthermore, the cDNA
read coverages of the 5’- and 3’-UTRs of rpsO and icd were higher
in the RNA-seq library than in the Ribo-seq library (Fig. 1C), show-
ing successful digestion of non-translated or unprotected mRNA
regions by RNase I. Similarly, the protein-coding polycistronic
fixN1OQP mRNA showed high read coverage in the Ribo-seq library
along its four ORFs. In contrast, the 5’-leader and 3’-trailer mainly
showed coverage in the RNA-seq library, suggesting that they were
digested by RNase I (Fig. 1E).

The high ribosome density in the Ribo-seq library, which cov-
ers the 14 and 12-nt-long intergenic regions between fixN1–fixO1
and fixO1–fixQ1, probably represents the footprints of ribosomes
that terminate the translation of the upstream ORF and initiate
the translation of the downstream ORF. Such events are slower
than elongation at most codons in an ORF (Oh et al. 2011). The
latter example indicates the translation of the sORF fixQ1, which
encodes a 50 aa protein (Fig. 1E).

Metagene analysis of ribosome occupancy near all annotated
start codons (i.e. ATG, GTG, and TTG) showed an enriched ribo-
some density at the −16 nt upstream (mapping of the 5’ ends of
the footprints) and at +16 nt downstream (mapping of the 3’ ends
of the footprints) (Fig. S2A and S2B; note: +1 is the first nucleotide
of the start codon), in line with the expected position of initiating
ribosomes waiting to engage in elongation. This feature is a char-
acteristic of translated bacterial ORFs identified by Ribo-seq (Oh et
al. 2011, Mohammad et al. 2019). In contrast to MNase-generated
Ribo-seq libraries in E. coli (Mohammad et al. 2019), no differences
in the assignment of ribosome position using the 5’ end or 3’
end mapping approaches were observed (Fig. S2A and S2B). In the
Ribo-seq libraries, we consistently recovered footprints between
27 and 33 nt (mean at 30 nt), with enrichment of ribosome den-
sity strongest at the start codon for the 32 nt footprints (Fig. S2C
and D).

Ribo-seq captures the translatome of S. meliloti
and reveals features at the single gene level
By comparing the signals of the Ribo-seq and RNA-seq libraries,
the TE (ratio Ribo-seq/total RNA coverage) can be estimated at
a given locus. This method allowed us to derive a genome-wide
estimate of the translatome in minimal medium, where 3758 of
the 6263 annotated coding sequences (CDS) (60%; GenBank 2014
annotation) had a Ribo-seq signal above the arbitrarily chosen TE
cut-off of ≥ 0.5 and RNA-seq and Ribo-seq RPKM of ≥ 10 (see Meth-
ods, Fig. 2A, Table S6). In contrast, the ORF prediction tools imple-
mented in HRIBO (Gelhausen et al. 2021, 2022) detected transla-
tion for 2136 of the 3758 ORFs (57%), suggesting an average per-
formance in predicting long translated ORFs in S. meliloti (Fig. 2A,
Table S6).

Inspection of the TE for different annotated gene classes and
untranslated mRNA regions (all CDS, 5’- and 3’-UTRs, non-coding
RNAs, and sORFs) revealed that annotated ORFs exhibited a higher
mean TE (TE ≥ 1) compared with non-coding genes, such as
housekeeping RNA genes (hkRNA, e.g. tmRNA, 6S, ffs, rnpB and
incA1/2 RNA, mean TE <1) (Fig. 2B), again corroborating the abil-
ity of our Ribo-seq data to differentiate between coding and non-
coding genes. The 5’-UTR regions of translated mRNAs generally
had a mean TE of ≥ 1, which possibly resulted from protection
from RNase I trimming of the −16 nt region upstream of the start
codon by the initiating ribosomes (Fig. S2). This feature was par-
ticularly prominent in the leader regions of mRNAs with short

http://www.sbg.bio.ic.ac.uk/\protect $\relax \sim $phyre2/
https://services.healthtech.dtu.dk/service.php?LipoP-1.0
https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
https://www.psort.org/psortb/
https://iptgxdb.expasy.org/
http://www.bioinf.uni-freiburg.de/ribobase
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Figure 1. Establishment of ribosome profiling (Ribo-seq) for Sinorhizobium meliloti. (A) Schematic Ribo-seq workflow to map the S. meliloti 2011
translatome. Translating ribosomes (indicated by the polysome fraction) were first captured on the mRNAs. Unprotected mRNA regions were digested
by RNase I, converting polysomes to monosomes. Approximately 30-nt-long footprints protected by and co-purified with 70S ribosomes were then
subjected to cDNA library preparation and deep sequencing to identify the translatome under the used conditions. The small proteome was identified
using HRIBO automated predictions and manual curation. Mass spectrometry and Western blot analysis of recombinant, tagged small open reading
frame (sORF)-encoded proteins were used to validate the translated sORFs. (B) Sucrose gradient fractionation of the lysates. Cells were harvested at
the exponential growth phase by a fast-chilling method to avoid polysome run-off. RNase I digestion led to enrichment of monosomes (70S peak in the
green profile) in contrast to the untreated sample (Mock, black profile). Absorbance at 254 nm was measured. (C) Integrated genome browser
screenshots depicting reads from Ribo-seq and RNA-seq libraries for two annotated ORFs: rpsO encoding ribosomal protein S15 and icd encoding
isocitrate dehydrogenase. They show read coverage enrichment in the Ribo-seq library along their coding parts in contrast to the RNA-seq library but
not in the ribosome-non-protected regions (UTRs). The UTRs of rpsO are marked. (D) Read coverage for rnpB corresponding to the housekeeping RNase
P RNA. Reads are mostly restricted to the RNA-seq library, suggesting that this RNA is not translated. (E) The fixN1OQP operon shows read coverage in
both the RNA-seq library and Ribo-seq library, the latter indicating that this operon contains translated genes. Genomic locations and coding regions
are indicated below the image. Bent arrow indicates the transcription start site based on (Sallet et al. 2013).
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Figure 2. Ribosome profiling (Ribo-seq) captures the translatome of Sinorhizobium meliloti 2011 and reveals some features at the single-gene level. (A)
Comparison of all annotated open reading frames (ORFs), annotated translated ORFs detected by Ribo-seq, and ORFs predicted to be translated by
tools included in the HRIBO pipeline. To detect translation, we used the following parameters on the Ribo-seq data: TE of ≥ 0.5 and RNA-seq and
Ribo-seq RPKM of ≥ 10. The numbers of ORFs per category are shown and represented by area size. Diagrams were prepared with BioVenn
(www.biovenn.nl). (B) Scatter plot showing global TEs (TE = Ribo-seq/RNA-seq) computed from S. meliloti Ribo-seq replicates for all annotated coding
sequences (CDS), annotated 5’- and 3’-UTRs, annotated housekeeping RNAs (hkRNA), annotated small RNAs (sRNAs) with (putative) regulatory
functions, and annotated sORFs encoding proteins of ≤ 70 amino acids (aa). The purple lines indicate the mean TE for each transcript class. (C)
Analysis of the two well-characterized sRNAs AbcR1 and AbcR2 by Ribo-seq. These two sRNAs show read coverage mostly in the RNA-seq library. (D)
Ribo-seq reveals the active translation of the trpE leader peptide peTrpL (14 aa, encoded by the leaderless sORF trpL in the 5’-UTR (red arrow) and/or by
the attenuator sRNA rnTrpL). In addition, the coverage of the Ribo-seq library shows that the biosynthetic gene trpE is translated in minimal medium,
as expected. (E) Re-annotation of sORF SM2011_c05019 (50 aa). The GenBank 2014 annotation does not fit the RNA-seq and Ribo-seq read coverages.
HRIBO predicts a shorter leaderless sORF (38 aa) that corresponds to the read coverage in both libraries. (F) Two ORFs missing from the GenBank 2014
annotation are revealed by Ribo-seq upstream of the nnrU gene related to denitrification. Genomic locations and coding regions are indicated below
the image. Bent arrows indicate transcription start sites based on (Sallet et al. 2013).

http://www.biovenn.nl
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Figure 3. Ribo-seq reveals translated annotated small open reading frames (sORFs) in Sinorhizobium meliloti 2011. (A) Venn diagrams showing the
overlap between all annotated sORFs (259 sORFs, GenBank 2014), the sORFs detected as translated by Ribo-seq (benchmark set, TE of ≥ 0.5, RNA-seq
and Ribo-seq RPKM of ≥ 10, and extensive manual curation), and sORFs predicted by the automated ORF prediction tools Reparation or DeepRibo. (B)
Histogram showing the length distribution of the 85 annotated sORFs identified as translated by Ribo-seq in comparison with the 259 annotated
sORFs. (C) Integrated genome browser screenshot depicting reads from the Ribo-seq and RNA-seq libraries for the annotated sORF pilA1 (60 amino
acids, encoding a pilin subunit). The genomic position and the coding region are indicated below the image. Bent arrows indicate transcription start
sites based on (Sallet et al. 2013). (D) Genomic context for the translated annotated sORFs relative to the annotated neighboring genes. (E) Start (left)
and stop (right) codon usage of the translated annotated sORFs. (F) Replicon distribution of the translated annotated sORFs.

5’-UTRs, indicating that they are partially protected from diges-
tion by initiating ribosomes (Fig. S3A). In addition, some 5’-UTRs
might contain translated upstream sORFs, such as trpL upstream
of trpE (marked in red in Fig. 2D) (Melior et al. 2020). Although less
pronounced than at the start codon, the translation-terminating
ribosome also protects a certain 3’-UTR region from RNase diges-
tion (Oh et al. 2011), explaining the slightly higher mean TE of 3’-
UTRs (Fig. 2B). Furthermore, a few of the 3’-UTRs might also con-

tain translated downstream sORFs (Fig. S3B; Dodbele and Wilusz
2020, Wu et al. 2020), which may explain the slightly higher mean
TE of 3’-UTRs.

Most of the annotated sRNAs had a mean TE of < 1, indicating
that they are in fact non-coding, such as the sRNAs AbcR1 (TE =
0.2) and AbcR2 (TE = 0.09) (Fig. 2C) (Torres-Quesada et al. 2013).
However, some annotated sRNAs had a mean TE of ≥ 1, suggesting
that they may be small mRNAs or dual-function sRNAs (Fig. S3C).
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For example, Fig. 2D shows the recently described dual-function
sRNA rnTrpL (TE = 1.16), which corresponds to the tryptophan at-
tenuator and contains the trpL sORF encoding the functional 14 aa
leader peptide peTrpL (Melior et al. 2019, Melior et al. 2021). Since
rnTrpL is a small, leaderless mRNA starting with the AUG of trpL,
Fig. 2D also exemplifies how our Ribo-seq analysis can capture
leaderless translated ORFs. Furthermore, as expected, we detected
translation of the biosynthetic genes trpE and leuC under growth
in minimal medium lacking tryptophan and leucine (Fig. 2D
and E).

Finally, we used our Ribo-seq data to curate the annotation of
S. meliloti. For example, Ribo-seq, RNA-seq data, and our compu-
tational ORF predictions based on Ribo-seq all indicated that the
start of the sORF SM2011_c05019 (50 aa) is likely located down-
stream of the one in the GenBank 2014 annotation, implying a
shorter sORF of 38 aa (Fig. 2E; this gene is missing in the lat-
est RefSeq 2022 annotation). Additional sORFs whose annotation
should be adjusted are reported in Table S4. Moreover, our data
revealed additional ORFs that should be added to the genome an-
notation. For example, the RNA-seq and Ribo-seq read coverages
indicate expression (transcription and translation) upstream of
the nnrU gene. However, no gene was predicted in this region of
the GenBank 2014 annotation. HRIBO’s prediction tools indicated
the potential for two non-annotated ORFs encoding 51 and 132
aa proteins upstream of the nnrU gene (Fig. 2F). The 51 aa ORF
is annotated in the related Sinorhizobium medicae and Ensifer ad-
haerens, and in the latter, a homologous 142 aa ORF is annotated
between the 51 aa sORF and nnrU. Notably, while both ORFs were
contained in the S. meliloti RefSeq 2017 annotation, the 132 aa
ORF was removed again from the latest version (June 2022). This
observation underlines the need for and value of integrative ap-
proaches that can capture and consolidate reference genome an-
notations from different annotation centers and even from differ-
ent releases, which can differ substantially. The iPtgxDB approach
(Omasits et al. 2017) represents one strategy to readily capture and
visualize such differences, as we show here and for a number of
additional cases below.

Ribo-seq reveals translated annotated small
proteins in S. meliloti
Among the 6263 annotated CDS in the S. meliloti 2011 genome (the
annotation from GenBank 2014 has been used in the laboratory as
a reference point for several years), 259 (roughly 4%) correspond
to SEPs, with sizes ranging between 30 (the smallest annotated
SEP) and 70 aa (Table S6). To benchmark our Ribo-seq data for its
capacity for global identification of translated sORFs, we analyzed
the Ribo-seq read coverage of these 259 annotated sORFs. By ap-
plying the TE of ≥ 0.5 and RNA-seq and Ribo-seq RPKM of ≥ 10
cut-off criteria, 131 of them were suggested to be translated (Ta-
ble S6). However, we further included an extensive manual inspec-
tion (see Methods) of the Ribo-seq read coverage on top of these
cut-offs to derive a high-confidence dataset of 85 (33%) translated
sORFs (Fig. 3A, Table S6).

We then used this set of manually curated, translated sORFs
as a benchmark sORF data set to evaluate the performance
of two machine learning-based, automated, Ribo-seq-based ORF
prediction tools included in our HRIBO pipeline (Gelhausen et
al. 2021, 2022), REPARATION (Ndah et al. 2017), and DeepRibo
(Clauwaert et al. 2019). REPARATION predicted the translation
for 23 of the 85 benchmark sORFs (26%; Fig. 3A), even miss-
ing some highly translated sORFs, such as those encoding ribo-
somal proteins (SM2011_c04434 encoding 50S ribosomal protein

L34, mean TE = 5.47) and proteins with housekeeping functions
(SM2011_c04884 encoding an anti-sigma factor, mean TE = 2.02,
and SM2011_c03850 encoding the heme exporter D, a cytochrome
C-type biogenesis protein, mean TE = 0.88). In contrast, Deep-
Ribo predicted translation for 66 of the 85 benchmark sORFs (78%;
Fig. 3A).

The majority of the 259 annotated (76%) and the subset of 85
translated sORFs (78%) encode SEPs of ≥ 50 aa (Fig. 3B), in line with
the expected poor annotation of very short ORFs.

Figure 3C shows read coverage from the Ribo-seq and RNA-seq
libraries for the sORF encoding a 60 aa pilin subunit (TE = 23.3),
which illustrates the successful RNase I digestion of parts of the
5’- and 3’-UTR regions not covered by ribosomes, thus allowing
us to define sORF borders. In terms of type of genomic location,
most of the translated annotated sORFs are located in intergenic
regions and operons, and only a few were found in antisense tran-
scripts (Fig. 3D). The vast majority of the translated annotated
sORFs were found to start with ATG, followed by GTG and TTG.
The stop codon preference, although less pronounced, was TGA
> TAA > TAG (Fig. 3E). Finally, 60% of the 85 translated annotated
sORFs were located on the chromosome, 23.5% on the megaplas-
mid pSymA, and 16.5% on the megaplasmid pSymB (Fig. 3F).

Ribo-seq further expands the small proteome of
S. meliloti
We then aimed to exploit the sensitivity of Ribo-seq to identify
potential novel S. meliloti 2011 sORFs missing from the GenBank
2014 annotation and thereby provide a more complete catalog of
its small proteome. The two machine learning-based, automated,
Ribo-seq-based ORF prediction tools integrated into the HRIBO
pipeline produced a large number of predictions (approximately
15,000) for potential non-annotated sORFs (Fig. 4A), as previously
shown in other bacterial species (Gelhausen et al. 2022). Given
that these ORF prediction tools neither consider RNA-seq data
nor TE but only utilize ribosome occupancy, we decided to filter
the predictions for those with RNA-seq and Ribo-seq RPKM values
of ≥10 and mean TE of ≥ 0.5. In addition, we applied a stringent
cut-off for the DeepRibo score (see Methods) that allowed an ORF
candidate ranking, which led to 266 candidates of translated non-
annotated sORFs. Manual curation of all candidates based on their
Ribo-seq coverage left us with a list of 54 non-annotated sORFs,
which we proposed with high confidence to be translated during
growth of S. meliloti in minimal medium (Fig. 4A; Table S7). Over-
all, the 54 non-annotated sORFs were shorter than the annotated
ones: 33 of them (61%) correspond to SEPs with lengths between
10 and 49 aa, and nine of them (17%) represent SEPs shorter than
30 aa (the shortest annotated ORF in the S. meliloti annotation). A
comparison to the length distribution of the 85 annotated and 54
non-annotated translated sORFs (Fig. 4B) illustrates the potential
of Ribo-seq to detect very short translated sORFs.

The 54 non-annotated sORFs are encoded in diverse genomic
contexts (Fig. 4C): 33% were located on annotated sRNAs, sug-
gesting that these sRNAs are small mRNAs or dual-function sR-
NAs, 26% were in the intergenic regions, thus defining small mR-
NAs, and 20% were in the 5’-UTRs and may correspond to regu-
latory upstream ORFs (Evguenieva-Hackenberg 2022). Only a few
were located in 3’-UTRs, on antisense transcripts and inside an
operon (Fig. 4C). Moreover, the majority of the 54 sORFs (63%)
were located on the chromosome, 22% on pSymA, and 15% on
pSymB (Fig. 4D), a distribution comparable to that of the anno-
tated sORFs (Fig. 3F). Similar to the annotated sORFs, ATG was also
the preferred start codon among the 54 non-annotated translated
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Figure 4. Ribo-seq uncovers a repertoire of small open reading frames (sORFs) missing from the Sinorhizobium meliloti 2011 genome annotation. (A)
sORF predictions from HRIBO included a high number of potential non-annotated sORFs (approximately 15,000). These sORFs were first filtered (TE of
≥ 0.5, RNA-seq and Ribo-seq RPKM of ≥ 10, DeepRibo score of > −0.5) to generate a set of 266 translated sORF candidates that were additionally
manually curated by inspection of the Ribo-seq read coverage in a genome browser. Overall, 54 high-confidence non-annotated sORFs displayed
translation during growth in minimal medium. A Venn diagram shows the respective number of proteins from each category (scaled with area size).
Diagrams were prepared with BioVenn ( www.biovenn.nl). (B) Histogram showing the length distribution of the 54 non-annotated versus the 85
annotated sORFs identified as translated by Ribo-seq. (C) Genomic context of the translated non-annotated sORFs. (D) Replicon distribution of the
translated non-annotated sORFs.

sORFs, and only five and four sORFs started with GTG or TTG, re-
spectively; their stop codon preference was also similar to that of
the annotated sORFs (Table S6). Importantly, as the iPtgxDB inte-
grates and consolidates different reference genome annotations
and various predictions, we could readily deduce that 11 of the 54
translated sORFs were contained in the RefSeq 2017 annotation,
precisely matching their predicted start and stop codons (Table
S7). Five candidates matched a RefSeq annotation, but they were
shorter. One candidate matched the stop but was only 1 aa longer
than the RefSeq annotation. Finally, three candidates matched a
GenBank stop codon, but they were shorter than annotated (one
of which was in fact again removed in the RefSeq annotation). In
summary, Ribo-seq uncovered 37 translated sORF candidates that
were novel compared to both GenBank 2014 and RefSeq 2017 an-
notations (Table S7).

Both standard and small custom iPtgxDBs
informed by Ribo-seq data facilitate novel SEP
identification by MS
To validate sORF translation and identify novel SEPs of S. meliloti
2011, we then conducted MS-based proteomics using experimen-
tal strategies to increase the coverage of the MS-detectable small
proteome and two types of search DBs. Cells were cultured ei-
ther in minimal GMS medium (same as for Ribo-seq) or in rich
TY medium, and three complementary sample preparation ap-

proaches were used: 1) tryptic in-solution digest of all proteins (a
standard proteomics approach), 2) solid phase enrichment (SPE)
of small proteins with subsequent Lys-C digestion, and 3) SPE of
small proteins without subsequent digestion (Fig. 5A). Approaches
2 and 3 can identify SEPs whose peptides are not within the de-
tectable range (approximately 7 aa to 40 aa) upon a tryptic digest
(Tyanova et al. 2016).

For the DB searches, we first relied on a standard (full) iPt-
gxDB (Omasits et al. 2017) that hierarchically integrates reference
genome annotations, ab initio gene predictions, and in silico ORF
predictions (see Methods). The overlap and differences of all an-
notation sources were captured and consolidated in a composite
gene identifier. Moreover, a large but minimally redundant protein
search DB (for more details, see https://iptgxdb.expasy.org/creatin
g_iptgxdbs/) is created, as well as a GFF that allows researchers to
overlay experimental evidence, such as RNA-seq, Ribo-seq, or pro-
teomics data. Individual iPtgxDBs must be prepared for different
proteases (see Methods). For trypsin, the standard iPtgxDB con-
tained close to 160k protein entries of approximately 103k anno-
tation clusters (Table S3.1), that is, genomic loci that share the
stop codon but have different predicted protein start sites. Ap-
proximately 92% of the peptides unambiguously identify one pro-
tein entry, which are called class 1a peptides that facilitate down-
stream data analysis and allow to swiftly identify novel proteo-
forms or SEPs. Although standard iPtgxDBs are very large, when

http://www.biovenn.nl
https://iptgxdb.expasy.org/creating_iptgxdbs/
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Figure 5. Mass spectrometry-based identification of known and novel small open reading frame-encoded proteins (SEPs). (A) Experimental set-up for
the proteomics analyses. Bacteria were grown in minimal and rich media, and protein extracts were further processed with tryptic in-solution digest
(gray), solid-phase enrichment (SPE) of small proteins with subsequent Lys-C digestion (green), or without further digestion (blue). (B) Overlap of the
identified SEPs by experimental approach; trypsin identified 45 SEPs; compared with the trypsin approach, Lys-C identified 38 SEPs (nine novel, 24%),
and the approach without digestion found 30 SEPs (six novel, 20%). (C) Novel/unique identifications uncovered by the standard integrated
proteogenomic search databases (iPtgxDB) and the small custom iPtgxDB. Standard iPtgxDB: Three peptides imply a 14 aa longer proteoform (60 aa)
for HmuP than annotated; four peptides of the tmRNA-encoded proteolysis tag were identified; one peptide (3 peptide spectrum matches [PSMs])
implied a novel SEP (34 aa) internal to the genomic region that also encodes SM2011_b20335 but in a different frame. Spectra identifying these
peptides are shown in Fig. S5. These identifications were also predicted by HRIBO based on Ribo-seq. Finally, six annotated proteins (GenBank 2014
and/or RefSeq 2017) were identified only in the search against the small custom iPtgxDB, as they did not accumulate enough spectral evidence in the
search against the standard iPtgxDB (Table S4).
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combined with stringent FDR filtering, they have provided con-
vincing results in the past for the identification of novel SEPs that
withstood independent validation efforts (Omasits et al. 2017, Bar-
tel et al. 2020, Melior et al. 2020). However, as large DBs inflate
the search space, they complicate protein inference and FDR es-
timation, resulting in a large likelihood of a random hit, espe-
cially for SEPs (Burger 2018, Nesvizhskii 2010, Fancello and Burger
2022). Importantly, the 266 top Ribo-seq-implied novel candidates
(Fig. 4A) allowed us to explore whether a much smaller custom
iPtgxDB may provide additional value for the identification of an-
notated or novel SEPs. Adding these 266 candidates to the three
reference genome annotations (RefSeq, GenBank, Genoscope) and
the Prodigal ab initio gene predictions resulted in a 20-fold smaller
custom iPtgxDB (Fig. 5A) (approximately 8000 protein entries in
7300 annotation clusters), with a higher percentage of class 1a
peptides (nearly 98%; Table S3.3).

The acquired MS-spectra were searched against the standard
and small iPtgxDBs, and the results were compiled and stringently
filtered, requiring more PSM evidence (see Methods) for ab initio
and in silico predictions (Varadarajan et al. 2020a,b). Overall, more
than 1200 annotated proteins were detected at an estimated pro-
tein FDR of approximately 1%. The SPE-based small protein en-
richment steps uniquely identified 160 of these proteins (Fig. S4A).
Notably, the search against the small custom DB accounted for
112 unique identifications (Fig. S4B) due to improved search statis-
tics. The MS-identified proteins included 58 SEPs, with ≤ 70 aa,
47 of which were annotated (GenBank 2014 and/or Refseq 2017)
(Table S4). Similar to the overall results, the two SPE approaches
also added unique SEPs: while 45 of the 58 MS-detected SEPs were
identified with standard trypsin-based digestion, 13 SEPs were
uniquely identified after processing the samples with SPE and ei-
ther a Lys-C digest (9 of 38 not covered by trypsin) or no prote-
olytic digest (6 of 30 not covered by trypsin) (Fig. 5B). Most MS-
identified SEPs were between 60 and 70 aa long (67%), and the
smallest detected SEP was 20 aa long. They include abundantly
expressed proteins (the cold shock proteins SM2011_RS25125 and
SM2011_RS00515, and SM2011_RS31025, a 50S ribosomal protein
L32) (Table S4) down to candidates identified by only 2 PSMs, such
as a 59 aa hypothetical protein, which we refer to as SEP7 (see
next section). Among the 85 GenBank-annotated SEPs identified
with high confidence as translated by Ribo-seq (Fig. 3A), 31 were
identified by MS. Among the 54 SEPs missing from the GenBank
2014 annotation and identified as translated by Ribo-seq (Fig. 4A),
five were identified by MS, and those are present in the Refseq 2017
annotation (Table S4).

Importantly, both searches added unique identifications. The
search versus the full iPtgxDB added 11 potential novel SEPs or
longer proteoforms than annotated, which were in silico predic-
tions that were excluded from the small custom iPtgxDB. A 14 aa
longer proteoform of HmuP was identified by three peptides with
4 PSMs (Fig. S5A). Here, when manually inspecting the Ribo-seq
data, it perfectly agreed with the extension of the 46 aa GenBank
annotation (Fig. 5C). This finding exemplifies how proteomics and
Ribo-seq jointly identify a novel proteoform. Furthermore, the
tmRNA-encoded 12 aa proteolysis tag peptide was uniquely iden-
tified, which marks incompletely translated proteins for degrada-
tion (Karzai et al. 2000) (Fig. 5C). The tag peptide was identified as
a C-terminal part of an in silico predicted 23 aa SEP included in the
standard iPtgxDB. It was only detected in the minimal medium by
four peptides: one in the Lys-C digest and three from the search
without protease (Fig. 5C and S5B). Mutation of the start codon
of the 23 aa sORF had no effect on the translation of the prote-
olysis tag peptide, in line with the mechanism proposed for this

split tmRNA (Keiler et al. 2000, Ulvé et al. 2007) (Fig. S6). An exam-
ple of a completely novel 34 aa SEP is shown in the third panel
of Fig. 5C (see also Fig. S5C); it is located in a genomic region
that harbors an annotated CDS and is translated in a different
frame. The novel sORF has Ribo-seq support (TE 0.4) but did not
pass our stringent Ribo-seq cut-offs. Notably, the search against
the small custom iPtgxDB added six unique SEP identifications
(again, due to better search statistics) (Fig. 5C). Four of them were
also among the 85 GenBank-annotated SEPs identified by Ribo-seq
data (SM2011_RS33030, SM2011_RS33620, SM2011_RS33980, and
SM2011_a6027), lending independent support for their expression
(Table S4). SM2011_RS33620 belongs to the arginine-rich DUF1127
family of proteins, the members of which are involved in phos-
phate and carbon metabolism in Agrobacterium tumefaciens (Kraus
et al. 2020), and in RNA maturation and turnover in Rhodobacter
(Grützner et al. 2021). In addition, the abovementioned RefSeq-
annotated SEP7 was identified (Fig. S5D). Two other SEPs (one of
them novel) were identified with only 1 PSM (Fig. S5E and S5F),
which was below our threshold, but had strong Ribo-seq support
(SEP1, SEP20; see next section).

Validation of a subset of Ribo-seq-implied small
proteins by Western blot analysis
Since out of the 54 high-confidence Ribo-seq-implied sORFs that
were not contained in the GenBank 2014 annotation only five were
detected with at least 2 PSMs in the MS analysis (Table S4), we
attempted additional validation by epitope tagging and Western
blot analysis (Fig. 6). Nineteen sORFs were selected that (i) cover a
broad range of TE values, (ii) start with one of the three main start
codons (ATG: 16 sORFs, GTG: two sORFs, or TTG: one sORF), and
(iii) were either added in the RefSeq 2017 annotation (five sORFs)
or were novel with respect to these two annotations (14 sORFs).
The corresponding proteins were designated SEP1 to SEP19 (Ta-
ble S4). They included three of the candidates that were also de-
tected by MS (SEP7: 2 PSMs; SEP 10: 59 PSMs; SEP17: 29 PSMs). SEP1
was only identified by 1 PSM, that is, below the threshold (Table
S4; Fig. S5E), but with strong Ribo-seq support (highest TE among
the 54 high-confidence Ribo-seq candidates; Table S7). Moreover,
three SEP candidates below 30 aa (SEP1, SEP3, and SEP6) and four
candidates with a predicted transmembrane helix (TMH) (SEP4,
SEP6, SEP13, and SEP16; Table S4) were analyzed. As a 20th can-
didate (SEP20), we included a conserved annotated sORF located
in the cytochrome C oxidase cluster ctaCDBGE between ctaB and
ctaG (GenBank 2014 annotation), which also contains a predicted
TMH. SEP20 was identified by 1 PSM in the MS analysis (Fig. S5F)
and did not pass the stringent HRIBO criteria for translated can-
didate sORFs (Table S3, TE = 6.99, RPKM of < 10 in replicate 1) but
showed strong read coverage in the Ribo-seq library (Table S6).

Each sORF was cloned together with its −15 nt 5’-UTR region
into plasmid pSW2, thus containing its putative ribosome bind-
ing site in frame to the SPA-tag encoding sequence (Fig. 6A and Fig.
S1). Transcription of the sORF:: spa fusion was under the control of
a S. meliloti sinI promoter (PsinI) of moderate strength, which is con-
stitutively active (Charoenpanich et al. 2013). Thus, the detection
of a SEP-SPA fusion protein by Western blot analysis would indi-
cate sORF translation. The Western blot analysis of crude lysates
of cultures grown in minimal medium using FLAG-directed an-
tibodies revealed signals for 15 of the 20 candidates, including
SEP20 (Fig. 6B and G). For 12 candidates, one band consistent with
their predicted SEP length was detected. For SEP1 and SEP5, on
top of the expected SEP-SPA bands, slow migrating bands at ap-
proximately 25 kDa (see asterisks in Fig. 6E) were detected, which
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Figure 6. Detection of 15 sequential peptide affinity (SPA)-tagged small open reading frame-encoded proteins (SEPs) in Sinorhizobium meliloti crude
lysates. (A) Schematic representation of the empty plasmid pSW2 (contains no promoter and no ribosome-binding site upstream of the linker [L] and
SPA-encoding sequence) and a pSW2-SEP plasmid for the analysis of sORF translation. The constitutive PsinI promoter (hatched box), the corresponding
TSS (flexed arrow), the sORF coding sequence with its −15-nt-long region, the SPA-tag (with its molecular size indicated) preceded by a linker (L) (gray
boxes), and the Trrn terminator (hairpin) are depicted. (B) to (F) Western blot analysis of crude lysates (upper panels) and the corresponding
Coomassie-stained gels, and (G) corresponding Ponceau-stained membrane for selected SEPs. Monoclonal FLAG-directed antibodies were used.
Migration of marker proteins (in kDa) is shown on the left side. ∗Unspecific signal. Above the panels, the numbers of the analyzed SEP protein (Table
S7), the presence (+) or absence (−) of a predicted TMH, and the molecular size (in kDa) of the SEP without the SPA tag are given. M: protein marker. C:
empty vector control, lysate from a strain containing pSW2.

probably corresponded to a non-specific signal, as they were also
detected in some EVC samples after lysate fractionation (Fig. S7).

The bands of the tagged SEP1 and SEP5 ran similarly, although
SEP1 is smaller than SEP5, as indicated above the panel (Fig. 6E).
Probably, the aberrant migration of SEP1 is due to its acidic aa
composition (pI of 4.18) (Guan et al. 2015). SEP17 showed multi-
ple bands, with a weak and fast migrating band at approximately
15 kDa, which probably corresponds to the monomeric SEP17-
SPA protein, and three strong and slow migrating bands, which
could indicate protein oligomerization (Fig. 6F). Overall, the trans-
lation of SEPs with alternative start codons, that is, GTG (SEP10
and SEP14) and TTG (SEP7), and of the five candidates missed in
the GenBank 2014 annotation but included by Refseq (2017) (SEPs
Nr. 4, 7, 10, 17, and 18; SEP18 corresponds to the sORF upstream of
leuC, Fig. 2E), was validated. Importantly, this analysis confirmed
the translation of six novel SEPs (SEPs Nr. 1, 6, 11, 13, 14, and 16),

including two of the three SEP candidates shorter than 30 aa. Fi-
nally, our observation that 11 (out of 16) sORFs without MS sup-
port but with high-confidence Ribo-seq data were validated in the
Western blot analysis shows the power of Ribo-seq to detect novel
translated sORFs.

Since the analysis of exclusive or predominant subcellular
localization is valuable for linking hypothetical proteins with-
out any annotation to some potential function (Stekhoven et al.
2014), we decided to investigate the subcellular localization of
the validated SPA-tagged SEPs by Western blot analysis of the su-
pernatant (S100) and pellet (P100) fractions (see Methods) (Fig.
S7). As expected, the predicted TMH-containing proteins SEP4,
SEP6, SEP13, SEP16, and SEP20 were detected exclusively or pre-
dominantly in P100, which contains ribosomes and membranes,
whereas the predicted cytoplasmic proteins SEP5 and SEP12 were
detected exclusively in the S100 fraction (Fig. S7). The remain-
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ing eight SEPs were detected exclusively or partially in the P100
fraction, suggesting that they could be associated with membrane
complexes or ribosomes (SEP10 and SEP18 show similarities to the
ribosomal proteins S21 and L7/12) or be prone to aggregation in
their recombinant, tagged form.

Conservation and potential functions of S.
meliloti novel small proteins
As described above, we detected the translation of 48 sORFs miss-
ing in the GenBank 2014 and Refseq 2017 annotations (37 iden-
tified by Ribo-seq and additional 11 by MS), which we refer to
as novel. Since conserved SEPs are likely to be functional, we
used tBLASTn (Gertz et al. 2006) to examine the conservation
of the proteins encoded by the 48 novel sORFs (Fig. 7; Table S8).
The tBLASTn searches were conducted in bacteria with parame-
ters previously established to identify conserved bacterial sORFs
(Allen et al. 2014) (see Methods). We found a wide range of con-
servation, from an sORF detected in only four S. meliloti strains
overall, to sORFs conserved at different higher taxonomic levels, to
highly conserved sORFs present in different bacterial phyla (Fig. 7).
Among the 14 sORFs encoding SEPs with < 30 aa (excluding the
tmRNA sORF64), four are conserved beyond S. meliloti. One of the
most widely conserved novel SEPs is a 64 aa small protein de-
tected only by MS (sORF61 in Fig. 7). It was identified as a prod-
uct of an in silico predicted sORF, with 3 PSMs in lysates from MM
cultures (Fig. S5G; Table S4). However, no expression at the level
of RNA was detected at its locus, possibly suggesting high pro-
tein stability. sORF61 has homologs in several bacterial phyla and
multiple paralogs, with a maximal aa sequence identity of 64% on
each replicon in S. meliloti 2011. Despite its wide distribution and
strong conservation, its function is unknown. Overall, excluding
the tmRNA, we detected seven sORFs conserved beyond the fam-
ily Rhizobiaceae, suggesting that the corresponding SEPs may have
important general functions.

Furthermore, we used TMHMM (Krogh et al. 2001) and PSORTb
(Yu et al. 2010) to predict the presence of transmembrane helices
and the subcellular localization of the 48 novel SEPs. Localization
in the cytoplasmic membrane was predicted for seven SEPs us-
ing at least one of the tools (Fig. 7; Table S8). Among them are the
Ribo-seq-identified and Western blot analysis-validated SEP6 (pre-
diction by both TMHMM and PSORTb) and SEP16 (prediction by
TMHMM only), which were detected with strong signals predomi-
nantly in the P100 fraction (see Fig. S7). The corresponding sORF6
and sORF16 are conserved in Hyphomicrobiales (Fig. 7). No proteins
with predicted membrane localization were found among the 11
MS-detected SEPs (Fig. 7). Notably, two of the 48 novel SEPs har-
bor a predicted SpII cleavage site and are thus probably lipopro-
teins (Fig. 7). Lipoproteins play important roles in physiology, sig-
naling, cell envelope structure, virulence, and antibiotic resistance
(Kovacs-Simon et al. 2011); however, as previously reported, they
are often missed in prokaryotic genome annotations (Omasits et
al. 2017).

Moreover, we used Phyre2 (Kelley et al. 2015) to gain insights
into the potential functions of novel SEPs with ≥ 30 aa by ana-
lyzing their similarity to proteins with known tertiary structures
(Fig. 7; Table S8). Best hits with a confidence homology of ≥ 30%
were obtained for eight novel SEPs (Fig. 7). The highest confidence
homology suggesting a function was obtained for the SEPs en-
coded by sORF38 (DNA binding; 18 of the 43 aa residues were
modeled with 66% confidence homology; conserved in Alphapro-
teobacteria) and sORF34 (bleomycin resistance; 37 of the 39 aa
residues were modeled with 92% confidence homology; conserved

among Bacteria). The HmuP extension (sORF65 in Fig. 7; see also
Fig. 5C) was modeled with 98% confidence along 59 of its 60 aa
residues; however, according to Phyre2, the function is unknown.
Overall, obtaining clear functional predictions was not possible
even for conserved SEPs, most probably due to their small size.

Additionally, to assess potential functions of the 48 novel trans-
lated sORFs and/or SEPs, we used the S. meliloti 2011 RNA-Seq data
by Sallet et al. (2013), who annotated coding and non-coding (e.g.
ncRNAs and UTRs flanking CDSs) transcripts, and compared RNA
levels under three different conditions (exponential growth, sta-
tionary phase and symbiosis). Out of the 48 novel sORFs, nine
do not overlap in sense with annotated transcripts (seven anti-
sense and two intergenic sORFs; Table S8). For them and for two
sORFs overlapping with repeat elements (sORF8 and sORF9; Ta-
ble S8), information about RNA levels could not be retrieved. The
levels of most transcripts, which comprise the remaining 37 novel
sORFs, showed specific abundance changes in the study by Sal-
let et al. (2013) (Table S8). Eleven of these sORFs are located in
5’-UTRs (Fig. 4C; Table S8), suggesting that at least some of them
could act as upstream ORFs (uORFs) and could play a role in the
regulation of the expression of the downstream genes. Notewor-
thy are sORF25, located in the 5’-UTR of dnaE1 encoding a sub-
unit of the replicative DNA polymerase, and sORF37 in the 5’-UTR
of rpoD encoding the vegetative sigma factor. These sORFs may
have functions in important pathways during bacterial growth.
Finally, 13 novel sORFs are encoded in previously annotated ncR-
NAs. While only the sORF26-transcript had constant expression
levels under the three conditions, the remaining 12 novel small
mRNAs showed differential expression indicative of possible SEP-
regulation and/or potential functions during exponential growth
or the stationary phase (Table S8). A specific up-regulation un-
der symbiosis was detected for the 5’-UTR transcripts that con-
tain sORF11 and sORF22, and for the SMb20335 transcript, which
overlaps with sORF59 (Table S8; see Fig. 5C above). We note that
changes in the RNA levels do not necessarily directly correspond
to similar changes in ribosome occupancy and SEP accumulation,
which were not tested by Sallet et al. (2013).

Moreover, an operon prediction was carried out to possibly as-
sign a function to some of the novel sORFs (SEPs) by guilt-by-
association. We could retrieve a predicted operon assignment for
21 of the 48 novel small protein ORFs (as part of 20 putative
operons; Table S8 and Table S9). Notably, seven sORFs are part of
operons encoding predicted transport systems (mainly ABC trans-
porters, an MFS transporter and an ion channel; Table S9). These
likely represent higher priority targets for an experimental eluci-
dation of their function.

Finally, we suggest the functions for three annotated
sORFs/SEPs with validated translation. SEP5 (added in the
RefSeq 2017 annotation) is conserved only in Sinorhizobium. Its
translation was detected with Ribo-seq and Western blot analysis
(Fig. 6E; Table S4). The SEP5 sORF contains a cluster of six threo-
nine and three lysine codons near its 3’-end and is located in the
5’-UTR of the aspartate dehydrogenase-encoding gene. Since as-
partate is a part of the threonine and lysine biosynthesis pathway
(Vitreschak et al. 2004), our observation suggests that this sORF
can be involved in the post-transcriptional regulation of the as-
partate dehydrogenase gene in Sinorhizobium, and SEP5 is possibly
a leader peptide. Furthermore, among the annotated SEPs with
functional assignment, which were detected by MS, an entericidin
A/B family lipoprotein was found (CP004140.1:2141558–2141716,
Table S4). The 52 aa protein has a predicted TMH and is conserved
in Alphaproteobacteria. Its A. tumefaciens homolog, the lipopro-
tein Atu8019, is involved in specific cell–cell interactions as a
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Figure 7. Conservation analysis, functional prediction and operon assignment for 48 novel small open reading frames (sORFs) of Sinorhizobium meliloti
2011. The conservation analysis was conducted using tBLASTn. The respective hits (see methods for parameters and cutoffs) are broadly summarized
at the level of different taxonomic groups. The number of species outside the lower taxonomic unit, which harbors a hit, is given, if at < 10. In addition,
the method by which the respective sORF was detected or confirmed is shown (Ribo-seq: ribosome profiling, MS: proteomics, WB: Western blot), as well
as the results of predictions for membrane localization (by TMHMM and PSORTb), signal peptide II cleavage sites of lipoproteins (by LipoP), and
function (by Phyre2; only hits with confidence levels greater than 30% are shown). For details on Phyre2 prediction and genomic context including
operon prediction, see Table S8 and Table S9. sORF1 to sORF55 are a subset of the Ribo-seq-detected, translated sORFs, which are listed in Table S7,
and sORF56 to sORF66 represent the novel sORFs identified by proteomics. sORFs encoding small proteins below 30 amino acids are shown in red. The
putative sORF64, present in tmRNA, contains the proteolytic tag sequence. The sORF65 corresponds to the N-terminal HmuP extension; outside of
Proteobacteria, it is conserved in many genera of Planctomycetes. ∗Structural genomics (92% confidence homology to protein of unknown function).
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part of outer membrane vesicles (Knoke et al. 2020). Finally, an
annotated small protein validated in this work by Ribo-seq and
Western blot analysis (1 PSM in the MS) is the above mentioned
SEP20 (Fig. 6G, Fig. S5E; Table S4). It contains a predicted TMH
and is conserved in the Alphaproteobacteria, and its sORF is part
of an uncharacterized cytochrome oxidase operon. This synteny
suggests that SEP20 can participate in the assembly and/or
function of the corresponding cytochrome oxidase complex, as
previously shown for SEP CydX and cytochrome bd oxidase in
Brucella abortus (Sun et al. 2012).

Discussion
In this work, we have developed and applied a Ribo-seq workflow
to comprehensively map the translatome of S. meliloti 2011 under
free-living conditions in a minimal medium. By combining Ribo-
seq and MS-based proteomics in a proteogenomic approach, we
added 48 novel SEPs below 70 aa to the S. meliloti annotation, that
is, an increase in the number of annotated SEPs by approximately
15% compared to the RefSeq 2017 annotation.

Ribo-seq is a powerful technique for detecting translation on
a global scale with high sensitivity (Ingolia et al. 2019). However,
in contrast to eukaryotic model systems, codon resolution has not
yet been achieved in Ribo-seq analyses of bacteria (Mohammad et
al. 2019, Venturini et al. 2020, Cianciulli Sesso et al. 2021, Vazquez-
Laslop et al. 2022). Trapping ribosomes on mRNA and generating
ribosome footprints have remained challenging, requiring careful
optimization for each bacterial species. Our Ribo-seq workflow for
S. meliloti includes ribosome trapping by rapid cooling of the cul-
ture without using antibiotics and cell lysis in an adapted buffer,
followed by digestion of unprotected RNA by RNase I, which is not
inactivated by the ribosomes of S. meliloti (Fig. 1B). RNase I has the
advantage of precisely cleaving at both 5’ and 3’ ends of ribosome-
protected mRNA without sequence specificity, in contrast to the
routinely used MNase (Bartholomäus et al. 2016). The digestion of
5’ and 3’ regions of translated mRNAs (Fig. 1C, Fig. 3C), higher TEs
of annotated CDS in comparison to non-coding RNAs (Fig. 2B), and
pronounced ribosome protection up to 16 nt upstream and down-
stream of start codons (Fig. S2; Fig. 1C and 1D) show the successful
establishment of Ribo-seq for S. meliloti.

In addition to providing the first genome-wide ribosome-
binding map of a Hyphomicrobiales member, our Ribo-seq analysis
uncovered translation for 85 annotated sORFs and identified 37
novel sORFs missing in the GenBank 2014 and Refseq 2017 anno-
tations of the S. meliloti genome (17 of the overall 54 novel sORFs
identified compared to Genbank 2014 were subsequently added
in RefSeq2017; this underlines the high quality of our data; Fig. 8;
Table S4). The translated sORFs were found on all three replicons
and had similar preferences for start and stop codons indepen-
dently of whether they were annotated or novel (Fig. 3 and Fig. 4).
The novel sORFs were generally shorter than the annotated ones
(Fig. 4B; Table S4), clearly showing the advantage of the Ribo-seq
method for SEP discovery. Many of the novel sORFs were probably
not annotated due to their location in short transcripts considered
as non-coding RNAs or asRNAs or in 5’- and 3’-UTRs (Fig. 4C).

Several translated novel sORFs internal to annotated genes
(nested ORFs; Gray et al. 2022) were also predicted by our Ribo-seq
data. However, they were excluded from the analysis as additional
evidence is needed to confirm their existence. Targeted detection
of translation initiation sites is useful in uncovering such sORFs
by Ribo-seq (Meydan et al. 2019, Weaver et al. 2019), a strategy
beyond the scope of our study. However, the existence of an in-
ternal sORF with Ribo-seq coverage was supported by the MS de-

tection of a novel, 34-aa-long SEP translated in a different frame
in the genomic region encoding SM2011_b20335 (Fig. 5C and Fig.
S5G; sORF59 in Fig. 7). The MS-detected SEPs encoded by sORF56
and sORF60 are also internal to annotated genes (Table S8).

A challenge in defining novel sORFs for any genome is that
annotations from different reference genome annotation centers
can differ substantially for an identical sequence and change over
time (Omasits et al. 2017); that is, CDS are being added but are
also removed in more recent annotations (see Fig. 2E and F, and
the ‘master’ Table S4). Accordingly, two of the 48 novel SEPs are
now bona fide-predicted CDS in the latest RefSeq 2022 annota-
tion, with MS-evidence of a single PSM found with the custom iPt-
gxDB, whereas two other Ribo-seq-identified sORFs have variable
pseudogene status in different annotation releases (see Table S4).
iPtgxDBs, which integrate existing reference annotations and add
in silico predicted ORFs in all six frames to virtually cover the entire
protein coding potential of a prokaryote, can be used to overcome
such problems and enable MS-based detection of novel SEPs (Om-
asits et al. 2017). Here, in addition to a standard large iPtgxDB of
S. meliloti (Melior et al. 2020), we applied the concept of a small,
custom iPtgxDB lacking in silico predictions and including the top
predictions from our experimental Ribo-seq data. This custom iPt-
gxDB is approximately 20-fold smaller and benefits statistics and
FDR estimation (Blakeley et al. 2012, Li et al. 2016). Notably, al-
though the identification of 11 in silico predicted novel sORFs was
possible only with the standard iPtgxDB, the small iPtxDB con-
tributed substantially to the validation of annotated sORFs, in-
creasing the number of SEPs with experimental support by 10%
(Fig. S4). The detection of more SEPs was also facilitated by apply-
ing three experimental approaches, two of which included enrich-
ment of small proteins. The MS detection of enriched SEPs with-
out a proteolytic digest, including, for example, the 12 aa proteol-
ysis tag encoded by tmRNA (Fig. 5C and Fig. S5), shows that this
method can be useful for the identification of SEPs.

The validation of translation by Western blot analysis for 15
out of 20 analyzed novel SEPs with Ribo-seq support (Fig. 6B–F;
Table S7), only three of which were detected by MS with at least
2 PSMs (Table S4), underlines the power of the Ribo-seq tech-
nique for identification of translated sORFs. The example of SEP7
(Fig. 6B; 59 aa, restriction endonuclease-like, conserved in Rhizobi-
aceae), which was added to the RefSeq 2017 annotation and was
detected by 2 PSMs using the small, custom iPtgxDB, again illus-
trates the added value of the latter. Detection of translation for the
novel SEP1 (23 aa, conserved in Rhizobiaceae) by Western blot anal-
ysis (Fig. 6E) and Ribo-seq (highest TE among the non-annotated
translated sORFs, Table S7), even though it was identified by only 1
PSM in the MS analysis (Fig. S5E), suggests that putative SEPs with
1 PSM can be truly expressed, real small proteins. Similarly, the
annotated SEP20 (46 aa, conserved in Alphaproteobacteria) was
confirmed by Western blot analysis (Fig. 6G), although it had only
1 PSM (Fig. S5F) and did not pass the filtering of the Ribo-seq data
(Table S6). We suggest that the conservation analysis of putative
SEPs, which have minimal MS evidence (e.g. 1 PSM) and/or corre-
spond to sORFs that did not pass the very stringent manual cura-
tion of the Ribo-seq data, can help define SEP candidates with po-
tentially important functions that can be validated and analyzed
in the future.

Despite the lower sensitivity of MS compared with Ribo-seq, us-
ing MS we detected 16 additional SEPs that were not identified as
translated by Ribo-seq. Eleven of them were novel, showing the
importance of complementary methods for comprehensive anal-
ysis of bacterial small proteomes. The reported numbers of val-
idated and novel sORFs and their encoded SEPs are affected by
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Figure 8. Translated sORF (SEP) candidates and their detection by different methods. Overlap between the 191 MS-detected SEP candidates (annotated
and non-annotated), the 85 Ribo-seq-detected, manually curated sORFs present in the Genbank 2014 annotation and the 266 Ribo-seq-detected sORF
candidates, which are missing in the GenBank 2014 annotation (Table S4). SEPs and translated sORFs, which are missing from both the GenBank 2014
and Refseq 2017 annotations, were designated ‘novel’. Two of the 11 Ribo-seq-detected novel sORFs are present in the RefSeq 2022 annotation (Table
S4). Passing the stringent filtering criteria and (in the case of Ribo-seq) the manual curation, and detection by more than one method increases the
confidence in sORF translation (for details see the master Table S4).

the somewhat arbitrary cut-off of 70 aa. In fact, our data provide
evidence for the translation of three additional proteins below
100 aa, which are considered small in other studies (Baumgartner
et al. 2016, VanOrsdel et al. 2018, Kaulich et al. 2021) (see Table
S4). One of them (identifier CP004140.1:3367861–3368100) corre-
sponds to a 79 aa ChemGenome predicted protein, the N-terminus
of which is encoded by the pseudogene SM2011_RS34080 (anno-
tated as transcriptional regulator with a frame shift). Two addi-
tional exact copies of this ChemGenome-predicted sORF and the
matching pseudogene (SM2011_RS34090 and SM2011_RS34095)
are also present in this genomic region, which differs between the
S. meliloti strains 1021 and 2011 (Sallet et al. 2013). Their promoters
and the 5’-terminal CDS parts corresponding to the pseudogenes
evolved by duplications of fixK, a gene controlled by the sym-
biotically relevant transcriptional regulator FixJ (Ferrières et al.
2004).

For the 48 novel sORFs listed in Fig. 7 and Table S8, we suggest
that they are translated. Our high confidence in the translation of
the 37 novel, Ribo-seq-detected sORFs relies on passing the strin-
gent filtering criteria and careful manual curation, while the iden-
tification of the 11 novel, MS-detected SEPs is based on passing
the MS quality filters and their detection with at least three PSMs.
The 11 MS-detected SEPs do not correspond to sORFs that passed
the Ribo-seq filtering (e.g. sORF59, out of frame in SMb20335; see
also Fig. 5C) or to transcripts detected in our study (e.g. the highly
conserved sORF61). The latter can be explained by the generally
very short half-lives of bacterial mRNAs compared to protein half-
lives (Bonnefoy et al. 1989, Bernstein et al. 2002, Chai et al. 2016).
Therefore, it can be expected to detect some proteins without de-
tecting their corresponding mRNAs (Omasits et al. 2013), an im-
portant argument for using both MS and Ribo-seq for sORF identi-
fication. Similarly, the failure to detect a recombinant, tagged SEP
by our Western blot approach does not lower the confidence in the
Ribo-seq-detected ribosome occupancy of its sORF. To understand
why the Western blot result was negative, additional experiments

are needed. For example, the translation product could be below
the detection limit, possibly because of its recombinant form or
ribosome occupancy could have regulatory function and a non-
functional SEP-product could be short-lived.

As mentioned above, our datasets include many sORF candi-
dates that did not pass our stringent criteria, but also sORFs,
whose translation was suggested by more than one method, likely
increasing the confidence in the SEP existence (summarized in
Fig. 8 and Table S4). However, we point out that additional efforts
allow to assign a higher confidence to annotated and novel SEPs.
For example, the Ribo-seq detection of translated sORFs can be
additionally supported by targeted detection of translation ini-
tiation sites (Meydan et al. 2019, Weaver et al. 2019), which is
still not established for S. meliloti. Further, increased confidence
in the MS-detection can e.g. be achieved by validation using an-
other, more sensitive mass spectrometry technique called parallel
reaction monitoring (Omasits et al. 2017) or by matching experi-
mentally observed spectra to those obtained from synthetic pep-
tides (Petruschke et al. 2021). Both these approaches are quite ex-
pensive when many SEP candidates are analyzed, but would pro-
vide additional support on top of the Western blot analysis carried
out here. Finally, the Western blot results can be further validated
by using (i) additional reporter constructs, which cover potential
transcriptional and post-transcriptional regulatory regions of the
gene of interest (Scheuer et al. 2022), (ii) a marker-less tag insertion
in the original genomic locus (Hemm et al. 2010), and (iii) detailed
characterization of the subcellular localization of the tagged SEP
(Fontaine et al. 2011).

The functions of small proteins are difficult to predict in sil-
ico, often because they are too small to harbor known protein do-
mains or motifs (Ahrens et al. 2022). In addition, for SEPs smaller
than 30 aa in silico analysis by Phyre2 is still impossible. Keeping
these limitations in mind, we present a list of putative functions
corresponding to Phyre2 best hits (Table S8). Since modeling of a
partial SEP sequence by Phyre2 may provide a hint of potential
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interactions with other proteins or protein complexes, we men-
tion predictions based on greater than 30% confidence homology
in Fig. 7, including the predicted DNA-binding function of the 43
aa SEP38 and a potential role in bleomycin resistance of the 39 aa
SEP34. SEP function can also be predicted based on gene synteny
(Ahrens et al. 2022), for example for SEPs encoded in 5’-UTRs (e.g.
the RefSeq 2017-annotated SEP5, which is a potential leader pep-
tide; see also Table S8) or in operons with predicted functions (e.g.
encoding ABC transporters or ion channels, Table S9; SEP20 en-
coded in a cytochrome oxidase operon). Our findings show that,
excluding the tmRNA sORF, 13 out of the 48 novel SEPs (sORFs)
are conserved in Rhizobiaceae, seven in Hyphomicrobiales, and three
in at least two bacterial phyla, which likely suggests physiologi-
cal relevance. Most of the translated sORFs or SEPs were detected
in logarithmic cultures grown in a minimal medium, where bacte-
ria synthesize virtually all metabolites for cell reproduction. Thus,
some of these SEPs can be of general importance for growth or are
needed for survival and competitiveness under oligotrophic con-
ditions in soil and rhizosphere.

In summary, our work shows that a combination of methods
can increase the number of experimentally validated SEPs. Using
Ribo-seq, MS, and Western blot analysis of C-terminally tagged
proteins, we provide evidence for the translation of 48 SEPs with
≤ 70 aa to be added to the annotation of S. meliloti, thus substan-
tially increasing the number of cataloged SEPs. With the MS data,
the corresponding full and small custom iPtgxDBs, and impor-
tantly, the first Ribo-seq analysis of a Hyphomicrobiales member,
which can be viewed with an interactive online JBrowse instance
(http://www.bioinf.uni-freiburg.de/ribobase), our study provides
valuable resources for future studies on and beyond the small
proteome.
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Cianciulli Sesso A, Lilić B, Amman F et al. Gene Expression Profil-
ing of Pseudomonas aeruginosa Upon Exposure to Colistin and To-
bramycin. Front Microbiol 2021;12:626715.

Clauwaert J, Menschaert G, Waegeman W. DeepRibo: a neural net-
work for precise gene annotation of prokaryotes by combining
ribosome profiling signal and binding site patterns. Nucleic Acids
Res 2019;47:e36.
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